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ABSTRACT: Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit
photoluminescence quantum efficiencies approaching 100% without the core−shell
structures usually used in conventional semiconductor nanocrystals. These high
photoluminescence efficiencies make these crystals ideal candidates for light-
emitting diodes (LEDs). However, because of the large surface area to volume
ratio, halogen exchange between perovskite nanocrystals of different compositions
occurs rapidly, which is one of the limiting factors for white-light applications
requiring a mixture of different crystal compositions to achieve a broad emission
spectrum. Here, we use mixtures of chloride and iodide CsPbX3 (X = Cl, I)
perovskite nanocrystals where anion exchange is significantly reduced. We
investigate samples containing mixtures of perovskite nanocrystals with different
compositions and study the resulting optical and electrical interactions. We report
excitation transfer from CsPbCl3 to CsPbI3 in solution and within a poly(methyl methacrylate) matrix via photon reabsorption,
which also occurs in electrically excited crystals in bulk heterojunction LEDs.

■ INTRODUCTION

Low-cost solution-processable metal halide perovskite semi-
conductors1−4 have seen encouraging development as inex-
pensive absorber layers in solar cells, and show high
mobility,5−7 bright emission,8 tunable band gap,9−11 and
photon recycling.12 Power conversion efficiencies for perovskite
solar cells have exceeded 20%.13−16 While the majority of
research has focused on thin-film and bulk materials,4,15,17

perovskite nanocrystals have recently been synthesized. These
include hybrid organic−inorganic MAPbX3 (MA = methyl-
ammonium, X = Cl, Br, I) nanocrystals and nanostructures as
well as all-inorganic cesium lead halide CsPbX3 (X = Cl, Br, I)
and cesium tin halide CsSnX3 (X = Cl, Br, I) nanocrystals and
nanostructures.18−20 The move to colloidal semiconductor
quantum dots not only improves solution processability of
these materials but also allows band gap tunabilty due to three-
dimensional (3D) confinement effects,19,21 and creates a
material that is readily miscible with other optoelectronic
materials, for example, polymers, fullerenes, and other nano-
materials. Hybrid organic−inorganic lead halide perovskite
nanostructures have been used in detectors for the visible,
ultraviolet, and X-ray regions of the electromagnetic
spectrum,22,23 as gain media for optically pumped
lasers,10,24−28 and as emission layers for light-emitting diodes
(LEDs).8,29

It has been reported that in perovskites ABX3 (A = MA, Cs;
B = Pb, Sn; X = Cl, Br, I) the ratios of the different halide

components have a strong influence on the electronic
properties of the material.30 The ability of the halide ions to
migrate within bulk perovskite has been reported both for
MAPbX3

31,32 and for CsPbX3,
33,34 which has specifically been

identified as a halide-ion conductor.35 The high ion mobility
within perovskite crystals has been recognized as a possible
source for the hysteresis in the current−voltage curves seen in
photovoltaic devices.36 In CsPbX3 nanocrystals, which have a
high surface area to volume ratio, halide exchange quickly
incorporates new sources of excess halides, resulting in a shift of
the optical band gap. This is also the case when crystals with
different halide compositions are mixed, resulting in the
formation of crystals with an averaged total halide composi-
tion.33,34 Halide exchange has been shown to be possible in
both MAPbX3 and CsPbX3 when moving between periodically
adjacent halides, for example, from CsPbCl3 to CsPbBr3 and
CsPbBr3 to CsPbI3 and vice versa.33,34

Although recently there has been an increase in the
application of CsPbX3 nanocrystals,24,37−40 the inability of
CsPbX3 nanocrystals with different compositions to coexist as
discrete semiconductors in one sample without rapid halide
exchange significantly limits their use in applications where
multiple band gaps are required, such as white-light LEDs and
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exciton concentration systems. Recently, Palazon et al.41

showed that cross-linking the surface ligands in neat nano-
crystal films improves stability, prevents film liftoff, and limits
halogen exchange. It has also been shown that wrapping
clusters of CsPbX3 nanocrystals in polyhedral oligomeric
silsesquioxane cages can prevent halogen exchange.42 However,
neither of these methods allows the formation of films where
the nanocrystals are mixed on the submicrometer scale.
Energy transfer from high band gap to low band gap

nanocrystals has been demonstrated between CsPbBr3 particles
of different sizes.43 Interactions between CsPbCl3 and CsPbI3
nanocrystals have previously been reported to lead to
dissolution of the nanocrystals.33 We find that when the
crystals are synthesized and kept in an oxygen- and water-free
environment, this is not the case, consistent with a recent
report by Dastidar et al.44 We report significantly reduced
halide exchange between chloride and iodide in CsPbX3 (X =
Cl, I) perovskite nanocrystals because of the unfavorable crystal
lattice tolerance factor for iodide−chloride exchange in this
system. This allows us to investigate films and solutions
containing nanocrystals of differing compositions, and to study
the resulting optical and electronic interactions. Efficient
excitation transfer from CsPbCl3 to CsPbI3 is found to proceed
by a radiative process. Excitation transfer also occurs in
electrically pumped crystals forming the active layer of a bulk
heterojunction LED. CsPbCl3 emission can efficiently be
reabsorbed by the CsPbI3 nanocrystals and re-emitted in the
red region.

■ METHODS
All chemicals were purchased from Sigma-Aldrich (St. Louis) and were
used as-received.
Synthesis of CsPbX3 (X = Cl, I) Nanocrystals. Perovskite

nanocrystals were synthesized using previously reported procedures.19

Cs2CO3 (0.814g, 99.9%) was loaded into 100 mL three-neck flask
along with octadecene (ODE, 30 mL, 90%) and oleic acid (2.5 mL,
OA, 90%), and the mixture was dried for 2 h at 120 °C under N2. The
solution temperature was then lowered to 100 °C. ODE (75 mL),
oleylamine (7.5 mL, OLA, 90%), and dried OA (7.5 mL) and PbX2
(2.82 mmol) such as PbI2 (1.26 g, 99.99%) and PbCl2 (0.675g,
99.99%), were loaded into a 250 mL three-neck flask and dried under
vacuum for 2 h at 120 °C. After complete solubilization of the PbX2
salt, the temperature was raised to 170 °C and the Cs−oleate solution
(6.0 mL, 0.125 M in ODE, prepared as-described above) was quickly
injected. After 10 s, the reaction mixture was cooled in an ice−water
bath. For CsPbCl3 synthesis, 5 mL of trioctylphosphine (TOP, 97%)
was added to solubilize PbCl2. The nanocrystals were transferred to an
argon-gloved box (H2O and O2 < 1 ppm) and precipitated from
solution by the addition of equal volume anhydrous butanol (BuOH,
99%) (ODE:BuOH = 1:1 by volume). After centrifugation, the
supernatant was discarded and the nanocrystals were redispersed in
anhydrous hexane (99%) and precipitated again with the addition of
BuOH (hexane:BuOH = 1:1 by volume). These were redispersed in
hexane. The nanocrystal dispersion was filtered through a 0.2 μm
polytetrafluoroethylene filter and diluted to 10 mg mL−1 in hexane
before use. Subsequent mixing was carried out in a nitrogen-filled
glove box, and under these conditions the mixed solutions were stable
for at least 2 months at −19 °C. Exposure of mixed solutions to
ambient conditions led to rapid dissolution of the CsPbI3 particles.
Continuous Wave Measurements. Absorption spectra of

solutions were measured on nanocrystals samples dispersed in hexane
at a concentration of ca. 1 mg mL−1 in a 1 cm × 1 cm cuvette using a
HP 8453 spectrometer. Film absorption spectra were measured on a
HP 8453 spectrometer. The samples were prepared on quartz glass by
spin-coating from 10 mg mL−1 solutions at 2000 rpm for 15 s, or for
polymer samples a 10 mg mL−1 perovskite nanocrystal dispersion in

10 mg mL−1 poly(9-vinylcarbazole) (PVK) in toluene was spin-coated
at 2000 rpm for 60 s. Photoluminescence was measured on an
Edinburgh Instruments FLS980 fluorimeter. Solution samples were
measured in a 1 cm × 0.3 cm cuvette excited in the 1 cm direction and
imaged in the 0.3 cm direction. Film samples were excited by front face
illumination at 45° to the surface; detection was at 90° to excitation
and also at 45° to the surface.

Monte Carlo Simulations. A Monte Carlo simulation of the
expected photoluminescence (PL) was constructed, using only the
measured emission and absorption spectra of the constituent species.
Photons are generated, traveling in random directions from the middle
axis. The model is two-dimensional, allowing light to leave the system
in either the small or large axis, with dimensions of 0.3 or 3 cm.
Photon travel lengths are randomly generated, consistent with the
concentration- and wavelength-dependent absorption lengths arising
from the two species in the mix. The travel distance is then the shorter
of these two distances. If this length takes the photon outside the
container, it is counted toward the final spectrum if it leaves via the
small axis and ignored if it leaves via the large axis. Otherwise, it has a
chance equal to the pure substance photoluminescence quantum
efficiency (PLQE) of being re-emitted by the species that absorbed it,
in a new random direction and according to that species’ emission
spectrum. All values required can be measured from the single-species
solutions, and so the model contains no fitted parameters.

Time-Correlated Single-Photon Counting (TCSPC) Measure-
ments. The samples were prepared on quartz glass by spin coating
from a 10 mg mL−1 perovskite nanocrystal dispersion in 10 mg mL−1

PVK in toluene at 2000 rpm for 60 s. The nanocrystal films were
encapsulated by affixing a glass coverslip on the nanocrystal layer using
carbon tape as a spacer unit and epoxy glue as a sealant. The samples
were excited by front face illumination at 45° to the surface; detection
was at 90° to excitation and also at 45° to the surface.

Transmission Electron Microscopy (TEM). TEM samples were
prepared by drop-casting an ca. 40 mg mL−1 perovskite crystals
solution in octane on a TEM Grid (200 mesh Cu, Agar Scientific) in a
argon-filled glove box. High-angle annular dark field scanning
transmission electron microscopy (HAADF-STEM) and electron
energy loss spectroscopy (EELS) analysis were also conducted on a
FEI Tecnai Osiris TEM/STEM 80-200 microscope, operating at 80
kV, using a liquid nitrogen holder, and equipped with a Gatan
Enfinium ER 977 spectrometer with dual EELS. The convergence and
collection angles used were 8.5 and 34 mrad, respectively. The EELS
spectral images were analyzed using principal component analysis and
the elemental maps with the absolute quantification were obtained
through the use of the integration method proposed by Egerton.45 The
EELS data analysis and elemental quantification were performed using
the open source software package HyperSpy toolbox.

X-ray Diffraction (XRD). Perovskite nanocrystal films were
prepared by drop-casting a 10 mg mL−1 nanocrystals solution in
hexane on silicon wafers. XRD experiments were carried out on a
Bruker X-ray diffractometer using a Cu Kα radiation source (λ =
1.5418 Å). The measurements were taken from 2θ of 10°−70° with a
step size of 0.0102° in 2θ.

Film Thickness. Film thicknesses were measured using a DEKTAK
profilometer and a Digital Instruments/Veeco Dimension 3100 atomic
force microscope.

PLQE Measurements. Nanocrystal films were placed in an
integrating sphere and were photoexcited using a 405 nm
continuous-wave laser. The laser and the emission signals were
measured and quantified using a calibrated Andor iDus DU490A
InGaAs detector for the determination of PL quantum efficiency.
PLQE was calculated as per de Mello et al.46

LED Device Fabrication. Poly(3,4-ethylenedioxythiophene):po-
lystyrenesulfonate (PEDOT:PSS) was spin-coated onto an indium−tin
oxide (ITO)-coated glass substrate at 6000 rpm for 45 s, followed by
annealing at 140 °C for 30 min in a nitrogen-filled glove box. A 10 mg
mL−1 perovskite nanocrystal dispersion in 10 mg mL−1 PVK in toluene
was spin-coated at 2000 rpm for 60 s in an argon-filled glove box to
give a 50−60 nm film. The samples were then transferred into a
thermal evaporator, and calcium (Ca; 20 nm) and silver (Ag; 80 nm)
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were deposited through a shadow mask at 3 × 10−6 mbar or better.
The LEDs were encapsulated by affixing a glass slide on top of the
contacts using transparent ultraviolet (UV) epoxy glue.
LED Characterization. Current versus voltage characteristics were

measured using a Keithley 2400 source measure unit. Photon flux was
measured simultaneously using a calibrated silicon photodiode
centered over the light-emitting pixel. Luminance in cd m−2 was
calculated based on the emission spectrum of the LED, weighted
against the standard luminosity function and on the known spectral
response of the silicon photodiode. External quantum efficiency was
calculated assuming a Lambertian emission profile. Electrolumines-
cence spectra were measured using a Labsphere CDS-610
spectrometer.

■ RESULTS AND DISCUSSION

CsPbX3 (X = Cl, I) nanocrystals were prepared as previously
reported by Protesescu et al.19 (details in the Methods section).
All processing and characterization were performed in an inert
atmosphere (oxygen and water <5 ppm). Under these
conditions we find that CsPbCl3 and CsPbI3 nanocrystals
coexist in solution without undergoing dissolution or significant
halogen exchange. To investigate the optical properties of this
system, we prepared solutions of CsPbCl3 and CsPbI3 at an
overall crystal concentration of ≈1 mg mL−1 (Figure 1a). The
respective absorbance spectra are shown in Figure 1a. We find
absorbance onsets of 425 and 690 nm for the CsPbCl3 and
CsPbI3 samples, respectively. The CsPbCl3 nanocrystals show a
sharp peak close to the absorption onset, which likely arises
from excitonic effects. Mixed solutions show a combination of
the characteristic features of the pure nanocrystal solutions
without any spectral shifting. By fitting the absorbance
spectrum of the mixed solution with a sum of the pure sample
spectra, we calculate the ratio of the different crystals in a
nominally 1:1 mixed solution sample to be 1:0.957
(CsPbCl3:CsPbI3) (Figure 1 of the Supporting Information).
To investigate the structural and physical properties of the

mixed system by powder XRD and TEM, neat films of the
crystals were drop-cast from a 10 mg mL−1 solution respectively
onto silicon and onto carbon-coated copper substrates. The
XRD pattern (Figure 1b) shows peaks at 16° and 32.5°
corresponding to those found in pure CsPbCl3 crystals reported
by Protesescu et al.19 and similarly at 14° and 28° in the pure
CsPbI3 crystals. The XRD pattern of the CsPbCl3:CsPbI3 (1:1)
sample is a superposition of the CsPbCl3 and CsPbI3
nanocrystal XRD patterns. The presence of both CsPbCl3
and CsPbI3 peaks in the blends, without any shifts or additional
peaks, indicates that these crystal structures exist in parallel in
our nanocrystal blend films. HAADF TEM imaging (Figure 1c)
shows two distinct types of nanocrystals with slightly different
contrasts and sizes, suggesting two different nanocrystal
populations. EELS and scanning transmission electron
microscopy (STEM) was then used to further assign these
crystal populations and obtain an absolute quantification of
each element. The individual elemental maps with number of
atoms per nm2, shown in Figure 1c, indicate that the iodide is
localized on the larger crystals while the chloride is localized on
the smaller crystals. The amount of I and Cl in the nanocrystals
maintains a 3:1 stoichiometric ratio with Cs. The EELS spectra
measured at the two locations in Figure 1c show two distinct
traces for different nanocrystal populations and are shown in
Figure 1d. The blue trace, corresponding to EELS measure-
ments at the blue cross, is assigned to a CsPbCl3 nanocrystal
with edges seen for Cs, C, Cl, and O, and the red trace,
corresponding to EELS measurements at the red cross, is
assigned to a CsPbI3 nanocrystal with edges seen for Cs, C, I,
and O. The sizes of the CsPbCl3 and CsPbI3 nanocrystals were
measured at 7.0 ± 2.8 and 12.0 ± 3.9 nm, respectively. These
data confirm that the CsPbCl3 and CsPbI3 nanocrystals are
intimately mixed but remain discrete entities with insignificant
halide mixing between them. The data in Figure 1 support our
conclusion that CsPbCl3 and CsPbI3 do not undergo significant

Figure 1. (a) Absorption spectra (left) of pure CsPbCl3, CsPbI3, and a 1:1 nanocrystal blend and emission spectra (right) of pure CsPbCl3 and
CsPbI3 in hexane (concentration ≈1 mg mL−1). (b) Powder XRD patterns of CsPbCl3, CsPbI3, and 1:1 nanocrystal blend solid films with distinctive
peak highlighted. (c) HAADF TEM images and EELS TEM maps for Cs, I, and Cl. Scale bar = 20 nm. (d) EELS TEM spectrum for CsPbCl3:CsPbI3
(1:1) samples taken at the positions of the red and blue crosses in (c). Lines indicate atomic absorption edges.
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halogen exchange with each other. The lack of halogen
exchange in these systems is assigned to the different tolerance
factors of the different crystal lattices acting to inhibit halogen
exchange.47

The ability of these crystals to exist as discrete entities gives
us the unique opportunity to study these crystals and their
photophysical interactions with each other. CsPbCl3 nano-
crystals emit in the near UV at 425 nm, whereas CsPbI3
nanocrystals emit in the red at 695 nm (Figure 1a). When
excited at 365 nm, nanocrystals dispersed in a poly(methyl
methacrylate) (PMMA) matrix at a total nanocrystal:polymer
ratio of 1:1 by weight (film thickness ≈20 nm) (Figure 2a) and
neat mixed nanocrystal films spun from toluene (Figure 2b)
clearly show emission from both types of nanocrystals. Spectral
tuning of the separate crystals was also achievable by
incorporating a small (weight fraction ≤10%) amount of
CsPbBr3 nanocrystals in a solution of CsPbCl3 and CsPbI3
nanocrystals. As there is not enough CsPbBr3 to represent a
majority, the CsPbBr3 is incorporated into the CsPbCl3 and
CsPbI3 crystals, resulting in a CsPbCl(3−x)Brx and CsPbI(3−x)Brx
blend (Figure 2c).
When the crystals were excited directly at 550 nm, the overall

PLQE yield of the CsPbI3 crystals decreased with increasing
CsPbCl3 ratios (Figure 2 of the Supporting Information).

Despite there being no change in XRD (Figure 3 of the
Supporting Information) or the emission spectrum, TEM
images show a small amount of migration of chloride ions into
the CsPbI3 crystals (Figure 1c; Figure 4 of the Supporting
Information). We attribute the decrease in PLQE to small
amounts of chloride migration which increases the amount of
nonradiative decay within the crystals. This is consistent with
TCSPC measurements (Figure 5 of the Supporting Informa-
tion), which show the CsPbI3 fluorescence decay lifetimes are
shortened for ratios greater that 1:1. We are still able to achieve
high PLQEs in the CsPbI3 nanocrystals at a 1:1 ratio.
The above spectra (Figure 2a,b) showed emission from both

CsPbCl3 and CsPbI3 nanocrystals; however, when CsPbCl3 and
CsPbI3 nanocrystals are mixed in a 1:1 ratio at higher solution
concentrations and in thicker polymer matrixes, the emission
was found to be predominantly at 695 nm under 405 nm
excitation. Solutions of CsPbCl3 and CsPbCI3 nanocrystals
showed emission solely from the CsPbI3 crystals up until a 20-
fold excess of CsPbCl3 (Figure 6 of the Supporting
Information). Emission solely from the low-energy particles
was also seen for nanocrystals dispersed in a PMMA matrix at a
total nanocrystal:polymer ratio of 1:1 by weight and film
thickness ≈75 nm (Figure 3a). These results indicate that there
is efficient energy transfer to the low-energy nanocrystals.

Figure 2. (a) Solid-state absorbance and emission spectra of CsPbCl3:CsPbI3 (1:1) in PMMA, film thickness ≈20 nm (10 mg mL−1 nanocrystals and
10 mg mL−1 PMMA in toluene, spun at 6000 rpm). (b) Solid state absorbance and emission in neat mixed crystal films (10 mg mL−1 in toluene,
spun at 2000 rpm). (c) Absorbance and emission of ≈0.1 mg mL−1 nanocrystals in toluene) with different CsPbCl3:CsPbBr3:CsPbI3 ratios.

Figure 3. (a) Luminescence of CsPbCl3, CsPbI3, and CsPbCl3:ClPbI3 blends in PMMA matrix at a total nanocrystal:polymer ratio of 1:1 by weight
and film thickness ≈75 nm. (b) Transient luminescence decays excited at 405 nm with measurements at 450 or 670 nm.
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The interaction responsible for this energy transfer in solid
films was investigated through transient spectroscopy techni-
ques. For mixed samples with a 1:1 ratio of CsPbCl3:CsPbI3 by
weight, the CsPbI3 nanocrystals show an increased lifetime
when excited at 405 nm compared to pure CsPbI3 samples
(Figure 3b). Consistent with steady state measurements, there
was no emission from the CsPbCl3 nanocrystals in the mixed
samples. An extended luminescence lifetime in the lower-
energy particle is consistent with excitation transfer. One
possible mechanism for this energy transfer is Förster
resonance energy transfer (FRET). We calculate the Förster
radius R0, the distance at which 50% of all excitations lead to
energy transfer from the donor to the acceptor,48 using
measured absorption, emission, and PLQE data to be 6.8 ± 0.3
nm. This value is comparable to the size of the nanocrystals so
the point dipole approximation stipulated in FRET calculations
is not entirely appropriate. It is also worth noting that the large
aliphatic ligands that offer colloidal stability are still attached to
these crystals. This combined with the apparent slight phase
separation of the two crystals in neat films (Figure 1c; Figure 4
of the Supporting Information) and the fact that the crystals are
supported in a polymer matrix means that the distance between
a CsPbCl3 and CsPbI3 particle is generally greater than 6.8 nm.
We cannot completely rule out FRET playing a role in energy
transfer, but crucially the fact that energy transfer is more
complete in thick films, with the same interparticle spacing,
suggests that another mechanism is dominating. We therefore
ascribe the dominant emission from CsPbI3 nanocrystals in
CsPbCl3:CsPbI3 blends to efficient reabsorption of photons
emitted from CsPbCl3 nanocrystals. A Monte Carlo algorithm
allowing for multiple absorption and re-emission events gives
an accurate replication of the measured emission in
concentrated solutions and shows the measured down
conversion of the blue emission to red (Figure 7 of the
Supporting Information).
To use the potential of this efficient photon reabsorption

between different CsPbX3 (X = Cl, I) nanocrystals, we
incorporated them into bulk heterojunction polymer/CsPbX3
nanocrystal LEDs. The LEDs were made by spin-coating
PEDOT:PSS on an ITO glass substrate. A toluene solution
containing 10 mg mL−1 nanocrystal and 10 mg mL−1 PVK was
further spun on top, giving a 50−60 nm film, and a calcium and

silver electrode was deposited by thermal evaporation (Figure
4a). Devices of CsPbCl3, CsPbI3, CsPbCl3:CsPbI3 (1:1) (all in
PVK matrixes), and pure PVK were produced.
All devices were inefficient, with quantum efficiencies less

than 0.04% (Figure 8a of the Supporting Information), and
relatively high voltages were required to achieve significant
luminances (Figure 4b). Devices containing PVK showed broad
emission, consistent with previous reports,49,50 and had the
highest current densities (Figure 8b). Adding CsPbCl3 particles
had only a minor effect on the current density (Figure 8b), but
at high voltages led to a clear emission peak around 400 nm
(Figure 4c), consistent with charge capture and recombination
occurring on the particles. With CsPbI3 particles, the emission
was solely from the particles, centered around 695 nm (Figure
4c), but the current density was reduced by an order of
magnitude (Figure 8b), consistent with trapping of one or both
carriers on the particles. Mixed CsPbCl3:CsPbI3/PVK devices
maintain the high current densities comparable to those of the
PVK and CsPbCl3/PVK devices but show emission solely from
the CsPbI3 nanocrystals (Figure 4c; Figure 8b of the
Supporting Information). This suggests that transport is
dominated by the CsPbCl3 particles but that any emission
occurring from the CsPbCl3 particles is converted to CsPbI3
emission through photon reabsorption as demonstrated in the
optical measurements described above. Devices containing
mixed nanoparticles therefore show the best device perform-
ance. It would be attractive to obtain a mixture of blue and red
emission in LEDs, which would require thinner films of mixed
nanoparticles to avoid complete reabsorption of the blue
emission as demonstrated optically in Figure 2. Unfortunately,
though, we have not yet been able to fabricate working LEDs
with active layer thicknesses below 40 nm.

■ CONCLUSION

In conclusion, we present the study of interactions in blends
films with mixtures of different CsPbX3 (X = Cl, I) perovskite
nanocrystals. We find that CsPbCl3 and CsPbI3 nanocrystals
can exist as discrete entities in solution, embedded in a polymer
matrix and as neat films. The CsPbCl3 emission can be
reabsorbed by the CsPbI3 nanocrystals due to the large
absorption coefficient of the CsPbI3 nanocrystals in the range of
the CsPbCl3 emission. This phenomenon can be utilized in

Figure 4. (a) Band diagram and structure of the bulk heterojunction LEDs. (b) Change in luminance with voltage in the bulk heterojunction LEDs.
(c) Electroluminescence spectra of CsPbI3:PVK, CsPbCl3:CsPbI3:PVK, and CsPbCl3:PVK at different voltages. The electroluminescence spectra of
the CsPbI3:PVK and CsPbCl3:CsPbI3:PVK remain constant with voltage (not shown).
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bulk heterojunction LEDs where the luminance of devices
emitting in the 695 nm region can be improved by the
incorporation of CsPbCl3 nanocrystals. This causes the devices
to operate at a higher current density with photon reabsorption
transfer occurring from the CsPbCl3 nanocrystals to the CsPbI3
crystal for efficient re-emission.
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