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Abstract: The Earth Observation Satellite Global Change Observation Mission—Climate (GCOM)-C
(SHIKISAI in Japanese), carrying a second-generation global imager (SGLI), was launched in 2017 by
the Japan Aerospace Exploration Agency. The SGLI performs wide-swath multi-spectral measure-
ments in 19 channels, from near-ultraviolet to thermal infrared (IR), including the red (674 nm; PL1
channel) and near-IR (869 nm; PL2 channel) polarization channels. This work aimed to demonstrate
the advantages of SGLI, particularly the significance of simultaneous off-nadir polarized and nadir
multi-spectral observations. The PL1 and PL2 channels were tilted at 45◦ for the off-nadir measure-
ments, whereas the other channels took a straight downward view for the nadir measurements. As a
result, the SGLI provided two-directional total radiance data at two wavelengths (674 and 869 nm)
that were included in both off-nadir and nadir observations. Using these bidirectional data, an
algorithm was applied to derive the altitude of the aerosol plume. Furthermore, because of the signifi-
cance of the simultaneous observation of polarized and non-polarized light, the sensitivity difference
between the radiance and polarized radiance was demonstrated. Severe wildfire events in Indonesia
and California were considered as examples of specific applications. Herein, we present the results
of our analysis of optically thick biomass-burning aerosol events. The results of the satellite-based
analysis were compared with those of a chemical transport model. Exploring the SGLI’s unique
capability and continuous 5-year global record paves the way for advanced data exploitation from
future satellite missions as a number of multi-directional polarization sensors are programmed to fly
in the late 2020s.

Keywords: Global Change Observation Mission—Climate; chemical transport model; wildfires;
biomass-burning aerosol

1. Introduction

Severe wildfires, which occur frequently worldwide, have become a major environ-
mental problem. A considerable amount of biomass-burning aerosols (BBAs) are released
into the atmosphere, causing air pollution and adversely affecting the health and social
lives of humans [1–4]. The BBAs released by wildfires travel long distances by advection
and often traverse oceans or continents. Although such long-range transport depends
predominantly on meteorology, in some parts of the world, thermally driven pollutant
flows have been reported to be systematized as a feature of mountainous weather and
climates [5]. Therefore, both topographic effects and meteorological fields should be con-
sidered to understand the local air pollution [6–9]. In addition, the BBAs released from
large-scale wildfires often form a BBA plume, which is an optically thick layer with limited
horizontal and vertical extents. BBA plumes are too thick for standard global aerosol
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retrieval algorithms and are often misclassified as clouds. These complexities regarding the
nature of BBAs, challenges in the standard global products, and the social impact of BBAs
are the main drivers of the exploratory study presented in this article. The objective of this
study was to demonstrate the potential capabilities and advantages of the second-global
imager (SGLI) instrument [10] beyond the publicly available standard product suite.

A Japanese mission, the Japan Aerospace Exploration Agency (JAXA)/Global Change
Observation Mission—Climate (GCOM)-C (SHIKISAI in Japanese), launched in 2017, carried
an SGLI. Over the past few years, we have been involved in the analysis of optically thick
BBA events, such as severe BBA (SBBA) plumes, using the features of SGLI data [11–14].
The difficulty in SBBA plume analysis is the possibility of confusion between aerosols and
clouds, as well as the limited implementation of the algorithm suitable for the SBBA plume
in the standard product chain. Our previous studies addressed these challenges [12,14,15],
and we continue to focus on SBBAs to advance the analysis of faint borders between clouds
and aerosols, or the mixing zone between the two. The SGLI has 19 channels ranging
from near-UV to thermal infrared (IR), including the red (674 nm; PL1 band) and near-IR
(869 nm; PL2 band) polarization channels. The instantaneous field-of-view is 250 m in
the near-UV to short-IR wavelength range and 1 km for polarization measurements. This
spatial resolution is the best among the multiyear global-scale polarization measurement
datasets available.

The polarization optics of the SGLI make oblique observations at ±45◦ (the switch
between 45◦ and −45◦ is made near the equator), while the radiance (R)-only optics take
a straight downward view. As a result, the SGLI provides two-directional total R data at
two wavelengths (674 and 869 nm). As previous studies with the multi-angle imaging
spectroradiometer (MISR) have shown, multi-directional data make it possible to derive
geometrical information about clouds and aerosol plumes [16–19]. Atmospheric motion
vector detection using MISR and GOES was extended and derived from the GOES-R series
of the moderate-resolution imaging spectroradiometer (MODIS) and the GOES-R series
Advanced Baseline Imager [20]. These promising results drive us to advance the application
of SGLI data in stereoscopy and triangulation, although the application of historic MISR
algorithms to SGLI is not straightforward because of the difference in the number of view
directions and swath widths between the two instruments.

In addition to polarimetric and multi-spectral measurements by the SGLI, geosta-
tionary satellites and ground-based measurements provide information regarding the
temporal evolution of the SBBA event. Although the swath width of the SGLI is as wide
as 1150 km, the next measurement after an overpass occurs between one and three days
later at mid- and low latitudes, which is insufficient to fully capture fast-changing SBBA
events. Therefore, the use of high-temporal-resolution data obtained by geostationary
satellites or ground-based observations is necessary to place the event in context. Here, the
Japanese geostationary meteorological satellites Himawari-8/Advanced Himawari Imager
(AHI) [21] and National Aeronautics and Space Administration (NASA)/aerosol robotic
network (AERONET) [22] are effective.

The remainder of this paper is organized as follows. The method, described in Section 2,
specifies the analytical processing. First, previously proposed algorithms for the retrieval
of SBBAs are briefly reviewed. Second, a calculation method for the aerosol plume height
using two-directional total R data from off-nadir and nadir observations is presented. Third,
chemical transport model (CTM) configurations and other ancillary datasets are discussed.
Section 3 presents the results of R-to-polarized-R (PR) comparison, stereoscopic altitude
estimation, and CTM simulation for case studies in Sumatra and the West Coast of North
America. Section 4 discusses the validity of the methodology used and the possibilities for
further work. Finally, the observations reported in this study are summarized.
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2. Methods
2.1. Retrieval for BBA Properties from the GCOM-C/SGLI Data

The instantaneous field-of-view of the SGLI is 250 m in the near-UV to near-IR wave-
length range and 1 km for the polarization measurements. Such a multi-channel capability
is useful in characterizing the types of aerosols that exist in the atmosphere. Once the
aerosol type is predicted, it is useful to efficiently characterize their optical thickness and
microphysical properties.

This study focused on SBBAs, which are optically thick biomass-burning aerosols that
often occur in the form of a plume as a result of massive forest fires. In previous studies,
we proposed two SBBA detection indicators and discussed their application to the SGLI
data [15–18]. The first indicator, the absorbing aerosol index (AAI), takes advantage of the
sensitivity of near-UV channels to SBBA and is defined as follows:

AAI =
R412

R380
, (1)

where R412 is the reflectance at the 412 nm near-UV channel, and R380 is the same at the
380 nm channel. The second indicator, the polarized radiance index (PRI), is defined by the
polarimetric reflectance (PR) at 869 and 674 nm as follows:

PRI =
PR869

PR674
, (2)

where PRλ is defined by the second and third Stokes parameters Q and U at wavelength λ
by the following equation:

PRλ =
√

Q2
λ + U2

λ (3)

Using the SGLI recorded data for four years from 2018 to 2021, the pixels satisfying
AAI ≥ 1.1 and PRI ≥ 1.2 are candidates for SBBA pixels [18]. In practice, a large fraction of
AAI ≥ 1.1 pixels include PRI ≥ 1.2 pixels, and, hence, it is sufficient to use AAI ≥ 1.1 for
the quick selection of the SBBA candidate area. This simplification is effective for aerosol
retrieval, particularly when polarimetric observations are not available. The details of the
aerosol retrieval algorithms and obtained aerosol optical properties and the validation of
the results have been presented in a previous paper [11].

Figure 1 demonstrates the SBBA pre-selection based on the AAI performed before
the main BBA retrieval. The SGLI data over western North America on 13 September
2020 have been used as an example. Figure 1a shows a color composite image with (R,
G, B) corresponding to the (674, 530, 443) channels, showing heavy smoke from the fire
sources. The thick brown plume running northwest from the lower-central part of the
figure is clearly visible. Figure 1b shows the aerosol optical thickness (AOT) at 500 nm
from the official Level 2 products of JAXA (version 2). The densest part of the smoke
plume was grayed out as this part was identified as a cloud, and no aerosol retrieval
was attempted. In addition, the areas surrounding the grayed out pixels were removed
because the official products of JAXA set the upper limit of the AOT at 5.0. This confusion
between thick aerosols and clouds, combined with the AOT retrieval limit, is often present
in operational processing systems and poses a challenge for the study of SBBA plumes.
The direct detection of SBBAs using the indices AAI ≥ 1.1 and PRI ≥ 1.2, based on the
SGLI’s near-ultraviolet and polarization channels, alleviated this challenge, as shown in
Figure 1c,d [11]. Figure 1e shows the SBBA candidate areas defined by the condition
AAI ≥ 1.0. Clouds were not excluded, and the peripheries of SBBA areas were included
in our retrieval process as long as they satisfied the AAI ≥ 1.0 condition. The reason for
this is that we were searching for areas where clouds and aerosols were confused or even
misconstrued [15], and we also intended to capture BBAs that were sufficiently dense
without strictly satisfying the SBBA requirements [12].
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retrieval using GCOM-C/SGLI observations over western North America on 13 September 2020. (a) 
Color composite image from SGLI data, (b) distribution of AOT (500) from SGLI/L2, (c) distribution 
of index AAI from SGLI data, (d) same as (c) but for index PRI and (e) the area with AAI ≥ 1.1 is 
colored by pink. BBA: biomass-burning aerosol; SBBA: severe BBA; SGLI: second-generation global 
imager; AOT: aerosol optical thickness; AAI: absorbing aerosol index; PRI: polarized radiance index. 
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angle is fixed at +45° in the Northern Hemisphere and −45° in the Southern Hemisphere. 
As the SGLI travels from north to south on the day side of the orbit, a forward-to-back-
ward switch is programmed near the equator. In the Northern Hemisphere, a ground tar-
get is first measured by forward-tilted polarization optics and then by straight-down-
ward-looking R-only optics approximately 2 min later. In the Southern Hemisphere, R-
only optics first measure a ground target, followed by backward-tilted polarization optics. 

In addition, multi-directional polarization measurements are performed below the 
zone of tilt switching as the switching is fast enough to measure the same ground target 
immediately before and after. 

Figure 1. Diagram showing the pre-selection process of SBBA candidate pixels before the main
BBA retrieval using GCOM-C/SGLI observations over western North America on 13 September
2020. (a) Color composite image from SGLI data, (b) distribution of AOT (500) from SGLI/L2,
(c) distribution of index AAI from SGLI data, (d) same as (c) but for index PRI and (e) the area
with AAI ≥ 1.1 is colored by pink. BBA: biomass-burning aerosol; SBBA: severe BBA; SGLI: second-
generation global imager; AOT: aerosol optical thickness; AAI: absorbing aerosol index; PRI: polarized
radiance index.

2.2. Estimating Target Height from the SGLI Multi-Directional Data

The polarization channels of the SGLI use dedicated optics mounted on the spacecraft
via a tilt mechanism. Combined with downward-looking multi-spectral R-only optics,
tilted polarization optics enable global two-directional R measurements. Figure 2 shows a
schematic of this capability.

The tilt mechanism rotates the polarization optics in the along-track direction, allowing
them to point at an arbitrary tilt angle. In the standard operation configuration, the tilt angle
is fixed at +45◦ in the Northern Hemisphere and −45◦ in the Southern Hemisphere. As the
SGLI travels from north to south on the day side of the orbit, a forward-to-backward switch
is programmed near the equator. In the Northern Hemisphere, a ground target is first
measured by forward-tilted polarization optics and then by straight-downward-looking
R-only optics approximately 2 min later. In the Southern Hemisphere, R-only optics first
measure a ground target, followed by backward-tilted polarization optics.

In addition, multi-directional polarization measurements are performed below the
zone of tilt switching as the switching is fast enough to measure the same ground target
immediately before and after.

From the global two-directional data measured by the SGLI, the target altitude was es-
timated using the following procedure. First, a reflectance image at 674 nm measured using
R-only optics was projected onto the reflectance image measured using polarization optics.
The area satisfying the SBBA candidate condition (AAI > 1.1) was selected for analysis. The
R range in this area was stretched to fit the 8-bit value range (0–255), and the histogram
was equalized. After preprocessing the images, the scale-invariant feature transform (SIFT)
method was applied to identify feature points [23]. The detected feature points were paired
based on the similarity of the surrounding pixels, and the three-dimensional position of
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the target was estimated from the coordinates and geometric information provided by the
SGLI Level 1B products.
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Figure 3 shows a schematic of the target position estimation from a pair of ground
projections: Projections 1 and 2. The positions of projections

→
r1 and

→
r2, as well as the

measurement line-of-sight (LOS) vectors
→
e1 and

→
e2, were obtained from the geometry

information of the SGLI Level 1B product. In theory, two LOSs intersect at the target
position; however, errors in the geometric information and feature matching often separate
them by a distance up to the spatial resolution of the image. Therefore, we selected the
midpoint of the line that joined the two LOSs at the minimum distance as the best estimate
of the target position. The midpoint position was computed using the following equation:

→
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1
2
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where s and t are parameters computed as follows:
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Projection pairs with minimum distances exceeding 500 m were excluded from further
analysis.

2.3. Synergistic Use of Regional Numerical Model and Other Measurements

The wildfire-origin aerosol simulation results of the CTM were validated using the BBA
plume distribution from the SGLI data. A chemical transport model [24] was implemented,
and the Scalable Computing for Advanced Library and Environment (SCALE) meteorologi-
cal model [25,26] results were used for offline calculations. SCALE is a fundamental library
in next-generation weather and climate science and is mainly developed at the RIKEN
Center for Computational Science. Computation of the wind field was constrained by the
initial and boundary conditions of the wind vector, temperature, relative humidity, and
atmospheric pressure from the National Centers for Environmental Prediction operational
global analysis data. For the surface terrain model, we selected GTOPO30 from the United
States Geological Survey, with a spatial resolution of 30 arcseconds. The accuracy of the
SCALE winds was found to be reasonable in the present work [11]. We verified the repro-
ducibility of the offline CTM using SCALE by simulation in a Japanese region [27]. The
Global Fire Assimilation System [28] was used for biomass-burning emissions to repro-
duce aerosol distributions of forest fire origin. The simulations were performed at spatial
resolutions of 5 km each in latitude and longitude. In the CTM, the plume was injected
uniformly into the atmospheric layers from the surface to an altitude of 1 km. The results
were compared to the satellite-derived spread of the plume.

As supporting observations, we also used geostationary satellite data from the AHI
on Himawari-8, the MODIS Level 2 thermal anomaly fire product, and ground-based sun
photometer data from the AERONET.

3. Experiments
3.1. Sumatran Island in September 2019
3.1.1. Wildfires in Indonesia

One of the targets that satisfied the conditions for our study was Indonesia in Septem-
ber 2019. In Indonesia, severe wildfires usually peak during the dry season from July to
October. This slash-and-burn practice causes peat fires that emit significant amounts of
BBAs. The haze spreads to Malaysia, Singapore, the south of Thailand, and the Philip-
pines and causes widespread air pollution and associated respiratory and other health
hazards [29,30]. This region was selected for analysis because of its high atmospheric
impact and large number of measurements. Smoke evolution was monitored using an AHI
instrument on the Himawari-8 geostationary satellite.
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Figure 4 shows the accumulated hotspot map for September 2019, derived from the
MODIS Level 2 Thermal Anomalies/Fire product (MOD14, Collection 6) [31]. Hereafter,
equal longitude and latitude projections were used for the presented maps. Figure 4 shows
that Indonesia experienced several large-scale wildfires in September 2019, particularly in
Sumatra and southern Kalimantan.
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Figure 4. Accumulated hotspot (•) map in September 2019 derived from the MODIS Level 2 Ther-
mal Anomalies/Fire product (MOD14, Collection 6) [31]. MODIS: moderate-resolution imaging
spectroradiometer.

Figure 5 shows a topographic map of Indonesia. The small black squares denote
AERONET stations (Jambi, Pontianak, and Palangkaraya). The intense wildfire area near
the Jambi station is represented by a black square and is further expanded on the left side
of the figure. The topographic information of the area shows that the fire was not in the
alpine forest but at a height of several hundred meters. This implies that the observed
hotspots near the Jambi station are likely well-known peatland fires [30].
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with hotspots on 20 and 21 September as red and orange dots, respectively. As the over-
pass time was 03:30 UTC (10:30 local Jakarta time), the hotspots on 20 September may be 
responsible for some parts of the observed BBA distribution. Figure 6b,c show AAI and 
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Figure 5. Topographic map over Sumatra islands and the tip of the Malay peninsula.

The SGLI overpass, on 21 September, 2019, captured one of the intense wildfire events
in this area. Figure 6a shows the color composite image (R, G, B) = (674, 530, 443) with
hotspots on 20 and 21 September as red and orange dots, respectively. As the overpass
time was 03:30 UTC (10:30 local Jakarta time), the hotspots on 20 September may be
responsible for some parts of the observed BBA distribution. Figure 6b,c show AAI and
PRI, respectively. As described in Section 2.1, the pixels satisfying AAI ≥ 1.1 and PRI ≥ 1.2
indicate the possible presence of SBBAs. Figure 6 demonstrates that this wildfire produced
a large amount of BBAs and heavy smoke. The upper and lower images in Figure 6a
represent instances with and without clouds, derived from the SGLI L2/version 2 product,
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respectively. Both images clearly show a mixture of clouds and dense smoke. In other
words, it is a difficult and meaningful task to distinguish between the two.
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Figure 6. Wildfires in Sumatra observed by the SGLI at 03:30 UT on 21 September, 2019 with hotspots
from MODIS Level 2 Thermal Anomalies/Fire product (MOD14, Collection 6) and Jambi AERONET
site. (a) Color composite image: (R, G, B) = (674, 530, 443 nm) with and without cloud/SGLI/L2,
(b) AAI, (c) PRI. MODIS: moderate-resolution imaging spectroradiometer; SGLI: second-generation
global imager; PRI: polarized radiance index; AERONET: aerosol robotic network.

3.1.2. Significance of Simultaneous Observation of Polarized and Un-Polarized Light

In this subsection, we compare the total R and polarized radiance (PR) measured by the
SGLI. Figure 7 presents additional data in the same domain as shown in Figure 6. Figure 7a
shows the AOT values at 500 nm obtained from official JAXA SGLI Level 2 products.
Figure 7b,c show the histograms of the R and PR at 674 and 869 nm, respectively, for the
same scene, excluding the pixels identified as cloudy by the official JAXA SGLI Level 2
cloud mask product. The excluded pixels are shaded in gray in the other panels. Figure 7d,d’
show R and PR at 674 nm, and Figure 7e,e’ show R and PR at 869 nm.

As shown in Figure 7, both the R and PR at 869 nm were larger than those at 674 nm,
and it is possible that their respective images did not considerably affect the distribution
pattern. For example, all R and PR images show a clear reflectance peak near the fire, but
the stretch of the plume appears to be different in all four images. The PR image at 674 nm
does not show a clear stretch of the plume, the PR image at 869 nm marks the southwestern
boundary, and the R images identify the thickest part of the plume. In addition, the blob of
the plume in the left center of the figure is evident in the color composite and R images but
not in the PR image at 674 nm. Such differences between R and PR images, manifesting as a
difference in the location and shape of the plume, indicate the effectiveness of simultaneous
observations of R and the polarization of the SGLI. Thus, PR and R have different sensitivity
characteristics [13].
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Figure 7. SGLI measurements over Sumatra on 21 September 2019. (a) AOT (500 nm) from SGLI/L2
products; (b) frequency histogram of the R in Figure 6a at wavelengths of 674 and 869 nm; (c) the
same as Figure 7b, but for PR; (d) distribution of R and PR images, respectively, at 674 nm; (e,e’) the
same as (d,d’) but for 869 nm. AOT: aerosol optical thickness; SGLI: second-generation global imager;
R: radiance; PR: polarized radiance.

This is due to the high sensitivity of the PR image to the presence of small particles
in the first few optical thicknesses from the top of the plume. Small aerosol particles
produce polarization, which is quenched by multiple scattering. For small aerosol particles
to effectively polarize the reflectance, they must be present in a small optical thickness
from the top of the plume. We have shown the relationship between the polarization effect
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and the mean number of scatterings in a semi-infinite atmospheric model (Appendix A).
According to the theory of atmospheric radiative transfer, strong polarization over an
SBBA plume indicates the presence of small particles near the top of the plume. This
implies that R represents the total column of aerosols accumulated from the surface to
the top of the plume, and PR carries microphysical information near the top of the plume.
The difference between the R and PR measured simultaneously by the SGLI over the
SBBA plume demonstrates the potential of the SGLI to detect vertical variations in aerosol
properties.

3.1.3. Estimation of Plume Height from SGLI’s Multi-Directional Data

The plume height was estimated by the method described in Section 2.2 from the
two-directional data acquired, as shown in Figure 2. Focusing on the fire source of the
Sumatra wildfire on 21 September, 2019, the estimated plume height values according to
Equations (1)–(3) are presented in Figure 8.
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Figure 8. Estimation of BBA plume height using the stereoscopic approach over Sumatra wildfire on
21 September 2019. BBA: biomass-burning aerosol.

The estimated plume top heights were mostly between 2000 and 3000 m. At this
vertical level, the CTM predicted that the wind would transport the plume to the northwest,
as observed by the SGLI. The plume height appeared to be stable from the source to the
tail, although it was not accurately measured near the plume source. The difficulty in
plume height estimation near the source arises from the limited width of the plume and the
spatial scale of the plume texture. Figure 8 clearly shows the fine texture of the plume top;
however, the polarization image failed to capture most of them. This challenge is discussed
in detail in Section 4.
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To place this SGLI measurement in a temporal context, Figure 9 presents sequential
images observed by the Japanese geostationary satellite Himawari-8/AHI over Sumatra on
21 September 2019, and the lower left panel shows the AERONET measurements at the
Jambi station. Comparing the AHI images with the SGLI images observed simultaneously
over the same area presented in Figure 6a, the fine spatial resolution of the SGLI is clearly
visible. However, it can be observed from the sequential AHI data in Figure 10a that the
wildfire continued to intensify after the SGLI overpass (03:30 UTC). The time variation
provides details of spatial changes, such as the diffusion and advection of BBA particles,
as expected from the results in Figure 9a. This tendency coincides with the ground-based
AERONET measurements shown in Figure 9b. This strongly suggests that the integrated
use of multi-satellite and ground-based observation data is very effective in elucidating
aerosols.
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Figure 9. Sequential measurements over North Sumatra on 21 September, 2019. (a) Color composite
images observed by Himawari-8/AHI, (b) AOT measured at Jambi site of NASA/AERONET. AOT:
aerosol optical thickness; NASA: National Aeronautics and Space Administration; AERONET: aerosol
robotic network.

3.1.4. Simulation by the Regional CTM

We compared and verified the forest fire origin aerosol distributions simulated by
the CTM using BBA distributions derived from SGLI data. Figure 10 presents the black
carbon (BC), a typical aerosol of fire origin, concentration (µg/m3) derived from the CTM
at a 5 × 5 km resolution at various altitudes in meters. The gray-shaded areas are cloudy
pixels identified using the SGLI Level 2 cloud mask product (version 2). Here, because
we aimed to compare and refer to the images in Figure 7, we focused on the distribution,
i.e., the pattern, rather than the absolute value of the BC concentration. A comparison of
the satellite data and CTM simulations showed that the model simulations reproduced
the distribution of BC from Eastern Sumatra to the northwest. However, compared with
the satellite data, the BC distribution tended not to extend. As shown in Figure 10, the BC
concentration decreased slightly from 25 m to 850 m, but there was no significant change
in the BC concentration pattern. The BC pattern began to change at 1250 m, and the high
BC concentration area was limited to the fire source area in the lower right of the figure at
2750 m. The plume height estimated from SGLI multi-directional data exceeded 2 km from



Remote Sens. 2023, 15, 5405 12 of 23

the emission source. The weak spread of BC over the distance may be due to the injection
altitude setting in the CTM simulation.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 25 
 

 

 
Figure 10. BC concentration (µg/m3) simulated by a regional meteorological model CTM in 5 × 5 km 
resolution at altitude h (m). BC: black carbon; CTM: chemical transport model. 

3.2. The West Coast of North America in September 2020 
3.2.1. Forest Fire on the West Coast of North America 

The method and results mentioned above were applied to forest fires on the west 
coast of North America to confirm their adaptability and scalability. It is well known that 
forest fires frequently occur in this region. Figure 11 presents the SGLI observations for 13 
September 2020, as shown in Figure 1. For this case study, the optical properties of BBA 
were retrieved from a previous study [11]. The SGLI Level 2 product classified the central 
part of the most pronounced brown plume in Figure 11a as a cloud, making it difficult to 
distinguish heavy aerosols from clouds. Although there was an impressive mass of thick 
and dense smoke, optically thin BBA areas were observed in the surroundings where the 
ground surface was visible. This feature is shown in the AAI distribution in Figure 11b. 
The SBBAs likely exist in the central part of Figure 11b because of high AAI values (AAI 
≥ 1.1), and the areas with AAI < 0.9 denoted by a white color correspond to optically thin 
regions. In particular, a value lower than 0.9 implies significant surface reflection. Figure 
11c shows a topographic map. The plume of interest consisted of smoke generated by 
large-scale forest fires in the mountains in the southeastern part of the figure, flowing 
along the valley to the west side of the high mountains. 

Figure 10. BC concentration (µg/m3) simulated by a regional meteorological model CTM in
5 × 5 km resolution at altitude h (m). BC: black carbon; CTM: chemical transport model.

3.2. The West Coast of North America in September 2020
3.2.1. Forest Fire on the West Coast of North America

The method and results mentioned above were applied to forest fires on the west
coast of North America to confirm their adaptability and scalability. It is well known that
forest fires frequently occur in this region. Figure 11 presents the SGLI observations for
13 September 2020, as shown in Figure 1. For this case study, the optical properties of BBA
were retrieved from a previous study [11]. The SGLI Level 2 product classified the central
part of the most pronounced brown plume in Figure 11a as a cloud, making it difficult to
distinguish heavy aerosols from clouds. Although there was an impressive mass of thick
and dense smoke, optically thin BBA areas were observed in the surroundings where the
ground surface was visible. This feature is shown in the AAI distribution in Figure 11b. The
SBBAs likely exist in the central part of Figure 11b because of high AAI values (AAI ≥ 1.1),
and the areas with AAI < 0.9 denoted by a white color correspond to optically thin regions.
In particular, a value lower than 0.9 implies significant surface reflection. Figure 11c shows
a topographic map. The plume of interest consisted of smoke generated by large-scale
forest fires in the mountains in the southeastern part of the figure, flowing along the valley
to the west side of the high mountains.

3.2.2. R and PR Measurements

The differences between the R and PR are shown in Figure 12. The histograms of
the R values in Figure 12a show a similar distribution, except that the values are shifted.
In contrast, the histogram of the PR values in Figure 12b displays a significant difference
between 869 and 674 nm. The PR histogram at 869 nm shows multiple peaks that were
not observed in the Sumatra case study, as shown in Figure 7c. The different histogram
patterns of PR (674) and PR (869) may reflect their different spectral sensitivities to small
particles. The longer the wavelength, the smaller the particle becomes with respect to the
wavelength, and smaller particles induce stronger polarization. Figure 12c,d show that
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the Rs at 674 and 869 nm are similar to the brightness of the color composite image in
Figure 11a. The smoke plume in question stood out, with high PR values at 674 and 869 nm,
as shown in Figure 12e,f. The distribution of the PR at 869 nm (Figure 12d) corresponds to
the AAI distribution shown in Figure 11b.
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Figure 11. Forest fires in California observed by SGLI at 18:47 UT on 13 September, 2020. (a) Color
composite image: (R, G, B) = (674, 530, 443 nm) with hotspots on 12 and 13 September from MODIS
Level 2 Thermal Anomalies/Fire product (MOD14) and AERONET site; (b) AAI distribution; (c) topo-
graphic map with hotspots on 13 September, where SGLI: second-generation global imager; MODIS:
moderate-resolution imaging spectroradiometer; AERONET: aerosol robotic network; AAI: absorbing
aerosol index.

In this case, the meteorological field is complex as the target area is a mountainous
region, and the meteorological field may have been affected by the topography. To investigate
this, a SCALE simulation of the meteorological field was performed. The mesoscale analysis
produced by the National Centers for Environmental Prediction Global Forecast System was
used for the initial and boundary conditions of the SCALE. A wind field 10 m above the
surface in this complex area has complex implications. The southwestern half of Figure 13(b1)
(colored light blue) is the lowest level of the simulation and has altitudes lower than
850 hPa (approximately 1500 m). For this mountainous area in the northeastern corner of
the domain, the wind field 10 m above the surface colored light brown in Figure 13(b3) was
higher than the 850 hPa level referred to in the topographic map. Figure 13(b4) shows the
wind field at the 500 hPa level (approximately 5500 m). The wind fields were then listed by
altitude from the lowest to highest as follows: Figure 13(b1–b4).

Figure 13 shows that the wind was northwesterly near the surface of the valley and
southeasterly at altitudes higher than 850 hPa (1500 m). BBA particles emitted near the
surface travel southeastward along the valley and then turn east and further north as
they approach the mountains. The particles may climb along the mountain because of
the orographic effect, and the atmospheric disturbance near the mountains because of
the strong vertical shear likely enhances vertical diffusion. This complex flow of air near
mountains provides favorable conditions for the transport of small BBA particles to higher
altitudes in the atmosphere. It is likely that the spread of the plume measured by the PR
was significantly wider than that in the Sumatra case, as shown in Figure 12c’,d’.

3.2.3. Stereoscopic Plume Height Estimation

The smoke plume height estimation was performed in a manner similar to that de-
scribed in Section 3.1.3, in the case of the Sumatra wildfires. Figure 14 shows the estimated
plume height for the entire smoke image observed by the SGLI, as shown in Figure 11.
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Figure 12. SGLI measurements over the west coast of North America on 13 September 2020. (a) Fre-
quency histogram of R at 674 nm and 869 nm wavelengths; (b) the same as Figure 12a but for PR;
(c) distribution of R at 674 nm; (c’) distribution of PR at 674 nm; (d) distribution of R at 879 nm;
(d’) distribution of PR at 869 nm. SGLI: second-generation global imager; R: radiance; PR: polarized
radiance.

The smoke plume was estimated to be higher than 5000 m, as a few points outside the
main thick stream showed an estimated height of less than 5000 m. The rising backbone
of the plume from area A to B in Figure 15 had an altitude higher than 6000 m, and the
highest parts appeared near 36.7◦N, with an altitude exceeding 6500 m.

3.2.4. Plume Advection Simulation by the Regional CTM

With the complex wind field presented in Figure 13, the BC concentration (µg/m3)
was simulated using the CTM. Figure 15 shows the BC concentrations near the surface
and at high altitudes at the three different scales. The plume between points A and B,
where the stereoscopic method estimated the greatest plume height (Figure 14), is indicated
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by a small white square in each figure. The air mass spreads northwestward as it moves
higher in the atmosphere, reflecting the wind behavior shown in Figure 13. The CTM
simulation also showed a distribution of BC high-concentration areas, corresponding to the
plume observed in the SGLI image. However, at the plume altitudes estimated from the
two-directional SGLI data, the simulated BC concentrations were much lower. In any case,
the improved reproducibility of the vertical profiles should be considered when simulating
aerosol plumes from large forest fires using the CTM.
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Figure 13. Wind field at the resolution of 5× 5 km at 19:00 (UT) on 13 September, 2020, used in SCALE.
(a) Near the surface superposed on the topographic map; (b1) (light blue area) near valley surface;
(b2) at 850 hPa (~1500 m); (b3) (light brown area) near the surface of the mountain; (b4) at 500 hPa
(~5000 m). MODIS: moderate-resolution imaging spectroradiometer; NASA: National Aeronautics
and Space Administration; SCALE: Scalable Computing for Advanced Library and Environment.



Remote Sens. 2023, 15, 5405 16 of 23

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 25 
 

 

surface travel southeastward along the valley and then turn east and further north as they 
approach the mountains. The particles may climb along the mountain because of the oro-
graphic effect, and the atmospheric disturbance near the mountains because of the strong 
vertical shear likely enhances vertical diffusion. This complex flow of air near mountains 
provides favorable conditions for the transport of small BBA particles to higher altitudes 
in the atmosphere. It is likely that the spread of the plume measured by the PR was sig-
nificantly wider than that in the Sumatra case, as shown in Figure 12c’,d’. 

3.2.3. Stereoscopic Plume Height Estimation 
The smoke plume height estimation was performed in a manner similar to that de-

scribed in Section 3.1.3, in the case of the Sumatra wildfires. Figure 14 shows the estimated 
plume height for the entire smoke image observed by the SGLI, as shown in Figure 11. 

 
Figure 14. The estimated plume height for the entire smoke image observed by SGLI shown in Fig-
ure 11a. SGLI: second-generation global imager. 

The smoke plume was estimated to be higher than 5000 m, as a few points outside 
the main thick stream showed an estimated height of less than 5000 m. The rising back-
bone of the plume from area A to B in Figure 15 had an altitude higher than 6000 m, and 
the highest parts appeared near 36.7°N, with an altitude exceeding 6500 m. 

3.2.4. Plume Advection Simulation by the Regional CTM 
With the complex wind field presented in Figure 13, the BC concentration (µg/m3) 

was simulated using the CTM. Figure 15 shows the BC concentrations near the surface 
and at high altitudes at the three different scales. The plume between points A and B, 
where the stereoscopic method estimated the greatest plume height (Figure 14), is indi-
cated by a small white square in each figure. The air mass spreads northwestward as it 
moves higher in the atmosphere, reflecting the wind behavior shown in Figure 13. The 

Figure 14. The estimated plume height for the entire smoke image observed by SGLI shown in
Figure 11a. SGLI: second-generation global imager.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 25 
 

 

CTM simulation also showed a distribution of BC high-concentration areas, correspond-
ing to the plume observed in the SGLI image. However, at the plume altitudes estimated 
from the two-directional SGLI data, the simulated BC concentrations were much lower. 
In any case, the improved reproducibility of the vertical profiles should be considered 
when simulating aerosol plumes from large forest fires using the CTM. 

 
Figure 15. BC concentration in µg/m3, simulated by the regional CTM in 5 × 5 km resolution at alti-
tude h (m) on 13 September, 2020, over the west coast of North America. The scale of BC concentra-
tion at 25 m altitude is the same as that for the Sumatran case in Figure 10, but other figures show 
different scales of BC concentrations (µg/m3). BC: black carbon. A figure in the upper left represents 
the color composite image and the letters A and B indicate the fire source area. 

4. Discussion 
The difference between total and polarized radiance images measured by the GCOM-

C/SGLI indicates the sensitivity to different aspects of aerosols. A further extension of the 
results would be to exploit the simultaneous observations of R and polarization to observe 
different altitudes (i.e., different types of aerosols) and resolve the vertical variations in 
aerosols. Further efforts are necessary to construct algorithms based on the theoretical 
framework of climate dynamics, the microphysics of atmospheric particles, and image 
processing. The usefulness of multi-directional data, MISR, plays a significant role. It is 
well known that multi-directional data and its research products have been provided by 
MISR for the last 23 years [32]. 

Figure 15. BC concentration in µg/m3, simulated by the regional CTM in 5 × 5 km resolution
at altitude h (m) on 13 September, 2020, over the west coast of North America. The scale of BC
concentration at 25 m altitude is the same as that for the Sumatran case in Figure 10, but other figures
show different scales of BC concentrations (µg/m3). BC: black carbon. A figure in the upper left
represents the color composite image and the letters A and B indicate the fire source area.
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4. Discussion

The difference between total and polarized radiance images measured by the GCOM-
C/SGLI indicates the sensitivity to different aspects of aerosols. A further extension of the
results would be to exploit the simultaneous observations of R and polarization to observe
different altitudes (i.e., different types of aerosols) and resolve the vertical variations in
aerosols. Further efforts are necessary to construct algorithms based on the theoretical
framework of climate dynamics, the microphysics of atmospheric particles, and image
processing. The usefulness of multi-directional data, MISR, plays a significant role. It is
well known that multi-directional data and its research products have been provided by
MISR for the last 23 years [32].

For precise estimation of the injection height from satellite observations, improvements
in the feature detection algorithm and feedback on the instrument design are necessary.
The adoption of a more suitable image analysis technique is desirable to improve the
matching efficiency. The SIFT algorithm and other feature detection algorithms that we
have already tested were specifically designed to detect edge corners. Forest fire plumes
and clouds are bulky in nature, and edge corners may not be optimal features. In addition,
many edge corner algorithms require information on nearby pixels, imposing a lower
spatial scale limit on their application. In the instances presented in this study, it was
challenging to find favorable feature points for a part of the plume narrower than 10 km
in width (i.e., 10 pixels of the tilted polarization measurements). Improvements in the
instrument’s spatial resolution would improve the matching efficiency between the two
viewing directions. In addition, a better instrument spatial resolution results in a better
vertical resolution. A tilted measurement at a spatial resolution of 1 km implies a vertical
resolution of approximately 1 km on the satellite ground track if the instrument performs
binary detection of the presence of a plume. Although non-binary R values currently enable
us to estimate intermediate altitudes, the practical accuracy achievable from the SGLI data
is no better than 500 m. If a tilted measurement is performed at a spatial resolution of 250 m,
a vertical resolution as high as 200 m can be achieved. Therefore, continuous algorithm
development and feedback for future instrument designs are essential.

The rising mechanism of BBAs resulting from wildfires is difficult to handle in model
simulations as it depends on the fire temperature and area of combustion. The Goddard
Chemistry Aerosol Radiation Transport model treats emission injection heights by assum-
ing that BBA emissions are uniformly distributed throughout the planetary boundary
layer of the grid box, where fire emissions occur owing to the heat generated during burn-
ing [33,34]. However, some researchers have pointed out that the assumption that biomass
combustion smoke emissions are uniformly distributed throughout the boundary layer
may not accurately represent reality [19]. In the Spectral Radiation-Transport Model for
Aerosol Species, the model-calculated planetary boundary layer is used for the aerosol
injection height. However, for the BBA emission, a method that provides a constant mixing
ratio up to an altitude of approximately 3 km is used [35]. In the model (CTM) used in this
study, BBAs were assumed to be uniformly distributed up to an altitude of 1 km. A method
was also proposed to provide different injection heights for BBA emissions depending on
the location and type of wildfire [36]. It has been shown that the reproducibility of model
simulations is enhanced by accounting for transport by convection resulting from the initial
strong buoyancy of aerosols emitted during vegetation fires [37]. Various efforts have been
made to determine the injection height for BBA emissions in models; however, it is not pos-
sible to provide an accurate height for each wildfire. Real-time simulations of smoke with
forest fire origins have been conducted using satellite data [38]. If satellite observations can
provide wildfire-derived smoke heights, which can then be applied to model simulations,
it would certainly improve the reproduction of the BBA vertical distribution around the
fire source.
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5. Conclusions

This study demonstrates the application of SGLI data to case studies of SBBAs. As
examples of large-scale wildfires, wildfires in Sumatra on 21 September 2019, and those on
the west coast of North America on 13 September 2020, were selected for their different
natures and surrounding terrains. The Sumatra wildfire was a peat fire over relatively flat
land, whereas the west coast fire was a forest fire near steep slopes and highlands. In both
cases, the simultaneously measured Rs and PRs presented different spatial distributions,
indicating that they were sensitive to different aspects of aerosol plumes. The radiative
transfer simulation confirms that the R increases with an increasing total column amount,
even over the SBBA, while the PR saturates at a few optical thicknesses and carries a
polarization signature only from the top of the plume. This simulation suggests that the
R represents the total column, and the PR is sensitive to the microphysical properties of
aerosols near the plume top.

From the two-directional data acquired by the SGLI, feature detection using the SIFT
algorithm and triangulation was applied to determine the aerosol plume height. Although
the algorithm has scope for improvement in terms of efficiency and spatial coverage, it
has been demonstrated that the geometric precision of the SGLI is sufficient to perform
consistent altitude estimation. The results encourage further development and application
of the historic and latest stereoscopic techniques to two-directional SGLI data.

These satellite-derived distributions of the R, PR, and plume top height validate the
regional CTM for the better forecasting of local pollution by BBAs. The CTM simulations
for the two selected wildfire cases showed high concentrations of pollutants near the source
and advection downwind. However, the satellite-derived plume top altitude implies that
the injection altitude set in the CTM was too low, which may be the cause of pollutant
underestimation far from the source. The plume height estimated by the satellite may
improve the simulation of local pollution distribution.

With the advent of POLDER sensors, multi-directional polarization observations
have brought great progress in satellite remote sensing. Starting with the multi-viewing
multi-channel multi-polarization imager (3MI) [39], the successor of POLDER, many multi-
directional polarization sensors have been programmed to fly in the late 2020s [40–42]. In
preparation for future polarimetric and multi-directional missions, global data from the
SGLI provide an opportunity to demonstrate the utility of multi-directional and polarimet-
ric measurements.
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Appendix A. Polarized Reflectance from Semi-Infinite Atmosphere Based on
VMSOS Method

An efficient algorithm to calculate the polarized reflectance from a semi-infinite
medium based on the method of successive orders of scattering is briefly described and
verified numerically using Rayleigh scattering. Space-borne sensors measure the upwelling
R at the top of the atmosphere, and incident solar light interacts multiple times with atmo-
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spheric particles. Now, function I(τ, Ω) is defined to be the specific intensity vector at the
optical depth τ in the direction of Ω represented by the zenith angle (θ) and azimuth angle
(ϕ). Hereafter, we describe the vector method of successive orders of scattering (VMSOS),
where the {I, Q, U, V} Stokes parameters are employed. Therefore, I denotes the four-

dimensional intensity vector as I = (I, Q, U, V) and
∼
P is a 4 × 4 phase matrix. VMSOS has

been used to characterize hazy biomass-burning aerosols caused by severe wildfires [12].
This is the first step, and we expect VMSOS to be used in a variety of situations.

It is assumed that there is incident radiation of flux F in direction (µ0, ϕ0) falling
on the top of a semi-infinite atmosphere. The direction of Ω is represented by the zenith
angle (θ) and azimuth angle (ϕ). Usually, in the radiative transfer calculation, the direction
is defined by Ω = (µ, ϕ), where µ is the cosine of the zenith angle θ (i.e., µ = cos θ).
R(Ω, Ω0) is considered as a reflection matrix from an optically semi-infinite medium, and
the emergent intensity at the top of medium Iem(0, Ω) is given by

Iem(0, Ω) =
1
µ

1
4π

∫
−

R
(
Ω, Ω′

)
F
(
Ω′
)

dΩ′, (A1)

where the integration covers the inward hemisphere. Moreover, we can define the nth order
of reflection matrix R(n, Ω, Ω0) after n times scattering in the medium. The total reflection
matrix R(Ω, Ω0) is related to R(n, Ω, Ω0) as

R(Ω, Ω0) =
∞

∑
n=1

vn R(n, Ω, Ω0). (A2)

Now, letting

F
(
Ω′
)
= δ

(
µ′ − µ0

)
· δ
(

ϕ′ − ϕ0
)
E = δ

(
Ω′ −Ω0

)
E, (A3)

where E is the unit vector, we obtain(
1
µ
+

1
µ0

)
R(1, Ω, Ω0) =

∼
P(Ω, Ω0). (A4)

For the second-order one,(
1
µ + 1

µ0

)
R(2, Ω, Ω0) =

∫
−

dΩ′
4π R

(
1, Ω, Ω′

)
· 1

µ′
∼
P
(

Ω’, Ω0

)
+
∫
+

dΩ′
4π

∼
P
(

Ω’, Ω0

)
· 1

µ′R
(
1, Ω, Ω′

)
.

(A5)

Generally, the equation for the nth order R(n) (n ≥ 3) can be derived in a similar
manner as shown above. (

1
µ + 1

µ0

)
R(n, Ω, Ω0)

=
∫
−

dΩ′
4π R

(
n− 1, Ω, Ω′

)
· 1

µ′
∼
P
(

Ω’, Ω0

)
+
∫
+

dΩ′
4π

∼
P
(

Ω’, Ω0

)
· 1

µ′R
(
n− 1, Ω, Ω′

)
+

n−2
∑

n′=1

∫
−

dΩ′
4π

∫
+

dΩ’’

4π R
(
n′, Ω, Ω′

) 1
µ′
∼
P
(
Ω′, Ω′′

)
· 1

µ′′R
(
n− n′ − 1, Ω′′, Ω0

)
.

(A6)

Figure A1 presents a simple diagram to explain the above-mentioned radiative transfer
method in a semi-infinite medium (VMSOS), where the variables follow the description in
the text and the various colored spots represent aerosols.
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When the Stokes emergent intensity vector is represented by S(Ω, Ω0) ={
SI(Ω, Ω0), SQ(Ω, Ω0), SU(Ω, Ω0), SV(Ω, Ω0)

}
, the degree of linear polarization is cal-

culated as follows:

Pol(Ω, Ω0) =
SQ(Ω, Ω0)

SI(Ω, Ω0)
. (A7)

It is of interest to mention that MSOS provides us with the mean number of scattering
using S(n, Ω, Ω0) = R(n, Ω, Ω0) · F,

〈n(Ω, Ω0)〉 =
∞

∑
n=1

n ·vn · S(n, Ω, Ω0)/
∞

∑
n=1

vn · S(n, Ω, Ω0). (A8)

In this paper, we present the numerical results of the VMSOS method using Rayleigh
scattering. Figure A2 shows the numerical results of the reflected intensity at θ = 60◦,
θ0 = 60◦, and ϕ− ϕ0 = 0◦ versus the number of scatterings (n) for several albedos of single
scattering v in the case of Rayleigh scattering. Figure A2 shows the convergence of VMSOS
computations. From this figure, it is clear that the convergence of VMSOS is inversely
proportional to the value of v Thus, the calculation is fast when v is small compared
to unity. However, the Earth’s atmospheric aerosols take the values of v near 1 usually,
because the albedo for single scattering depends on the imaginary part of the refractive
index.
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The mean number of scatterings 〈n(Ω, Ω0)〉 defined in Equation (A8) is numerically
calculated for several albedos of single scattering v and presented in Figure A3 (refer
to the left vertical axis). It shows the variation in the mean number of scatterings with
v. Simultaneously, the change in the degree of polarization defined in Equation (A7) is
demonstrated according to the scale on the right axis of Figure A3.
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From Figure A3, it is shown that the absolute value of the degree of linear polarization
increases as v decreases. It is believed that the degree of polarization is reduced by multiple
scattering. At this point, we can confirm that the degree of polarization decreases with
an increase in the mean number of scatterings, because the mean number of scatterings
increases as the effect of multiple scattering increases, as shown in Figure A3. Thus,
mean number of scatterings 〈n(Ω, Ω0)〉 indicates the multiple scattering effect, and, hence,
polarization decreases as the multiple scattering effect increases. These results support the
conclusion derived from the SGLI observations that the PR reflects aerosols in the upper
part of the optically thick atmosphere [11,13].
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