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Abstract: Candidiasis, caused mainly by Candida albicans, a natural commensal of the human diges-
tive tract and vagina, is the most common opportunistic fungal infection at the mucosal and systemic
levels. Its high morbi–mortality rates have led to considerable research to identify the molecular
mechanisms associated with the switch to pathogenic development and to diagnose this process as
accurately as possible. Since the 1980s, the advent of monoclonal antibody (mAb) technology has
led to significant progress in both interrelated fields. This linear review, intended to be didactic, was
prompted by considering how, over several decades, a single mAb designated 5B2 contributed to
the elucidation of the molecular mechanisms of pathogenesis based on β-1,2-linked oligomannoside
expression in Candida species. These contributions starting from the structural identification of the
minimal epitope as a di-mannoside from the β-1,2 series consisted then in the demonstration that
it was shared by a large number of cell wall proteins differently anchored in the cell wall and the
discovery of a cell wall glycoplipid shed by the yeast in contact of host cells, the phospholipoman-
nan. Cytological analysis revealed an overall highly complex epitope expression at the cell surface
concerning all growth phases and a patchy distribution resulting from the merging of cytoplasmic
vesicles to plasmalema and further secretion through cell wall channels. On the host side, the mAb
5B2 led to identification of Galectin-3 as the human receptor dedicated to β-mannosides and signal
transduction pathways leading to cytokine secretion directing host immune responses. Clinical
applications concerned in vivo imaging of Candida infectious foci, direct examination of clinical
samples and detection of circulating serum antigens that complement the Platelia Ag test for an
increased sensitivity of diagnosis. Finally, the most interesting character of mAb 5B2 is probably
its ability to reveal C. albicans pathogenic behaviour in reacting specifically with vaginal secretions
from women infected versus colonized by this species as well as to display higher reactivity with
strains isolated in pathogenic circumstances or even linked to an unfavourable prognosis for systemic
candidiasis. Together with a detailed referenced description of these studies, the review provides
a complementary reading frame by listing the wide range of technologies involving mAb 5B2 over
time, evidencing a practical robustness and versatility unique so far in the Candida field. Finally,
the basic and clinical perspectives opened up by these studies are briefly discussed with regard to
prospects for future applications of mAb 5B2 in current research challenges.
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1. Introduction

Candidiasis (either mucocutaneous or systemic) is an opportunistic infection caused
mainly by Candida albicans, a yeast and natural commensal of the human digestive tract and
vagina [1–3]. Unlike true pathogens, the presence of yeasts alone does not indicate their
pathogenic character, which depends essentially on the susceptibility of the host and the
expression of pathogenicity factors by some yeast strains [4]. It is therefore essential to have
markers associated with pathogenicity to understand the mechanisms of infection [5,6] and
to diagnose these infections as accurately as possible [7]. The development of hybridoma
technology/advent of monoclonal antibodies (mAbs) led to considerable progress in an-
swering some of these questions [8]. Among the mAbs developed, one generated in the
mid-1980s (mAb 5B2) [9] allowed us to make considerable progress in understanding the
mechanisms of pathogenesis and also contributed to the diagnosis of candidiasis and the
tracing of more pathogenic strains. This unique contribution is based on more than 50 basic
and clinical publications.

This review aims to discuss the linear nature of the development and use of this mAb
in order to better understand the pathogenesis of candidiasis and its diagnosis. Information
from current research suggests that many discoveries still have to be made in this field.

2. Basic Studies
2.1. Immunochemical Identification of mAb 5B2 Epitopes, Their Carrier Molecules and Genes
Involved in Their Synthesis

Unlike many mAbs generated from the immunisation of mice with killed yeasts or
molecules extracted from yeasts, mAb 5B2 was generated from an experimental infection
in a rat [9].

As the epitope was found to be present in mannan, a major C. albicans cell wall
polysaccharide both quantitatively and qualitatively, its precise nature was determined
through a series of immunobiochemical studies concerning this molecule. These studies
consisted of sequential depolymerisation and nuclear magnetic resonance analysis and
were based around the impressive pioneering structural studies conducted in Japan by
Prof. Suzuki’s group on Candida mannans or, more exactly, phosphopeptidomannans
(PPMs), focusing on the so-called antigenic factors allowing Candida species or serotype
identification by direct agglutination [10–12]. The 5B2 epitope was identified among the
β-1,2-linked mannoside series [13–17]. These structures are rare in the living world and are
expressed in large quantities in the most pathogenic species of the genus Candida, namely
C. glabrata and C. tropicalis, which are isolated second and third, respectively, after C. albicans
from human disease. A considerable amount of information on β-1,2 oligomannosides has
been gathered by S. Suzuki’s group according to their relation with antigenic factors [18] and
expression in different strains depending on growth conditions showing important changes
related to pH [19] and temperature [20], triggering the yeast to hyphal transition [21]. An
impressive synthesis gathering all this information was presented in a review published in
2012 [12]. The precise identification of the 5B2 epitope showed reactivity against a minimal
degree of polymerisation of two β-1,2 linked mannoside residues, thus corresponding to
antigenic factor 5 and in part antigenic factor 6 [22].

Western blot profiles revealed that the 5B2 epitope was expressed on a large num-
ber of C. albicans molecules [23] distributed among very high relative molecular weight
polydispersed material containing large amounts of polysaccharides and bands with lower
molecular weight and better resolution in gels, corresponding to mannosylated proteins.
These patterns were observed for several other pathogenic Candida species, with each
having specific mapping of the 5B2 epitope [24]. In turn, an analysis of these profiles led
to the discovery of concanavalin A-unreactive glycoconjugates with no protein moiety
and to the identification of a glycolipid we named phospholipomannan (PLM) [25]. PLM
was then studied extensively and characterised as a cell wall molecule belonging to the
manno-inositol-phosphoceramide family [17,26–29].



J. Fungi 2023, 9, 636 3 of 13

Refinement of the methods of extraction of C. albicans cell wall mannoproteins based
on the knowledge of their mode of insertion (PPM, glycosylphosphatidylinositol (GPI)-
anchored proteins with internal repeats (PIR proteins and secreted proteins)) led to a
complete mapping of the molecules containing the 5B2 epitope, among which were well
known “proteins” described as virulence factors, including Hwp1 and HSP 70 [30]. mAb
5B2 mapping of β-mannose epitopes in the mannoproteins of different cell wall fractions
of mutants defective in the map kinase pathway revealed its importance in regulating the
exposure of different surface anomery and modulation of the immune response [31].

Finally, mAb 5B2 contributed uniquely to the discovery and identification of the nine
members of the gene family encoding β-mannosyl transferases (BMTs 1–9), responsible
for the sequential addition of β-Mans on different carrier molecules. This has significantly
improved our understanding of the β-Man biosynthetic pathway in C. albicans [32]. Further
definition of BMT functions was achieved through sequential deletion in the strain BWP17
by PCR gene targeting. Briefly, β-Man transfer is under the control of BMTs 1 and 3 for
the acid-stable fraction of PPM and BMTs 2, 3 and 4 for the acid-labile fraction. None of
these four enzymes act on PLM, nevertheless BMTs 5 and 6 are specifically involved in the
β-mannosylation of PLM. Concerning the O-mannosylation of cell wall mannoproteins,
this depends on BMTs 1 and 3 [33–36]. Gene deletion of BMTs 7–9 was inconclusive and
has not been the subject of specific studies to date. Only transcriptome analysis carried out
to decipher C. albicans iron homeostasis mentions BMT 7 and BMT 9 in alternative genetic
programs adapting to blood stream versus gut environments [37,38].

Recent developments in this area of research concern a highly pathogenic Candida
species that emerged simultaneously in different countries worldwide with the charac-
teristics of antifungal resistance and high virulence, leading to high rates of mortality
among patients in intensive care units. This species, C. auris, was also shown to synthesise
β-Mans [39].

Analysis of the distribution of the mAb 5B2 epitope confirmed high expression in some
strains, placing C. auris in the same group as C. albicans, C. tropicalis and C. glabrata, namely
the most pathogenic Candida species (Leroy et al., unpublished data to date). Experimentally,
it has been shown that an IgG3 mAb specific for a β-1,2 linked mannotriose described
as protective against C. albicans [40] also protected mice against C. auris infection [41].
Addressing the general topic of the interplay between Candida and human antibodies, an
impressive study demonstrated that C. albicans was able to shape the antibody repertoire
though CARD9-dependent induction of host-protective antifungal IgG, including against
C. auris [42]. On the fungal side, a mechanism of yeast surface modulation of antigens,
including β-mannosides, able to direct macrophage responses was discovered to be under
the control of C. albicans mitochondrial proteins [43]. In our view, these fascinating findings
from this area of research deserve to be highlighted.

2.2. Cytological and Histopathological Analysis of mAb 5B2 Epitope Expression

In parallel to the identification of these molecules, mAb 5B2 was involved in studies
aimed at localising the expression of 5B2 epitopes. At the population level, direct im-
munoperoxidase staining of C. albicans colonies grown on agar revealed an unforeseen
complex expression of the epitope distributed according to different sectors [44]. Im-
munofluorescence and confocal microscopy studies revealed a complex expression due
to the multiplicity of molecules differently expressing the epitope on yeasts and hyphal
forms at a given time in the cell cycle [45]. Among these, shedding of PLM from the cell
wall on contact with host cells was demonstrated unambiguously [46,47]. mAb 5B2 was
used early on in histopathological studies to assess the presence of invasive foci of Candida
in different clinical situations and experimental models [48]. At the gut level, it was used
to assess colonisation by yeast species expressing β-mannosides and to identify host and
yeast backgrounds modulating intestinal interactions [49,50].

At the ultrastructural level, transmission electron microscopy studies on C. albicans
ultrathin liquid nitrogen frozen sections probed with 5B2 directly coupled to gold particles
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showed its localisation within cytoplasmic vesicles merging with the cell membrane and
crossing the cell wall through channels [51,52]. The merging of these channels at the cell
wall surface corresponded to the “patchy” distribution of β-Man epitopes reported by other
authors in immunofluorescence studies [53].

2.3. Contribution of mAb 5B2 to the Analysis of the Immunological Interface between C. albicans
and 5B2 Epitopes or Molecules Expressing These Epitopes—Identification of the Ligands and
Triggering Consequences

As a counterpart to the identification of the 5B2 epitope and the C. albicans molecules
expressing these specific motifs, mAb 5B2 was involved in experiments to assess the prop-
erties of these molecules. In these immunobiological studies, mAb 5B2 was the probe used
as a reference. One of the major findings was the identification of Galectin-3 (Gal-3) as the
mammalian receptor for β-mannosides [45–47,54–63]. Although research on Gal-3, known
as Mac2 antigen, was limited at this time [60], Gal-3 is now established as a lectin playing an
important role in numerous human diseases; its important pleiotropic roles have generated
more than 5000 papers. Interestingly, regarding Candida pathogenesis, circulating levels of
Gal-3 appear to be markers of both infection and inflammation [64], a duality compatible
with its ability to predict the recurrence of Crohn’s disease after surgery associated with
persistent inflammation and C. albicans colonisation [65]. Regarding relative importance of
Gal-3 among other C. albicans receptors, its discovery at the end of the 1990s was among the
first of a long list of what has been called later Pathogens Recognition Receptors (PRRs) as
a counterpart of fungal Pathogen Associated Microbial Patterns (PAMPs). Only mannose
receptor was identified at this time [66,67], as early as in the 1980s, so that differentiating at
this time a and β mannose binding was important. To our knowledge, apart from MBL,
which was described simultaneously in 2000 [68], other major receptors were identified
later: Dectin-1 in 2001 [69–71]; first TLRs in 2002 [72,73]; DC-Sign in 2003 [74]; Dectin-2
in 2006 [75,76]. Comprehensive reviews regularly synthesized the importance of these
interactions in shaping the host immune response [77–79]. Regarding the modulation
liable to be linked to Gal-3, a reason to delve into this notion is that the presence of β-1,2-
mannosides in N-linked mannan reduces the production of inflammatory cytokines by
dendritic cells [80]. This seems of pathophysiological relevance since the morphological
transformation of Candida conidia into hyphae form is characterized by a decrease in the
amount of phosphodiesterified acid-labile β-1,2-linked manno-oligosaccharides, whereas
the amount of acid-stable β-1,2 linkage-containing side chains does not change [21]. The
corollary to these findings may be that Candida variants reacting with mAb 5B2 are unable
to induce a robust proinflammatory and an appropriate mechanism of antigen presentation.
This should be noticed because dendritic cells show a unique pattern of C-lectin type
receptors to carry out non-opsonic phagocytosis and produce cytokines that tailor the
microenvironment in the immune synapsis to initiate the adaptive immune response. This
disappearance of β-Man is of importance regarding unmaking of α-Mans. This topic relates
to the so-called ASCA, human antibodies revealed by S. cerevisiae mannan allowing the
diagnosis of Crohn’s disease but generated by C. albicans pathogenic phase [81]. These
antibodies are indeed anti-oligomannose antibodies reacting with α-1,3 mannose at the
non-reducing end of 2 or 3 α-1,2 linked mannose. Besides Crohn’s disease, ASCA are
associated with a strong inflammatory response in a wide range of human diseases, most
of which are associated with fungal dysbiosis and a C. albicans overgrowth [82].

2.4. Construction of mAb 5B2 Epitope Synthetic Analogues (β-1,2 Oligomannoside Series) and
Analysis of Their Biological and Immunological Properties

With regard to the difficulties in producing β-1,2 oligomannosides by sequential degra-
dation of C. albicans PPM, synthetic analogues were produced by chemical synthesis. mAb
5B2 was used to assess their conformity with natural products through the development
of chemical synthesis steps. These synthetic probes mimicking adhesins were shown to
prevent C. albicans colonisation in experimental mouse models [62]. When coupled to biotin
sulfone, it was possible to detect specific antibodies either on microspheres by multi-analyte



J. Fungi 2023, 9, 636 5 of 13

profiling technology (Luminex) or surface plasmonic analysis [83]. A recent paper involv-
ing mAb 5B2 used the same technology to determine the structural basis for protective
epitope specificity and to discriminate the humoral responses of infected versus colonised
patients [84].

In a similar approach aimed at identifying the structures mimicking β-Mans, a phage
library expressing random peptides was screened with mAb 5B2. The application of this
phage display methodology led to the isolation of peptides presenting with the same
specificity as β-Mans in terms of adhesion and immunogenicity [85].

3. Clinical Studies
3.1. Diagnosis of Systemic Infections by the Detection of mAb 5B2 Epitopes

Alongside the mass of information accumulated at the basic/cognitive level, med-
ical applications were investigated early on based on the assumption that the epitopes
recognised were important for pathogenesis and that they were consistently expressed.

The first step consisted of demonstrating the presence of 5B2 epitopes circulating in
the serum of experimentally infected animals and patients in order to prove the growth of
yeasts in tissues. The technology used was immunogold silver staining (IGSS), an elegant,
sensitive and highly specific method developed from the direct coupling of mAbs to gold
particles used for ultrastructural localisation of antigens [48,86].

Another investigation concerned the ability of mAb 5B2 to reveal Candida infectious
foci in living organism by radioimaging. In an innovative study at the time, the coupling
of mAb 5B2 to iodine 131 demonstrated that it revealed pathognomic features of organ
involvement in infected animals [87]. The ability of mAb 5B2 to detect antigens released
by Candida in the sera of infected patients that were not detected by mAb EB-CA1 used
in the Candida Platelia antigen test increased the sensitivity of antigen detection for rapid
diagnostic purposes [88,89]. An immunomagnetic separation method involving magnetic
beads coated with 5B2 was shown to be effective at concentrating Candida from blood [90,91].
From a technological point of view, the multiplicity of methods involving mAb 5B2 for
immunodetection (IGSS, radiolabelling, coupling to latex particles, sandwich ELISA) has
demonstrated the robustness and reliability of this probe.

3.2. Analysis of mAb 5B2 Epitope Expression as an Epidemiological Marker of the Virulence of
C. albicans Strains

Flow cytometry analysis of strains grown in different conditions demonstrated the
extent of regulation of surface β-mannoside expression modifying virulence properties [92],
in concordance with early investigations with mAb 5B2 showing its ability to differentiate
C. albicans strains according to the circumstances of their isolation (i.e., commensal vs.
pathogenic situations). Indeed, when colonies isolated in the clinical mycology laboratory
were tested by direct agglutination with purified mAb 5B2, strains isolated from blood
cultures showed significantly higher expression of the epitope compared to strains isolated
from other sites. This property was confirmed regardless of the geographical area of
isolation (Lille, France; D. Poulain or Leicester, UK; F. C. Odds) [44]. Thus, mAb 5B2
appeared to be a possible marker of the pathogenic behaviour of C. albicans. Almost three
decades later, this ability was confirmed in a larger collaborative study; 385 strains were
studied by ELISA to assess the level of mAb 5B2 surface expression. Impressively, higher
expression of the mAb epitope was significantly associated with higher mortality [93].

3.3. mAb 5B2 in the Particular Setting of Vaginal Infections

The vaginal mucosa is the clinical site where information about the pathogenic be-
haviour of C. albicans strains would be important to assess since C. albicans is both a frequent
commensal and an opportunistic pathogen at this site. Vulvovaginal candidiasis occurs in
75% of women during their lifetime and up to 10% of women will suffer from recurrent
infections that are particularly difficult to eradicate.
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An initial study consisted of testing strains isolated from the vagina of symptomatic
or asymptomatic women using latex particles according to a methodology developed by
R. Robert [94]. This study revealed significantly higher agglutination scores in women
exhibiting clinical signs of vaginal candidiasis (unpublished results; Catherine Bernard,
Medical doctor thesis, 1995, Medical School, Lille, France).

These results prompted a second collaborative study assessing the reactivity of anti-
gens released by C. albicans into vaginal fluid using an immunochromatographic test.
According to the principles of the test, only molecules bearing 5B2 epitopes are retained
from the vaginal sample. These migrate until the presence of the immune complex is
captured in a band, revealing a positive test. This test had a negative predictive value
of 98.6%, a positive predictive value of 96.6% and an efficiency of 98% in differentiating
130 symptomatic women with vaginitis from 75 asymptomatic controls, irrespective of the
number of yeasts isolated in each category [95]. This confirmed the ability of mAb 5B2 to
preferentially reveal C. albicans pathogenic behaviour.

In order to synthetically illustrate and complement this review, two addendums are
provided. Figure 1 schematizes the different complementary achievements gained over
time in basic and clinical research by using mAb 5B2. Table 1 lists the technologies involving
mAb 5B2, emphasizing the unique robustness and flexibility of this probe.
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Table 1. List of technologies involving mAb 5B2 depending on the objectives of the different studies reported in the review.

Technologies Objective Achievement References

BASIC IMMUNOCHEMISTRY/IN VITRO ANALYSIS

ELISA inhibition
C. albicans phosphopeptidomannan as substrate and inhibition by

oligoammnosides released by sequential depolymerization
To identify mAb 5B2 epitope

Identification of mAb 5B2 epitope among the β-mannopyranosyl
series

[13–17]
Reactivity with neoglycolipids Development of method for

constructing neoglycolipids to study the roles of oligomannoside
sequences in the antigenicity of C. albicans phosphopeptidomannan

Confirmation with monospecific rabbit polyclonal IgG

Flow cytometry

To differentially probe C. albicans surface glycans over a
yeast population

To study the remodeling of the C. glabrata cell wall in the
gastrointestinal tract

Ability of C. albicans to regulate its glycan surface expression and
therefore modify its virulence properties

Evidence that inflammation of the gut alters the microbial balance
and remodels C. glabrata cell wall

[50,92]

Phage display To seek for peptides sequences mimicking 5B2 epitope Identification of a peptide sequence mimicking antigenicity and
immunogenicity of the β-oligomannose epitope [85]

Plasmon magnetic resonance To finely differentiate mAb B6.1 and mAb 5B2 epitopes In contrast to mAb B6.1, mAb 5B2 does not cross react with α-1,2
linked mannosides [83,84]

Indirect immunofluorescence
confocal microscopy

To analyze the complexitiy of β-1,2 Mannoside epitope
expression at C. albicans cell wall surface

Heterogeneous and highly variable or patchy expression of 5B2
epitope at cell wall surface of different C. albicans growth forms [1,46,52]

Direct coupling to gold particles
Electron microscopy on frozen C. albicans sections

To analyze cell wall and cytoplasmic sub-cellular
localization of mAb 5B2 epitope

Presence of β-Mans in vesicles merging with the cell membrane,
moving from periplasmic space to cell wall fimbriaes following

channels within the cell wall
[51,52]

Western blotting
To identify molecules expressing β-Man epitopes

and members of the BMT gene family responsible for
sequential addition of β-Man on these substates

Besides PPM, the epitope is shared by numerous mannoproteins [23]

High expression and specific patterns of distribution exist in C.
albicans, tropicalis glabrata [9]

The epitope is shared by GPI anchored, PIR and secreted major C.
albicans virulence factors [30]

The epitope allows characterization of a glycolipid named
phopholipomannan, a member of the manno-inositol family with

strong immunomodulatory properties
[29,32,45]

Discovery of BMT gene family responsible for synthesis of
β-mannosides composed of 9 members and precise definition of

Bmts 1–6 activities depending on the acceptor molecule
[32,33,96]
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Table 1. Cont.

Technologies Objective Achievement References

IN VIVO ANALYSIS

Imaging after radio-iodination To detect in vivo Candida infectious foci by using of
radioiodinated monoclonal antibody

The biodistribution of 131I radioactivity was greater in infected
animals than in healthy animals and increased as a function of the

number of CFU per g in each organ
[87]

Immunogold silver staining histopathology To detect Candida species cells in tissue sections or
during direct examination on glass slide

The method is sensitive with good definition, rapid and easy to
perform. Long conservation of samples for collections [48]

CLINICAL APPLICATIONS

Immunogold silver staining dot blot of animal and human sera

To investigate the ability of mAb 5B2 to detect
circulating antigens in sera of animals experimentally

infected by C. albicans and in sera of patients with
invasive candidiasis

The method, easy to perform, is adapted to the screening of large
number of patients under serological surveillance [86]

Sandwich ELISA for immunocapture To improve the sensitivity of invasive candidiasis
diagnosis by joint detection of α and β-mannosides

Provide evidence for different kinetics of β and α-Man circulation
during experimental and human candidiasis [97]

Development of a method for immunomagnetic capture of Candida
cells in blood To increase the sensitivity of blood culture The method saves at least 24 h to obtain colonies by comparison to

automated blood cultures [91]

Immunochromatographic test To diagnose vulvo-vaginal candidiasis Point of care test adapted to the management of women with
symptoms of vaginitis and differentiate colonization from infection [95]

EPIDEMIOLOGY/PATHOGENICITY MARKER

Direct agglutination of isolated C. albicans strains To seek for differences in strain pathogenic potential Higher expression in strains isolated in pathogenic vs. saprophytic
conditions in human [44]

ELISA after coating of isolated C. albicans strains To investigate the correlation between yeast strain
phenotypical features and patient outcome

Higher expression of β-Man detected by mAb 5B2 is related to
increased patient mortality [93]
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4. Conclusions

Among the large number of mAbs generated against C. albicans to date, mAb 5B2
has been established as the tool that has made the most significant contribution to the
complex analysis of C. albicans β-Man virulence factors. Concomitantly, it is also able
to detect circulating antigens with diagnostic relevance in coherence with its epidemio-
logical/pathophysiological ability to react more effectively with pathogenic species and
pathogenic strains. To conclude on some perspectives concerning the use of mAb 5B2, it is
clear on the clinical side that its ability to diagnose VVC, which is a worldwide medical
and economic problem [98], should deserve to be confirmed by larger studies. Concerning
more basic investigations, the balance between expression of b- and a-mannosides mAb
5B2 reveals probably one of the more interesting characters of C. albicans flexibility which
has been overseen. The previously discussed balance between pro-inflammatory and anti-
inflammatory responses triggered by this α/β shift perfectly fits with the elegant concept of
the damage network proposed by A. Casadeval and A.L Piroski [99] to explain the different
clinical features of candidiasis. In this respect, mAb 5B2 differences in C. albicans strains
isolated from pathophysiological niches recall old epidemiological studies on serotypes A
and B [10,11]. Large scale clinico-epidemiological mAb 5B2 typing of strains isolated in
different pathological circumstances, i.e., IBDs versus invasive, would be worthwhile to
assess the validity of this hypothesis.
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