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S.1 Frequency effect on the P-wave travel time 

 
Figure S.1: Effect of frequency on the two-way travel of P-waves between BT530 and BT613; the 
dashed line shows an arbitrary sigmoid fit as a guide for the eye. The limited accessible 
frequency range of data collection during BT530 yields an overestimation of the travel time, thus 
an underestimation of the P-wave velocities. On the other hand, the frequency range sampled 
during BT613 is large enough to give the appropriate P-wave velocities. 
Due to the mismatch between the measured and predicted P-wave velocities (Fig. 4c), the frequency 
dependence of the P-wave travel times has been investigated. Fig. S.1 shows the evolution of travel 
times as a function of frequency for the last data point collected during BT530 and BT613. The last data 
point collected was chosen as the Fo90 samples have been annealed for several hours and to peak 
temperatures exceeding 1273 K, preventing these samples from exhibiting any residual stress. Even in 
a fully relaxed state, for both BT530 and BT613, the travel times show a frequency dependence. More 
importantly, BT613 shows a plateau at high frequencies (> 40 MHz), where travel times are not 
dependent on the frequency anymore. Due to its large size (6.35 mm in diameter), the piezoelectric 
crystal used during the experiment BT530 was unable to produce a signal where echoes could be 
correlated for frequencies larger than 40 MHz. Thus, the P-wave travel times measured during BT530 
could not show the same plateau as BT613 (dashed lines are a guide for the eye corresponding to a 
sigmoid fit), yielding P-wave velocity values that are underestimated (as seen in Fig. 4c). 

Conducting a similar exercise on S-wave travel times shows a similar travel time dependence on the 
frequency, but with a plateau that appears for frequencies larger than 34 MHz. Data could be collected 
well within this range for both experiments BT530 and BT613. Interestingly, both threshold frequencies 
to reach the travel time plateau correspond to the resonance frequencies of 63 µm thick LiNbO3 
piezoelectric crystals. 
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When only the high-frequency ranges are considered to calculate P-wave and S-wave velocities, the 
obtained room temperature values are in perfect agreement with room temperature Brillouin data 
(Abramson et al., 1997; Mao et al., 2015; Zha et al., 1998; Zhang and Bass, 2016). As such, only these 
high-frequency data were used to report elastic wave velocities in Table S.2 and considered during the 
fit of our EoS. 

This description highlights the critical need for high-quality and small piezoelectric crystals to collect 
high-quality travel time data and estimate reliable elastic wave velocity values. If transducers cannot 
reach the frequency thresholds to reach the P- and S-wave travel time plateaus, then the determined 
P- and S-wave velocity values can be underestimated as in the case of BT530. 
S.2 Derivation of the near field length 

 
Figure S.2: (a) Schematic representation of the acoustic pressure profile showing the series of 
minima and maxima within the near field (taken from the Olympus Ultrasonic Transducers 
Technical Notes, https://www.olympus-ims.com/en/ndt-tutorials/transducers/characteristics/). 
(b) Geometrical sketch showing the dimensions used to calculate the near field distance. 
The acoustic pressure profile is often divided into two areas. The first one, close to the source is called 
the near field and is characterized by a series of pressure minima and pressure maxima (Fig. S.2a). 
The last maximum delimits the near field from the far field and represents the natural focus of the 
transducer. The minima are produced from destructive interferences between the signal generated at 
the point center of the transducer and its edge. The distance between the transducer and the acoustic 
pressure minima can be expressed by considering the condition for wave interference. Wave 
interferences occur when the phase difference is equal to π, i.e. when the path difference Δ𝑑 between 
two rays of wavelength λ is: 

Δ𝑑 = &𝑛 + !
"
) λ. (S.1) 

By geometrical construction (see Fig. S.2b), let us consider 𝑁# the path-distance of a ray generated at 
the center transducer and the 𝑛th acoustic pressure minima, and 𝐴# the path-distance of a ray generated 
at the edge of the transducer and the 𝑛th acoustic pressure minima. Then, the path difference between 
these two rays is: 

Δ𝑑 = &𝑛 + !
"
) λ = 𝐴# −𝑁#. (S.2) 

Using Pythagoras’ theorem, we can express 𝐴# as a function of 𝑁# and 𝜙$%&'(! the transducer diameter 
such that: 
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By combining equations (S.2) and (S.3), 𝑁# is expressed as a function of the transducer diameter and 
of the wavelength: 
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Considering the wavelength at a given frequency, λ = /(
0

, where 𝑣1 is the velocity within the material of 
interest and 𝑓 the frequency, equation (S.4) can be expressed as a function of frequency, yielding: 
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Here, the frequency range of interest corresponds to the mega-Hertz, meaning that the term &𝑛 + !
"
) /(
"0

 
is very small and thus often neglected, giving the final expression used here: 
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The last destructive interference used to separate the near field from the far field corresponds to the 
condition 𝑛 = 0, simplifying equation (S.6) to: 

𝑁 =
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*/(
. (S.7)	

S.3 Sample synthesis 
San Carlos-like olivine (Mg / (Mg + Fe) = 0.9 in moles) was synthesized by mixing reagent grade oxides 
(MgO 99.99%, SiO2 99.9% and Fe2O3 99.9%, all from Chempur) in the appropriate proportions (40.43 
wt.% SiO2, 48.82 wt.% MgO and 10.75 wt.% Fe2O3). The MgO and SiO2 powders were dried at 1273 K 
overnight prior to mixing to remove the adsorbed water. Batches of 4 g were prepared at once to 
minimize the weighing uncertainties on each species. After mixing, the powders were reacted and 
reduced (ΔFMQ = -2) in a CO2/CO gas mixing furnace at 1373 K overnight (≈ 16 hours). This process 
was repeated twice with mechanical grinding and mixing in between, using an agate mortar, to ensure 
chemical homogeneity and complete reactions. The recovered starting material was then checked using 
a powder diffractometer to ensure that no residual starting products remained and to determine the unit 
cell volume (see Supplementary Material S.4). 

Small batches of San Carlos-like olivine powder were then crushed in an agate mortar and under 
ethanol for one hour, to ensure that the initial grain size is small (≈ 6-8 µm). The fine-grained powder 
was then enclosed in a sealed platinum capsule and sintered using a piston-cylinder 3/4-inch standard 
BGI assembly (Keppler and Frost, 2005), at conditions of 0.7 GPa and 1373 K maintained for 2 h. The 
temperature was quenched by shutting off the power supply, and decompression was made as slow as 
possible to avoid cracks, i.e. over 8 to 15 hours. The recovered sintered blocks were machined into 
double-side mirror-grade polished disks of 2.5 mm diameter and 1.2 to 1.5 mm height. 

S.4 X-ray diffraction data collection and analysis 
The purity of the synthetic San Carlos-like olivine was checked using a Philips X’Pert Pro X-ray 
diffraction system operating in reflection mode, with CoKα1 (λ = 1.78897 Å) radiation selected with a 
focusing monochromator, a symmetrically cut curved Johansson Ge(111) crystal and a Philips 
X’celerator detector. The X-ray tube was tuned to 40 kV and 40 nA, while collection times in the 2θ 
range of 10-100° were fixed to 100 s for each step. Prior to the analysis, the powder was mixed with a 
NIST silicon standard (a = 5.43119 Å) to correct for the source offset. Data were analyzed using GSAS-
II (Toby and Von Dreele, 2013) and none of the starting oxides were observed on the diffraction pattern. 
A Le Bail fit was conducted to refine the unit cell parameters, which were found to be a = 4.76206(30) 
Å, b = 10.22344(52) Å, and c = 5.99302(34) Å, yielding a unit cell volume of 291.768(18) Å3. 

Energy dispersive X-ray diffraction patterns were collected during the experiments on P61B. The 
beamline features two high-purity germanium solid-state detectors (Ge-SSD) by Mirion (Canberra). The 
2θ diffraction angle was calibrated for each experiment from the known unit cell parameters of materials 
present within the assembly. A mixture of MgO + Pt (MgO 99.99% 1.5 µm, Pt 99.95+% 0.2-1.8 µm from 
Chempur) was inserted in the assembly to constitute the pressure standards to be used on the X-ray 
diffraction. Platinum is mostly used to hinder the grain growth of MgO at high temperatures; due to its 



softness, since Pt acquires very easily a preferred orientation and can hardly be used as a pressure 
standard. For BT530, the MgO and Pt calibrants were inserted in a groove within the MgO sleeve 
surrounding the sample and could never be found. Thus, the diffraction angle was calibrated against 
the unit cell parameters of the synthetic San Carlos-like olivine used as the sample and yielded 2θ = 
3.991° and the alumina backing plate was used as the pressure standard. For the BT613 experiment, 
the MgO and Pt mixture was pressed into a small pellet that was inserted at the back of the backing 
plate. Thus, the 2θ angle could be calibrated against the unit cell parameters of MgO (a = 4.211 Å for 
a unit cell volume of 74.672 Å, and yielded 2θ = 5.963°. 

For the collection of each XRD pattern, the press was rotated within ± 3° to increase grain statistics, 
and the collection time was set to 100 s. The unit cell volumes of each material were obtained using Le 
Bail refinements in GSAS-II (Toby and Von Dreele, 2013). Due to the presence of lead parts in the 
optics along the beam path, two main lead fluorescence peaks were observed within the energy-
dispersive XRD patterns: K𝛼! at 74.97 keV and K𝛼" at 72.81 keV. Thus, care was taken to exclude the 
range 71-76 keV so that these fluorescence peaks do not affect the unit cell refinement. For BT530 in 
which a rhenium heater was used, the Re K𝛼! at 61.14 keV and K𝛼" at 59.72 keV emission lines could 
also be observed on the diffraction patterns, thus the range 58-63 keV was also excluded. All unit cell 
volumes are reported in Table S.2. 

The pressure was estimated from the unit cell volumes of MgO and Al2O3 determined from the X-ray 
diffraction data. The equations of state, EoS, reported by (Tange et al. 2009) was used for MgO, while 
a fit was conducted on the available literature data (D’Amour et al., 1978; Dewaele and Torrent, 2013; 
Fiquet et al., 1999; Higo et al., 2018; Shi et al., 2022) to refine the P-V-T equation of state of α-alumina 
(see Supplementary Material sections S.5 and S.6 for more details). 

S.5 Mie-Grüneisen-Debye equation of state 
For the analysis of the high-pressure high-temperature data, the thermal equation of state description 
of (Stixrude and Lithgow-Bertelloni 2005) was adopted. In this formalism, the total pressure corresponds 
to the sum of the isothermal pressure 𝑃(𝑉, 𝑇3) at a reference temperature 𝑇3 = 300 K, and a thermal 
pressure Δ𝑃45(𝑉, 𝑇), following: 

𝑃(𝑉, 𝑇) = 𝑃(𝑉, 𝑇3) + Δ𝑃45(𝑉, 𝑇). (S.8) 

The isothermal pressure, 𝑃(𝑉, 𝑇3), is expressed following the third-order Birch-Murnaghan equation of 
state (Birch, 1952): 

𝑃(𝑉, 𝑇3) = 3 𝐾63 𝑓(1 + 2𝑓)7/" A1 +
9
"
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where 𝐾63 is the isothermal bulk modulus, 𝐾: its pressure derivative and 𝑓 is expressed as: 
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with 𝑉 the molar volume at pressure and 𝑉3 the molar volume at a pressure of 10-4 GPa and at the 
reference temperature. The thermal pressure can then be described as follows: 

Δ𝑃45(𝑉, 𝑇) =
<
;
[𝐸45(𝑉, 𝑇) − 𝐸45(𝑉, 𝑇3)], (S.11) 

where 𝛾 is the Grüneisen parameter, 𝐸45(𝑉, 𝑇) and 𝐸45(𝑉, 𝑇3) are the thermal energies at high 
temperature and at the reference temperature. The thermal energy can be expressed as: 

𝐸45(𝑉, 𝑇) = 9𝑛𝑅𝑇 &=
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where 𝑛 is the number of atoms per formula unit (5 for corundum, 7 for olivine, and 2 for periclase), 𝑅 
the ideal gas constant, and 𝜃 is the Debye temperature. Both the Grüneisen parameter and the Debye 
temperature can be expressed as follows: 



𝛾 = !
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with: 

B'

B*'
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"
𝑎%%CC𝑓", (S.15) 

𝑎%% = 6𝛾3, (S.16) 

𝑎%%CC = −12𝛾3 + 36𝛾3" − 18𝑞3𝛾3. (S.17) 

𝛾3 and 𝜃3 correspond to the Grüneisen parameter and the Debye temperature at the reference 
temperature. 𝑞3 is the volume derivative of the Grüneisen parameter, also at the reference temperature. 

In turn, the isothermal bulk modulus and the shear modulus are evaluated at pressure and temperature 
following: 

KD = (1 + 2𝑓)7/" AKD3 + (3KD3K: − 5KD3)𝑓 +
"E
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and, 
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Here, 𝐺: denotes the pressure derivative of the shear modulus. The volume derivative of the Grüneisen 
parameter, 𝑞, at pressure and temperature can be expressed as: 

𝛾𝑞 = !
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The shear strain derivative of the Grüneisen parameter, ηK, follows: 

ηK = −𝛾 − !
"
B*'

B'
(2𝑓 + 1)"𝑎K,	 (S.21)	

with the coefficient 𝑎K expressed as a function of the reference temperature Grüneisen parameter 𝛾3 
and its shear strain derivative ηK3: 

𝑎K = −2𝛾3 − 2ηK3.	 (S.22)	

Finally, the specific heat capacity 𝐶;(𝑉, 𝑇) is expressed as follows: 

𝐶;(𝑉, 𝑇) = 9𝑛𝑅 &=
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The P- and S-wave velocities, respectively 𝑣1 and 𝑣K, correspond to: 
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with 𝜌 the density. Note here that 𝑣1 depends on the adiabatic bulk modulus 𝐾K, which requires the 
additional transformation from isothermal to adiabatic: 

𝐾K = 𝐾6 +
<'

;
𝑇𝐶;(𝑉, 𝑇).	 (S.26)	

S.6 Fitting a P-V-T equation of state of corundum from literature data 
For more than 40 years, there have been a number of experimental and theoretical studies that 
investigated the thermoelastic properties of alumina. Although the luminescence of ruby is one of the 
most well-calibrated pressure gauges in diamond anvil cells, the thermoelastic parameters of corundum 
are still controversial. Indeed, it is proposed that the bulk modulus and its pressure derivative have 
either high values (≈ 255-260 GPa and ≈ 5) or low values (≈ 245-250 GPa and ≈ 4). Interestingly, 
published studies only compare their fit parameters with already reported ones, and a global fit of all 
the available experimental data has not been proposed yet. As such, we propose here to do so. 
Pressure, temperature, and volume data were taken from: (D’Amour et al. 1978; Dewaele and Torrent 
2013; Fiquet et al. 1999; Higo et al. 2018; Shi et al. 2022). Unfortunately, the original data from 
(Dubrovinsky et al. 1998) are reported only in figures and thus are not included. The data collected by 
(Richet et al. 1988) were not included as they seem to deviate from the rest of the literature data, even 
when normalized to the volume at ambient conditions (Fig. S.3a, orange crosses). 

 
Figure S.3: (a) Normalized volume as a function of pressure for the different datasets considered 
for our fit. Note that the data from (Richet et al. 1988) have not been used in the fitting procedure. 
The black line and thin dashed lines show the third-order Birch-Murnaghan fir and associated 
fit uncertainty. (b) Evaluation of the fit quality is determined as the difference between the 
measured and predicted unit cell volumes, as a function of pressure and temperature. Overall, 
the point scatter remains within an envelope of ≈ 1 % of the unit cell volume. 
First, the room temperature data were fitted using the third-order Birch-Murnagham equation of state 
(eq. S.9 and S.10) to extract the isothermal bulk modulus 𝐾63 and its pressure derivative 𝐾:. To reduce 
the variability between the different datasets, the fit was conducted on the normalized molar volumes 
𝑉/𝑉3. A weighted least-squares minimization was conducted using the curvefit function from the Scipy 
Python library. A wrapper function was added so that the least-square fit is conducted on the normalized 
molar volume, by minimizing the misfit in between the measured 𝑉/𝑉3 and the predicted 𝑉/𝑉3. This way, 
the least-squares are weighed based on the ratio 𝑉/𝑉3, which corresponds to the property that is 
measured during the experiment. When uncertainties were not reported (Dewaele and Torrent 2013; 
Higo et al. 2018), a constant value of 0.5 Å3 was assumed (corresponding to 0.0522 cm3.mol-1). A non-



weighed least-squares fit would return values that overlap within uncertainties: 𝐾63 = 250.5 ± 3.1 GPa 
and 𝐾: = 3.95 ± 0.1. 

The obtained parameters are: 𝐾63 = 249.7 ± 3.2 GPa and 𝐾′ = 3.97 ± 0.1; uncertainties correspond to 
two standard deviations extracted from the diagonal of the covariance matrix. To make sure that the 
values returned by our fitting procedure are correct, it was benchmarked against each dataset. The 
obtained parameters overlap with those reported in the literature within fitting uncertainties. 

The isothermal bulk modulus and its pressure derivative were then fixed, and the Grüneisen parameter 
𝛾3 and its volume derivative 𝑞3 were obtained by fitting the high-temperature data to equations S.8 to 
S.17. The integrate function from the Scipy Python library was used to numerically calculate the integral 
involved in equation S.12. The same method was used as for room temperature data. Here also, 𝑉3 
was taken as a variable in between the different datasets to reduce the inter-studies variability. The 
Debye temperature at 𝑇3, i.e. 𝜃3, was fixed to 933 K, as suggested by (Stixrude and Lithgow-Bertelloni 
2005). Interestingly, changing 𝜃3 to 1100 K, as used in (Shi et al. 2022), yields similar fit parameters, 
within uncertainties. Here, our fitting procedure was benchmarked against the individual dataset of (Shi 
et al. 2022). To adopt the same equations as the authors, equations S.13 and S.14 were respectively 
changed to equations S.27 and S.28. The values of 𝛾3 and 𝑞3 obtained with our fitting procedure overlap 
within uncertainties with those reported by (Shi et al. 2022). 

𝛾 = 𝛾3 &
;
;*
)
P*

 (S.27) 

𝜃 = 𝜃3 exp &
<*><
P*
) (S.28) 

Using the high-temperature data reported by (Fiquet et al. 1999; Higo et al. 2018; Shi et al. 2022), the 
following thermal parameters were obtained: 𝛾3 = 1.31 ± 0.01 and 𝑞3 = 2.12 ± 0.18. The fit quality is 
shown in Fig. S.3b, by plotting the difference between measured and predicted volume as a function of 
pressure and temperature. Using a different description of the Grüneisen parameter and the Debye 
temperature (i.e. equations S.27 and S.28) would yield 𝛾3 = 1.33 ± 0.01 and 𝑞3 = 1.91 ± 0.17. 

The fitting parameters are reported in Table S.1. They seem to argue in favor of low values of the bulk 
modulus and its bulk derivative. 

Table S.1: Thermoelastic parameters of alumina from our fit and comparison with literature data 

 𝐾!" (GPa) 𝐾# 𝜃" (K) 𝛾" 𝑞" 

Fit on literature data 249.7 ± 3.2 3.97 ± 0.10 933 (fixed) 1.31 ± 0.01 2.12 ± 0.18 

D’Amour et al. (1978) 254.4 ± 2.0 4.28 ± 0.01    

Dubrovinsky et al. (1998) 258 ± 2 4.88 ± 0.04    

Dewaele and Torrent (2013) 254.1 ± 7.6 4.00 ± 0.15    

Higo et al. (2018)a 251.2 ± 1.8 4.21 ± 0.10    

Shi et al. (2022) 246 ± 2 4 (fixed) 1100 (fixed) 1.32 ± 0.07 0.8 ± 0.4 

Stixrude and Lithgow-Bertelloni (2011)b 253 ± 5 4.3 ± 0.2 933 ± 3 1.32 ± 0.04 1.3 ± 0.2 

Oganov and Ono (2005)c 252.6 4.24    

Wang and Wu (2018)c 258.29 3.94    

a The bulk modulus value reported here corresponds to the adiabatic bulk modulus 𝐾K3 
b This study conducted a global inversion on existing literature data 

c Theoretical studies 



S.7 Fitting a 𝛒-𝒗𝑷, 𝒗𝑺-T equation of state from literature and our collected data 
Our velocity data on San Carlos-like olivine collected for the BT613 experiment (Table S.2) along with 
existing literature data were fitted to refine the thermoelastic parameters of olivine of mantle 
compositions. The fit was conducted iteratively, using the equations described in section S.5. First, 
elastic stiffness coefficients, 𝑐%S, obtained from room temperature Brillouin measurements (Abramson 
et al., 1997; Mao et al., 2015; Zha et al., 1998; Zhang and Bass, 2016) were inverted into elastic 
compliance coefficients, 𝑠%S, and both tensors were used to calculate the adiabatic bulk modulus and 
shear modulus following the Voigt (iso-strain) and Reuss (iso-stress) bounds. The Hill average was 
then calculated by taking the arithmetic mean value of the Voigt and Reuss elastic moduli. From these 
and density data obtained from the X-ray powder diffraction data collected at the same conditions used 
for the ultrasonic measurements, 𝐾63, 𝐺3, 𝐾: and 𝐺: are fitted using equations S.10, S.12 to S.22, and 
equation S.26. For the first iteration, the Grüneisen parameter and its volume derivative at ambient 
conditions, 𝛾3 and 𝑞3, are fixed to 1; the Debye temperature is fixed to 809 K, following (Stixrude and 
Lithgow-Bertelloni 2011). Thermal expansion data at atmospheric pressure (Bouhifd et al., 1996) are 
then used to fit the Grüneisen parameter by fixing the room temperature Hill average moduli and their 
pressure derivatives obtained previously, using equations S.8 to S.17. Finally, the volume and shear 
strain derivative of the Grüneisen parameter, 𝑞3 and ηK3, were fitted using our velocity data at high 
temperatures (equations S.10 and S.12 to S.26). 

Table S.2: Temperature, unit cell volume, sample length, and P- and S-wave velocities collected 
during BT530 and BT613 experiments. As mentioned in the main text and as evidenced in Fig. 
S.1, the P-wave velocities reported for BT530 are underestimated due to the limited frequency 
range, they are reported here but were not taken into account to fit elastic parameters. 
Uncertainties correspond to two standard deviations. 

BT613 

  Unit cell volumes (Å3)  Elastic wave velocities (m.s-1) 

Load (bar) Temperature (K) Olivine MgO Al2O3 Sample length (µm) P-waves S-waves 

0 300 291.53(3) 74.67(3) 254.59(4) 1507.0(20) - - 

120 300 271.14(12) 71.24(9) - 1493.3(144) 9181(90) 5030(50) 

120 773 278.38(6) - 249.73(7) 1511.9(144) 8835(86) 4912(47) 

120 1173 285.48(6) 74.15(4) 253.90(8) 1532.5(144) 8589(81) 4792(46) 

120 1373 288.65(5) 75.17(3) 255.64(6) 1541.3(144) 8444(80) 4719(44) 

120 1473 290.85(4) 75.40(3) 256.58(5) 1547.7(144) 8393(80) 4683(44) 

120 1573 292.15(4) 76.01(3) 257.77(4) 1551.5(144) 8282(79) 4603(44) 

120 1673 294.78(5) 76.36(3) 259.00(4) 1569.5(144) 8210(76) 4516(44) 

120 1573 294.17(4) 76.39(3) 258.66(4) 1569.7(144) 8213(76) 4547(44) 

120 1473 293.55(6) 76.16(3) 258.15(4) 1569.1(144) 8253(77) 4561(43) 

120 1373 292.73(6) 75.90(3) 257.50(4) 1567.6(144) 8299(79) 4660(44) 

120 1273 291.89(4) 75.70(3) 256.93(4) 1565.2(144) 8341(80) 4692(43) 

120 1073 290.65(4) 75.15(3) 255.75(4) 1563.2(144) 8422(80) 4782(45) 

120 873 289.34(5) 74.77(4) 254.75(4) 1535.2(144)a 8350(80) 4729(44) 

120 773 288.87(4) 74.53(4) 254.30(4) 1559.9(144) 8527(81) 4832(45) 

120 673 288.20(4) 74.34(4) 253.86(4) 1559.2(144) 8564(81) 4863(45) 

120 300 286.50(5) 73.68(3) 252.56(4) 1555.9(144) 8673(81) 4964(46) 

BT530 

  Unit cell volumes (Å3)  Elastic wave velocities (m.s-1) 

Load (bar) Temperature (K) Olivine MgO Al2O3 Sample length (µm) P-waves S-waves 

0 300 291.77(7) - 254.59(7) 1198.0(20) - - 



325 673 275.20(7) - - 1049.1(144) 8847(123) 4946(68) 

325 873 - - - 1047.8(144) 8800(126) 4913(68) 

325 1073 276.26(7) - 248.73(7) 1048.8(144) 8782(124) 4882(67) 

325 1250 276.76(7) - 249.41(7) 1049.7(144) 8733(123) 4837(66) 

325 1473 278.16(6) - 250.76(7) 1055.5(144) 8674(118) 4773(65) 

325 1573 279.26(7) - 251.47(7) 1061.8(144) 8623(117) 4720(64) 

325 1473 278.81(8) - 251.01(7) 1065.4(144) 8682(117) 4765(64) 

325 1373 278.30(8) - 250.55(7) 1065.5(144) 8709(118) 4807(65) 

325 1273 277.91(7) - 250.14(7) 1064.9(144) 8734(118) 4834(65) 

325 1173 277.51(8) - 249.72(7) 1064.5(144) 8758(119) 4864(66) 

325 773 276.16(7) - 248.22(6) 1062.4(144) 8832(119) 4964(66) 

325 573 275.47(7) - 247.62(6) 1062.7(144) 8877(120) 5021(68) 

325 323 274.90(6) - 247.10(6) 1062.5(144) 8922(121) 5082(69) 

450 300 272.33(7) - 245.70(5) 1059.4(144) 9037(123) 5118(70) 

450 773 273.09(8) - 246.75(5) 1060.0(144) 8954(122) 4993(68) 

450 973 273.52(8) - 247.34(6) 1061.7(144) 8940(122) 4963(67) 

450 1173 273.85(8) - 247.89(6) 1060.9(144) 8904(121) 4912(67) 

450 1373 274.44(9) - 248.59(6) 1060.7(144) 8868(122) 4875(66) 

450 1573 275.28(8) - 249.54(3) 1060.9(144) 8869(123) 4880(66) 
a The sample length reported here seems to be off compared to the surrounding data points. It appears 
that the press did not fully rotate back to 0° when the image was taken, resulting in this apparent smaller 
sample length. 

This fitting procedure was repeated iteratively until all parameters converged. The fit quality on literature 
data is reported in Fig. S.4. Here also, the integrate function from the scipy python library was used to 
numerically calculate the integrals involved in equations S.12 and S.23, and the least-squares 
minimization was conducted using the curvefit function, both from the scipy python library. The resulting 
Reuss and Voigt bounds and the Hill average of the isothermal bulk and shear modulus, their pressure 
derivative, the Grüneisen parameter, and its volume and shear stress derivative are reported in Table 
S.3. The parameters obtained here are in good agreement with existing global inversions (Stixrude and 
Lithgow-Bertelloni, 2011, 2005), within uncertainty. The main difference lies in the values of the volume 
and shear strain derivative of the Grüneisen parameter, which are lower than previously reported. 

 



Figure S.4: Plots showing the final fit parameters after converging. (a) Fit of the thermal 
expansion data (Bouhifd et al., 1996) and (b) fit of the room temperature Brillouin data(Abramson 
et al., 1997; Mao et al., 2015; Zha et al., 1998; Zhang and Bass, 2016). 
Table S.3: Thermoelastic parameters of San Carlos-like olivine and comparison with literature 
data 

Best fit parameters 𝐾!" (GPa) 𝐾# 𝐺" (GPa) 𝐺# γ" 𝑞" θ" (K) η$" 

Reuss bound 130.7(26) 4.04(28) 78.6(25) 1.25(24) 1.09(8) 1.61(34) 809 (fixed) 1.65(10) 

Voigt bound 134.8(24) 4.03(26) 81.4(24) 1.24(22) 1.09(8) 1.61(34) 809 (fixed) 1.65(10) 

Hill average 132.8(24) 4.03(28) 80.0(24) 1.24(24) 1.09(8) 1.61(34) 809 (fixed) 1.65(10) 

Angel et al. (2018), 
Reuss bound 126.3(2) 4.54(6) - - 1.044(4) 1.9(2) 644(9) - 

Stixrude et al. (2011), 
Forsterite composition 128(2) 4.2(2) 82(2) 1.5(1) 0.99(3) 2.1(2) 809(1) 2.3(1) 

S.8 Evaluation of uncertainties 
Uncertainties associated with the P- and S-wave travel times are expected to affect the uncertainties 
on the pressure determined using our dual travel time method. To predict this effect, the uncertainties 
on the travel times were propagated using a Monte Carlo random throw simulation, and the results are 
reported in Fig. 5. As Fig. 5a corresponds to a purely synthetic exercise, the average typical 
uncertainties on the collected travel times were considered. Based on our travel time data, the average 
relative uncertainty associated with P-waves is 0.4 % and that associated with S-waves is 0.2 %. Note 
that these relative uncertainties were kept constant for the different materials investigated. The errors 
were assumed to follow a Gaussian distribution, and, for each point, 104 random sets of P- and S-wave 
travel times were generated. Thus 104 S- to P-wave travel time ratios can be predicted, yielding as 
many pressure values. The reported uncertainty on pressure (shaded areas in Fig. 5a) was thus 
considered to be two times the standard deviation of these 104 pressure values. 

A similar Monte Carlo simulation was conducted to estimate the uncertainties of the estimated pressure 
values, based on the travel time data collected during BT613. The error distribution was assumed to be 
Gaussian. For each temperature step, 104 random sets of P- and S-wave travel times were predicted 
within one standard deviation of the collected travel times at various frequencies, yielding 104 travel 
time ratios. For each ratio, the EoS is solved to determine pressure, and the uncertainty on pressure is 
considered to correspond to two standard deviations of the 104 pressure values. These two standard 
deviations correspond to the vertical bars reported in Fig. 5b. For the sake of clarity and as the 
uncertainties associated with the dual travel time method are temperature dependent, only these were 
reported for each data point. The uncertainties associated with pressure values determined from X-ray 
diffraction are reported in the legend as the average uncertainty. These uncertainties are also evaluated 
through a Monte Carlo where the error distribution is once more assumed to be Gaussian. For each 
volume collected, 104 random unit cell volumes along 104 random sets of EoS parameters are 
generated within uncertainties. For each set, a pressure value of the EoS is solved to yield a value of 
pressure. The uncertainty is thus taken to correspond to two standard deviations of the 104 pressure 
values obtained for each volume. Interestingly, the errors associated with the pressure determined from 
X-ray diffraction are extremely similar, irrespective of the material or temperature, and correspond to ± 
0.4 GPa. 
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