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Following a request from the European Commission (EC), the EFSA Panel on
Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific
opinion on the tolerable upper intake level (UL) for manganese. Systematic reviews
of the literature of human and animal data were conducted to assess evidence
regarding excess manganese intake (including authorised manganese salts) and
the priority adverse health effect, i.e. manganese-induced neurotoxicity. Available
human and animal studies support neurotoxicity as a critical effect, however, data
are not sufficient and suitable to characterise a dose-response relationship and
identify a reference point for manganese-induced neurotoxicity. In the absence
of adequate data to establish an UL, estimated background dietary intakes (i.e.
manganese intakes from natural dietary sources only) observed among high con-
sumers (95th percentile) were used to provide an indication of the highest level
of intake where there is reasonable confidence on the absence of adverse effects.
A safe level of intake of 8 mg/day was established for adults > 18 years (including
pregnant and lactating women) and ranged between 2 and 7 mg/day for other
population groups. The application of the safe level of intake is more limited than
an UL because the intake level at which the risk of adverse effects starts to increase
is not defined.
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1 | INTRODUCTION

Directive 2002/46/EC' on food supplements and Regulation (EC) No 1925/20067 on fortified foods delegate the power to
the European Commission (EC) to adopt maximum amounts of vitamins and minerals that may be used in food supple-
ments or added to foods. In this context, the EC asked EFSA to update the scientific advice on the tolerable upper intake
level (UL) for a number of priority nutrients, among which manganese.3

Briefly, the UL is defined as ‘the maximum level of total chronic daily intake of a nutrient (from all sources) which is not
expected to pose a risk of adverse health effects to humans’. (EFSA NDA Panel, 2022).

‘Tolerable intake’ in this context connotes what is physiologically tolerable and can be established based on an as-
sessment of risk, i.e. the probability of an adverse effect occurring at a specified level of exposure. The UL is not a recom-
mended level of intake. As the intake increases above the UL, the risk of adverse effects increases.

ULs should be protective for all members of the general population, including sensitive individuals, throughout their
lifetime. The derivation of ULs accounts for the expected variability in sensitivity among individuals. In principle, individ-
uals under medical care are not excluded unless: (a) there is an expected interaction between the medical condition and
the occurrence of possible adverse effects of a nutrient or (b) they are under medical treatment with the nutrient under
assessment.

On the other hand, the UL may exclude sub-populations with extreme and distinct vulnerabilities to adverse effects of
the nutrient due to specific genetic predisposition or other factors. The exclusion of such sub-populations must be consid-
ered on a nutrient-by-nutrient basis and is an area of scientific and expert judgement and of risk management (EFSA NDA
Panel, 2022).

1.1 | Background as provided by the European Commission

Article 6 of Regulation (EC) No 1925/2006 on the addition of vitamins and minerals and of certain other substances to foods
and Article 5 of Directive 2002/46/EC on the approximation of the laws of the Member States relating to food supplements
provide that maximum amounts of vitamins and minerals added to foods and to food supplements respectively, shall be
set.

The above-mentioned provisions lay down the criteria to be taken into account when establishing these maximum
amounts that include the upper safe levels (ULs) of vitamins and minerals established by scientific risk assessment based
on “generally accepted scientific data, taking into account, as appropriate, the varying degrees of sensitivity of different groups
of consumers”.

To set maximum amounts of vitamins and minerals in fortified foods and food supplements, the Commission would like
to ask the European Food Safety Authority (EFSA) to review the previous opinions of the Scientific Committee on Food
(SCF) or the NDA Panel on the ULs for vitamin A, folic acid/folate,* vitamin D,* vitamin E,* vitamin 86,4 iron,* manganese4
and B-carotene” to take into account recent scientific developments and evidence.

In this context, EFSA should first review the guidelines of the SCF* for the development of tolerable upper intake levels
for vitamins and minerals (adopted on 19 October 2000).

Tolerable Upper Intake Levels should be presented separately for the age group from 4/6 months onwards until 3 years
of age and the general population group from 3years onwards, taking into account, as appropriate, the varying degrees
of sensitivity of different consumer groups. As foods intended for the general population are also consumed by young
children, young children should be considered as a potentially sensitive consumer group.

1.2 | Terms of Reference as provided by the European Commission

In accordance with Article 29(1)(a) of Regulation (EC) No 178/2002, the European Commission requests the European Food
Safety Authority to:

1. Update the guidelines of the SCF for the development of Tolerable Upper Intake Levels for vitamins and minerals
in the light of available recent scientific and methodological developments.

'Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins and minerals and of certain other
substances to foods. OJ L 404, 30.12.2006, p. 26-38.

“Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the Member States relating to food
supplements. OJ L 183, 12.7.2002, p. 51-57.

EFSA Mandate No M-2021-00058 of 7 June 2021.

“4SCF (2000). Scientific Committee on Food. Guidelines of the Scientific Committee on Food for the Development of Tolerable Upper Intake Levels for Vitamins and
Minerals. in: Scientific Committee on Food, Scientific Panel on Dietetic Products, Nutrition and Allergies (2006). Tolerable Upper Intake Levels for Vitamins and Minerals.
European Food Safety Authority. SCF (2001). Scientific Committee on Food. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of
Magnesium. in: Scientific Committee on Food, Scientific Panel on Dietetic Products, Nutrition and Allergies (2006). Tolerable Upper Intake Levels for Vitamins and
Minerals. European Food Safety Authority.

85U801 SUOWWIOD aAEa1D) a|qeal|dde ay) Aq pauieAob afe sopiLe O ‘8sn Jo se|n 10} Aid1T8uluO 8|1/ UO (SUONIPUD-pUe-SWLB)WOD" A8 | 1M Afe1q 1 jBUI|UO//:SdNY) SUONIPUOD pue SWS | 841 89S *[yZ02/£0/ST] Uo Akelqiauluo 48| ‘8oueld aUeIyooD AQ £Ty8'€20z es e’ (/2062 0T/I0p/LL0D A Atelg1jpuljuoes j9//:sdny WoJj pepeojumoq ‘2T ‘€202 ‘ZELPTEST


https://open.efsa.europa.eu/questions/EFSA-Q-2021-00364

TOLERABLE UPPER INTAKE LEVEL FOR MANGANESE | 50f 100

2. Review existing scientific evidence and provide advice on Tolerable Upper Intake Levels for the following vitamins and
minerals including their currently authorized forms for the addition to fortified foods and food supplements for the gen-
eral population and, as appropriate, for vulnerable subgroups of the population:

« vitamin A

. folic acid/folate
« vitamin D

« vitaminE

« iron

+ manganese

+ [-carotene

« vitamin B6

For nutrients for which there are no, or insufficient, data on which to base the establishment of an UL, an indication
should be given on the highest level of intake where there is reasonable confidence in data on the absence of adverse
effects.

1.3 | Interpretation of the Terms of Reference

According to the mandate, EFSA has first reviewed the guidelines of the SCF for the development of tolerable upper intake
levels for vitamins and minerals (SCF, 2000). A draft guidance has been endorsed by the NDA Panel and published for a
1-year pilot phase (EFSA NDA Panel, 2022), after which it will be revised and complemented as necessary, following a public
consultation.

The UL for manganese will be revised by the Panel according to the principles laid down in the above-mentioned guid-
ance, following a protocol developed for that purpose (Annex A).

The Panel also interprets that the assessment relates to manganese from all dietary sources, i.e. foods (including fortified
foods), beverages (including water) and food supplements. Forms of manganese naturally present in foods and manga-
nese salts currently authorised in the EU for addition to foods or use in food supplements (Section 3.1, Table 3) should also
be considered.

1.4 | Context of the assessment

Previous safety assessments by the SCF and EFSA. The SCF evaluated the UL for manganese in 2000 (SCF, 2000) and
concluded that oral intake of manganese, despite its poor absorption in the gastrointestinal tract, can cause neurotoxic
effects. However, an UL could not be set due to the limited available evidence in humans and the lack of a no-observed-
adverse-effect-level (NOAEL) from animal studies. The SCF concluded that ‘The margin between oral effect levels in humans
as well as experimental animals and the estimated intake from food is very low. Given the findings on neurotoxicity and
the potentially higher susceptibility of some subgroups in the general population, oral exposure to manganese beyond
the normally present in food and beverages could represent a risk of adverse health effects without evidence of any health
benefit’.

EFSA has previously evaluated the safety and bioavailability of manganese aspartate, manganese ascorbate, man-
ganese bisglycinate and manganese pidolate as a source of manganese added for nutritional purposes to food sup-
plements (EFSA ANS Panel, 2009c). Although no specific studies on bioavailability were available, it was considered
that the bioavailability of these forms would be at least similar to that from other dissociable sources of manganese in
the gastrointestinal tract. The use of these manganese forms in food supplements was concluded not to be of safety
concern, provided that guidance levels (EVM, 2003) for manganese supplementation (i.e. 4 mg Mn/day for the gen-
eral population and 0.5 mg Mn/day for older people) were not exceeded (EFSA ANS Panel, 2009¢). In contrast, data
provided in the application dossiers were considered inadequate to establish the safety and bioavailability of manga-
nese amino acid chelate and manganese ethanolamine phosphate under the proposed conditions of use (EFSA ANS
Panel, 2009a, 2009b).

EFSA's FEEDAP Panel assessed the safety of several manganese compounds used as additives in animal feed and consid-
ered them to be safe for the consumed products, provided that the total maximum authorised content of manganese in
complete feed is respected (EFSA FEEDAP Panel, 2010, 2013a, 2013b, 20164, 2016b).

Adequate intake formanganese. In 2013, the NDA Panel published an opinion on Dietary Reference Values for manganese
(EFSA NDA Panel, 2013). As per the terms of reference for its task, a review of the UL for manganese was out of the scope of
the assessment. Due to insufficient evidence to derive an average requirement (AR) or a population reference intake (PRI),
adequate intakes (Als) for manganese were proposed. The Panel noted that mean intakes of manganese in adults in the EU
were around 3 mg/day and that no indication of negative balance had been observed with intakes of manganese above
2.5 mg/day. An Al of 3 mg/day was established for adults, including pregnant and lactating women. For infants aged 7-11
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months, an Al of 0.02-0.5 mg/day was established, to reflect the wide range of manganese intakes that appear to be
adequate for this age group. The Als for children and adolescents were extrapolated from the adult Al, applying isometric
scaling,5 as follows: 0.5 mg/day for toddlers (1-3years), 1.0 mg/day for young children (4-6years), 1.5 mg/day for older
children (7-10years), 2.0 mg/day for younger adolescents (11-14 years) and 3.0 mg/day for older adolescents (15-17 years).

1.5 | Previous assessments by other bodies

As in the SCF assessment (2000), other authoritative bodies charged with establishing health-based guidance values
(HBGVs) for manganese identified neurotoxicity as the critical endpoint for manganese toxicity (EVM, 2003; IOM, 2001; US
EPA, 2004).

The Institute of Medicine (IOM) considered data indicating that people eating Western-type and vegetarian diets may
have manganese intakes as high as 10.9 mg/day (IOM, 2001). The expert committee stated that ‘because no adverse ef-
fects due to manganese intake have been noted, at least in people consuming Western diets, 11 mg/day is a reasonable
NOAEL from food'. A lowest-observed-adverse-effect-level (LOAEL) of 15 mg/day was identified for manganese from an
experimental study in humans, in which significant increases in serum manganese concentrations and in lymphocyte
Mn-dependent superoxide dismutase activity (MnSOD) were reported after 25 days and 90 days of supplementation with
manganese, respectively (Davis & Greger, 1992). The UL for children (= 1 year) and adolescents was derived from the UL for
adults by applying isometric scaling.” No UL was established for infants (0-12 months of age) due to lack of data on adverse
effects in that age group and concerns regarding their ability to handle excessive amounts of manganese.

The UK Expert Group on Vitamins and Minerals concluded that data from animal or human studies were insufficient to
establish a safe upper level (SULs) for manganese (EVM, 2003). For guidance purposes, the expert committee considered
that a supplemental intake of up to 4000 pg manganese/day in addition to the diet would be unlikely to produce adverse
effects (equivalent to 70 pg/kg body weight [bw] for a 60 kg adult) in the general population, based on the NOAEL from one
observational study in Germany (average age of participants 57 years) (Vieregge et al., 1995), without applying an uncer-
tainty factor (UF). Using the NOAEL from an observational study in Greece (average age of participants 66 years) (Kondakis
etal,, 1989), it was assumed that up to 0.5 mg manganese/day (equivalent to 8 ug/kg bw for a 60 kg adult) in addition to the
diet would not result in adverse effects in older people. Assuming a dietary intake of 8.2 mg/day, acceptable total manga-
nese intakes were estimated to be 12.2 mg/day in the general population and 8.7 mg/day for older people.

In the context of its work on drinking water health advisory values, the US Environmental Protection Agency (EPA)
provided advice on a reference dose (RfD) for manganese, i.e. an estimate of a daily exposure to the human population
(including sensitive subgroups) that is likely to be without appreciable risk of deleterious health effects during a lifetime
(USEPA, 2004). Based on the dietary information, an intake of 10 mg Mn/day in the diet was considered safe for a lifetime of
exposure and was selected as a NOAEL for chronic ingestion of manganese by humans. An UF of 1 was applied on the con-
sideration of the essentiality of manganese for human health, of the ‘many large human populations consuming normal
diets over an extended period of time’ that were used to derive the RfD, and of available data on manganese homeostatic
control in humans. A dietary RfD of 0.14 mg Mn/kg bw per day (assuming a body weight of 70 kg) was derived.

The US Agency for Toxic Substances and Disease Registry (ATSDR) reviewed the toxicological profile of manganese in
2012, with the aim of establishing minimal risk levels (MRLs) for all routes and duration of exposure to manganese, includ-
ing chronic dietary exposure (ATSDR, 2012). No MRL for oral exposure could be established from human or animal studies,
due to lack of consistency in dose-response data across studies and lack of information on all intakes of manganese (e.g. di-
etary intakes plus administered doses). Instead, an interim guidance value of 0.16 mg Mn/kg bw per day was recommended
for oral exposure to inorganic forms of manganese, based on the UL of 11 mg/day for adults set by the IOM (2001).

No UL for dietary manganese has been established by the World Health Organization (WHO)/ Food and Agriculture
Organization (FAO) (FAO/WHO, 2004). For the purpose of setting guidelines for drinking water quality, WHO derived a tol-
erable daily intake (TDI) of 0.025 mg total manganese/kg bw per day, considering a LOAEL of 25 mg/kg bw per day based
on available studies in rats, and applying an UF of 1000 to account for inter- and intraspecies differences and uncertainties
in the database (WHO, 2021).

2 | DATA AND METHODOLOGIES
2.1 | Problem formulation

In accordance with the draft NDA Panel guidance on establishing and applying tolerable upper intake levels for vitamins
and essential minerals (EFSA NDA Panel, 2022), the assessment questions underlying the UL evaluation are formulated as
follows:

What is the maximum level of total chronic daily intake of manganese (from all sources) which is not expected to pose a
risk of adverse health effects to humans? (Hazard identification and characterisation)

SThat is the Al for the population group under consideration was derived by multiplication of the Al of adults with the ratio between the typical weight of each population
group and the weight of group adults.
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What is the daily intake of manganese from all dietary sources in EU populations? (Intake assessment)

What is the risk of adverse effects related to the intake of manganese in EU populations, including attendant uncertain-
ties? (Risk characterisation)

The hazard identification and hazard characterisation relate to the identification of adverse health effects of a given nu-
trient and the qualitative and quantitative evaluation of the adverse health effects associated with the nutrient, including
dose-response assessment and derivation of a UL, if possible.

Adverse (health) effects are defined as ‘a change in the morphology, physiology, growth, development, reproduction
or life span of an organism, system or (sub)population that results in an impairment of functional capacity to compen-
sate for additional stress or an increase in susceptibility to other influences (FAO/WHO, 2009; EFSA Scientific Committee,
2017a). The observable effects of high nutrient intake within the causal pathway of an adverse health effect can range from
biochemical changes without functional significance (e.g. certain changes in enzyme activity) to irreversible clinical out-
comes. Notably, some changes that occur before clinical manifestations could be used as surrogate or predictive markers
of subsequent adverse health effects, i.e. biomarkers of effect’ (EFSA NDA Panel, 2022).

In consultation with a panel of qualified experts on manganese® and after discussion by the ULs Working Group (WG),
neurotoxicity was identified as priority adverse health effect for the risk assessment, i.e. the one that is expected to play a
critical role for establishing an UL. This is addressed through systematic reviews of the literature of animal (mammals) and
human data. The rationale for the prioritisation of this adverse health effect is detailed in the protocol (Annex A). Other
adverse health effects are addressed narratively.

The assessment sub-questions identified as the result of the problem formulation, together with the methods selected
to address them, are provided in Table 1.

TABLE 1 Assessment sub-questions and methods to address them.

Sub-question Method

sQ1 Absorption, distribution, metabolism and excretion (ADME) of manganese Narrative review
a. Whatis the ADME of the different forms of manganese in humans?
b. Are there differences related to age or other individual factors, e.g. genetic polymorphism of manganese?
c. What are manganese interactions with other nutrients (e.g. iron) and their relevance for the assessment of
an UL for manganese?

sQ2 Biomarkers of exposure to manganese Narrative review
What are markers of manganese dietary exposure and their relationship with ‘high’ manganese dietary
exposure? What are their strengths and limitations and future research needs?

sQ3 Neurotoxicity of manganese Systematic review
a. What s the available evidence, including dose-response relationship, regarding the relationship between Systematic review
‘high” manganese oral exposure and adverse neurological effects in humans (in all life stages)? Narrative review

b. What is the dose-response relationship between ‘high’ manganese dietary intake and adverse
neurological effects in animals?

c. What are the potential mechanisms/mode(s) of action underlying the relationship between manganese
and this endpoint?

sQ4 Other adverse health effects Narrative review
What other adverse health effects have been reported to be associated with ‘high’ intake of manganese?
sQ5 Manganese intake Food composition
a. What are the levels of manganese in foods, beverages and food supplements in the EU? and food
b. What is the distribution of intakes of manganese from all dietary sources (including fortified foods and consumption
food supplements) by population group in the EU? datain the EU

2.2 | Hazard identification and characterisation

Preparatory work to address sQ1 to sQ4 has been provided by a contractor and, subsequently, a technical report was
published (Halldorsson et al., 2023). The technical report served as the primary source of information for this assessment,
however, the Panel conducted an independent evaluation of the evidence and adapted the outcome of the contractor's
work, where considered appropriate.

221 | Data

A description of the processes applied for evidence retrieval, study selection and data extraction is provided below. These
steps were conducted by a contractor, i.e. by the University of Iceland in collaboration with the University of Oslo, and are
described in the final report of this outsourced project (Halldorsson et al., 2023).

®The expert panel was composed of Michael Aschner, (Albert Einstein College of Medicine, New York, USA), Julia Bornhorst (Food Chemistry, Faculty of Mathematics and
Natural Sciences, University of Wuppertal, DE) and Donald Smith (Department of Microbiology and Environmental Toxicology, University of California, USA).

85U801 SUOWWIOD aAEa1D) a|qeal|dde ay) Aq pauieAob afe sopiLe O ‘8sn Jo se|n 10} Aid1T8uluO 8|1/ UO (SUONIPUD-pUe-SWLB)WOD" A8 | 1M Afe1q 1 jBUI|UO//:SdNY) SUONIPUOD pue SWS | 841 89S *[yZ02/£0/ST] Uo Akelqiauluo 48| ‘8oueld aUeIyooD AQ £Ty8'€20z es e’ (/2062 0T/I0p/LL0D A Atelg1jpuljuoes j9//:sdny WoJj pepeojumoq ‘2T ‘€202 ‘ZELPTEST



80of 100 | TOLERABLE UPPER INTAKE LEVEL FOR MANGANESE

A description of the processes used for evidence retrieval, study selection and data extraction for sub-questions ad-
dressed through systematic and narrative reviews is provided below.

2.21.1 | Priority adverse health effects (sQ3a and sQ3b)

To address sQ3a and sQ3b, relevant human (for sQ3a) and animal (for sQ3b) studies on the selected adverse health ef-
fect (neurotoxicity) were identified through systematic searches of the literature in MEDLINE (Ovid), Embase (Ovid) and
Cochrane Central Register of Controlled Trials for articles published in English. No limitation on publication date was ap-
plied. The search strategy was created by information specialists of the University of Oslo and peer reviewed by informa-
tion specialists at EFSA. The searches were performed on the 13th of April 2022. The search strategy is further detailed in
the final report of the outsourced project (Halldorsson et al., 2023). Grey literature (i.e. literature not indexed in literature
databases) was not searched.

Retrieved articles were screened in duplicate in Distiller SR® at title and abstract level, also with the use of the artificial
intelligence tool of Distiller SR® and at full-text level for inclusion/exclusion according to the criteria defined in the proto-
col (Annex A). Conflicts were solved by a third reviewer, if necessary. Relevant systematic reviews, if available, were hand-
searched for additional pertinent studies. Reviews, expert opinions, editorials, letters to the editors, abstracts, posters and
theses not reporting on original data were excluded.

Eligible designs: All experimental and observational study designs in humans (including case reports) were considered
relevant. Regarding experimental studies in animals, repeated-dose toxicity studies (with sub-acute, sub-chronic and
chronic duration of exposure) as well as reproduction/developmental toxicity studies were considered.

Eligible study populations: Studies were eligible if they involved individuals of any age, who were healthy or diseased, if
their disease was considered not to be related to the exposure-outcome relationship. Studies in individuals with manga-
nese deficiency and/or with clinical conditions affecting neurodevelopment or the central nervous system at baseline were
excluded. Experimental studies in animals were restricted to mammalian species only.

Eligible exposure measurements: Studies were eligible if they reported quantitative estimates of dietary manganese (ei-
ther self-reported or recorded) or characterised its content in drinking water. Studies were also eligible if experimental
animals were treated with manganese (at least one group of animals, without co-administration with other substances)
compared to a vehicle control through the oral route.

In relation to sQ3a, 7973 unique references were identified after removing duplicates (see flow chart, Appendix A.1). The
title and abstract screening left 159 relevant articles that underwent a full-text review. Of those, 110 were excluded. The
reasons for exclusion are reported in the technical report of the outsourced project (Halldorsson et al., 2023). A total of 49
publications reporting on 1 human controlled trial (HCT) and 48 observational studies were included by the contractor.
Upon evaluation of the papers, the Panel noted that three studies did not meet the eligibility criteria from the protocol
(Sdnchez et al., 2012 [wrong exposure], Soetrisno and Delgado-Saborit, 2020 [uncontrolled co-exposure], Lao et al., 2017
[wrong outcomel]) and one study provided insufficient reporting for the scientific risk assessment (Iwata, 1977). One case-
control study (Dang et al., 1983) investigated the outcome (congenital anomalies) not covered by the sQ3a, but rather with
sQ4 (see Section 3.4.3.2).

Further, no evidence for an adverse effect of dietary intake of manganese was found for the following health outcomes:
depression (six studies [Rubio-Lépez et al., 2016; Miyake et al., 2017; Nakamura et al., 2019; Thi Thu Nguyen et al., 2019;
Li et al., 2020; Maitiniyazi et al., 2022]), autism (one study [Moludi et al., 2020]), multiple sclerosis (two studies [Cortese
etal., 2019; Venasse et al., 2021]), Parkinson's disease (two studies [Miyake et al., 2011], Fukushima et al., 2010), increased sig-
nal intensity on T1-weighted magnetic resonance images (MRI) (one study [Ahn et al., 2003]) and adverse symptoms during
menstrual phase regarding changes in behaviour (one study [Penland & Johnson, 1993]). Therefore, these 13 studies are
not further considered in this opinion. The characteristics and results of these studies are available in the technical report
of the contractor (Halldorsson et al., 2023).

As a result, the Panel considered a total of 31 publications reporting human studies under sQ3a.

In relation to sQ3b, 6498 unique references were identified after removing duplicates (see flow chart, Appendix A.2).
The title and abstract screening left 294 relevant articles that underwent a full-text review. Of those, 231 were excluded.
The reasons for exclusion are reported in the final report of the outsourced project (Halldorsson et al., 2023). A total of 63
publications reporting on 39 single dose-level and 24 multiple dose-level studies in animals were included.

Data were extracted into Distiller SR® by two extractors of the University of Iceland. They were jointly discussed, com-
pared and harmonised at several time points by the two extractors. Evidence tables were prepared in Microsoft Word®
(sQ3a) or Excel® (sQ3b) and are provided in Appendix C.

2.2.1.2 | Other background information (sQ1, sQ2, sQ3c and SQ4)

The evidence used to inform sQ1, sQ2, sQ3c and sQ4 was retrieved through non-systematic searches in bibliographic data-
bases of textbooks, authoritative reviews and research papers, selected as sources of information by the WG on ULs based
on their relevance and synthesised as narrative reviews.
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2.2.2 | Methodologies

The methodology for this assessment follows the guidance for establishing ULs developed by the EFSA NDA Panel (2022).
Other guidance documents from EFSA were also considered, including those addressing the application of the systematic
review methodology in food and feed safety assessments (EFSA, 2010), the principles and processes for dealing with data
and evidence in scientific assessments (EFSA, 2015b), the statistical significance and biological relevance (EFSA Scientific
Committee, 2011), the biological relevance of data (EFSA Scientific Committee, 2017a), the use of the weight of evidence
approach (EFSA Scientific Committee, 2017b), the appraisal and integration of evidence from epidemiological studies (EFSA
Scientific Committee, 2020), the selected values to be used by EFSA in the absence of actual measured data (EFSA Scientific
Committee, 2012) and the analysis of uncertainty (UA) in scientific assessments (EFSA Scientific Committee, 2018).

2221 | Evidence appraisal (sQ3a and sQ3b)
A risk of bias (RoB) appraisal, i.e. evaluation of the internal validity of studies, was applied to the eligible studies in humans
and animals which addressed sQ3a and sQ3b.

The appraisal was performed using the Office of Health Assessment and Translation (OHAT) RoB tool developed by the US
National Toxicology Program (NTP) (OHAT-NTP, 2015). The RoB criteria and rating instructions provided therein were adapted
to the specific research questions; in human studies for the questions addressing: (1) consideration of potential confounders,
(2) confidence in the exposure characterisation and (3) confidence in the outcome assessment (Appendix B.1); in animal stud-
ies for the questions addressing: (1) randomisation, (2) exposure characterisation and (3) outcome assessment (Appendix B.2).

The appraisal was performed in duplicate by the contractor and EFSA staff. Discrepancies in the assessment in relation
to the RoB judgement of each domain were discussed among the assessors. In case of disagreement, the experts of the
EFSA WG on ULs were consulted.

The OHAT RoB tool proposes five response options for each RoB question: definitely low RoB (++), probably low RoB (+),
not reported (NR), probably high RoB (-) and definitely high RoB (-).

Studies were categorised according to their overall RoB based on a three-tier system, i.e. at low (tier 1), moderate (tier 2)
or high (tier 3) RoB), according to the strategy proposed by OHAT (OHAT/NTP, 2019) (Appendix B).

2.2.2.2 | Evidence synthesis (sQ3b)
To obtain standardised doses of manganese exposure across the eligible animal studies, several assumptions had to be made:

i. Unless the treatment dose was expressed as manganese by the study authors, conversion from the test substance
to elemental manganese was applied by using the following factors:

+ 0.278 when authors reported using manganese chloride tetrahydrate (MnCl,.4H,0),

- 0.339, corresponding to manganese chloride dihydrate (MnCl,.2H,0), as a default when the manganese chloride form
used (anhydrous, dihydrate or tetrahydrate) was unspecified,

- 0.437 when authors reported using anhydrous manganese chloride (MnCL,).

ii. In case manganese was administered via drinking water or feed and the consumption and animal body weights were not
reported by the authors, extrapolation to daily doses by body weight (mg Mn/kg bw per day) was performed applying
the factors recommended by the EFSA Scientific Committee (EFSA Scientific Committee, 2012).

In addition, the manganese intake from the background diet was estimated. When reported, this was based on the
manganese content of the chow used in the study. When this was not available, the average intake of manganese from
background diet was estimated based on the manganese content of standard rodent chows reported in the eligible publi-
cations, i.e. mean (range) of 86 (60-130) mg/kg feed, and the conversion factor applicable to the particular life stage of the
animals involved in the study (Table 2).

TABLE 2 Estimated manganese intake from background diet, by species and life stage of exposure.

Juvenile Sub-acute® (week Young adults Sub-
Exposure windows 5-9) chronic® (week 5-17)
Rats Conversion factor” 0.12 0.09
Mn intake (mean [range], mg/kg bw per day) 10 (7-16) 8(5-12)
Mice Conversion factor” 0.2 0.2
Mn intake (mean [range], mg/kg bw per day) 17 (12-26) 17 (12-26)

Abbreviation: bw, body weight.

?As recommended by EFSA Scientific Committee (EFSA Scientific Committee, 2012).
PDuration of exposure: >24 h to <28days.

“Duration of exposure: > 28 days to < 1 year.

The details of the calculations made for each individual studies are given in Appendix E.
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2.2.2.3 | Evidence integration

Hazard identification. Regarding sQ3a, the hazard identification step consisted of assessing the evidence for a causal pos-
itive relationship between manganese intake and the priority health effect identified (neurotoxicity). The available body
of evidence (BoE) is organised in separate lines of evidence (LoE), which are classified per outcome measured and per sub-
group of population (children and adults) in hierarchical order.

The LoE for the studies on children were categorised as:

« Standalone main LoE: studies on direct validated measures of the neurological function. These studies could, on their
own, answer the sQ directly.

« Complementary LoE: studies on endpoints that are relevant to neurological function but less direct than those included
in standalone LoE. These studies, on their own, cannot answer the sQ but can be used as supporting evidence to the
standalone LoEs.

Conclusions on the health effects are reached based on study design, considering the uncertainties in the BoE and in
the methods.

Regarding sQ3b, the hazard identification step consisted of assessing the evidence for neurotoxicological or adverse
neurodevelopmental effects in experimental animals caused by orally administered manganese. For these adverse effects,
studies were grouped by the life stage of exposure as well as method of administration of manganese (for studies con-
ducted with adult animals; see Section 3.4.2 for more details).

Hazard characterisation. At this step, evidence is integrated to select the critical effect(s) and identify a reference point
(RP) for establishing the UL. As proposed in the guidance for establishing and applying ULs for vitamins and essential
minerals (EFSA NDA Panel, 2022), when available data are insufficient to base on the UL, an indication should be given on
the highest level of intake for which there is reasonable confidence on the absence of adverse effects (e.g. from the highest
supplemental intake), drawing from the totality of the available evidence.

2.3 | Dietary intake assessment (sQ5)

The assessment follows the approach outlined in the protocol for the intake assessments performed in the context of the
revision of ULs for selected nutrients (EFSA, 2022). The principles of the data cleaning and methodology used for the pre-
sent intake assessment are described in Annex B.

231 | Data

Food intake data from the EFSA Comprehensive European Food Consumption Database (hereinafter referred as
Comprehensive Database)’ and data on manganese content in foods from the EFSA food composition database (FCDB)8 as
available in 2022 were used.

Food consumption data. The Comprehensive Database provides a compilation of existing national information on food
consumption at individual level collected through repeated non-consecutive 24-h dietary recalls or dietary records
(EFSA, 2011; EFSA ANS Panel, 2013). The latest version of the Comprehensive Database, updated in 2022, contains results
from a total of 83 different dietary surveys carried out in 29 different European countries (including EU Member States, pre-
accession countries and the United Kingdom) covering 154,388 individuals. In the present assessment, food consumption
surveys from 22 EU member states covering at least 2 days per subject were used.

Food composition data. Composition data for manganese in foods and beverages were derived from the EFSA Nutrient
Composition Database, which was compiled as a deliverable of the procurement project ‘Updated food composition
database for nutrient intake’ (Roe et al., 2013). Publicly available national food composition databases, the Mintel Global
New Products Database (GNPD)® and data from published literature were used to complement EFSA's food composition
database.

To complement EFSA's intake assessment, manganese intake estimates from natural sources, from addition to foods (i.e.
fortified foods) and from food supplements based on nationally representative food consumption surveys without limita-
tion on date of data collection or publication were collected. These data have been also used to evaluate the accuracy of

"https://www.efsa.europa.eu/it/data-report/food-consumption-data

8https://www.efsa.europa.eu/it/data-report/food-composition-data

The Mintel GNPD contains information on over three million food and beverage products, of which more than one million are or have been available on the European
food market. Twenty five out of the 27 EU Member States and Norway are present in the database. The database provides the compulsory ingredient information
reported on product labels and the nutrition declaration when available. https://www.mintel.com/globalnew-products-database
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the results obtained, comparing EFSA's estimates with published intake estimates from the same surveys with the same (or
similar) window of data collection and population groups, when available (EFSA, 2022). Data were collected between
September and November 2021 by contacting 64 competent authorities in 37 European countries through EFSA Focal
Points'® and the EFSA Food Consumption Network."" An additional search in sources of bibliographic information (Google
Scholar, PubMed) was performed to collect reports of national surveys included in the Comprehensive Database that had
not been obtained through the competent authorities. Between August and October 2022, EFSA contacted all EU Member
States and Norway through the European Commission Working Group on Food supplements and Fortified foods' and
collected data on the intake of manganese specifically from food supplements.

The Mintel GNPD was used as a data source to identify the type of manganese-containing food supplements and forti-
fied foods available on the EU market. The search was limited to the past 5 years, from November 2017 to November 2022.
The Panel notes that this search captures only those products that were newly introduced on the market and for which
the packaging was changed during this period. Therefore, the information collected is indicative and does not necessarily
represent a comprehensive overview of the products available on the market.

2.3.2 | Methodologies

Intake assessment from natural food sources. Composition data on manganese was extracted from the EFSA FCDB and was
subject to a cleaning procedure. As the scope of the intake assessment was to consider natural sources of manganese only,
a data cleaning strategy was applied to exclude fortified foods from the composition database (Annex B). This is with the
exception of infant and follow-on formula for which data from the Mintel's GNPD were used for the calculations. Indeed,
the minimum content of manganese in these food categories is subject to regulatory requirements to guarantee an
adequate supply of the nutrient to the consumers (Regulation (EV) 2016/127" and Regulation (EU) 2017/1522"). As a result,
a pooled database containing data from nine EU countries was created.

Manganese intake estimates were calculated by matching the food intake data from the Comprehensive Database and
the data on manganese content in foods from the EFSA FCDB. The FoodEx2 classification and description system was used
to facilitate the linkage between the databases (EFSA, 2015a).

Dietary intakes of manganese in mg/day from natural food sources were calculated at individual level. The resulting in-
takes per food item were summed up to obtain total daily intakes of manganese for each individual. The mean, P5, median
and P95 of intakes were subsequently calculated for each survey by population group and sex, as well as total populations.

The data cleaning procedure and methodology followed for the assessment are described in details in Annex C.

Intake assessment from fortified foods andfood supplements.  Manganese intake datafrom recent national food consumption
surveys conducted in European countries, including specific estimates of intake from food supplements and/or fortified
foods, were extracted and are provided in Annex D.

Information on food products fortified with manganese and manganese-containing supplements available on the EU
market, and their manganese content as reported on the label, were extracted from the Mintel GNPD. These data were
used qualitatively to describe the types of fortified foods and food supplements available and to gain insight into their
potential contribution to total manganese intake.

2.4 | Public consultation

In line with EFSA's policy on openness and transparency, and for EFSA to receive comments from the scientific community
and stakeholders, the draft Scientific Opinion was released for public consultation from 29 August 2023 to 10 October
2023." The outcome of the public consultation is described in a technical report published as Annex E to this Scientific
Opinion.

http://www.efsa.europa.eu/en/people/fomembers

Thttp://www.efsa.europa.eu/sites/default/files/dcmfoodconsnetworklist.pdf

2Working Group consisting of representatives of 27 EU Member States and Norway.

3Commission Delegated Regulation (EU) 2016/127 of 25 September 2015 supplementing Regulation (EU) No 609/2013 of the European Parliament and of the Council as
regards the specific compositional and information requirements for infant formula and follow-on formula and as regards requirements on information relating to infant
and young child feeding. OJ L 25, 2.2.2016, p. 1-29.

"Commission Delegated Regulation (EU) 2017/1522 of 2 June 2017 supplementing Regulation (EU) No 609/2013 of the European Parliament and of the Council as regards
the specific compositional and information requirements for total diet replacement for weight control. C/2017/3664. OJ L 230, 6.9.2017, p. 1-9.
Bhttps://connect.efsa.europa.eu/RM/s/publicconsultation

85U801 SUOWWIOD aAEa1D) a|qeal|dde ay) Aq pauieAob afe sopiLe O ‘8sn Jo se|n 10} Aid1T8uluO 8|1/ UO (SUONIPUD-pUe-SWLB)WOD" A8 | 1M Afe1q 1 jBUI|UO//:SdNY) SUONIPUOD pue SWS | 841 89S *[yZ02/£0/ST] Uo Akelqiauluo 48| ‘8oueld aUeIyooD AQ £Ty8'€20z es e’ (/2062 0T/I0p/LL0D A Atelg1jpuljuoes j9//:sdny WoJj pepeojumoq ‘2T ‘€202 ‘ZELPTEST


http://www.efsa.europa.eu/en/people/fpmembers
http://www.efsa.europa.eu/sites/default/files/dcmfoodconsnetworklist.pdf
https://connect.efsa.europa.eu/RM/s/publicconsultation

12 0f 100 | TOLERABLE UPPER INTAKE LEVEL FOR MANGANESE

3 | ASSESSMENT
3.1 | Chemistry

Manganese (Mn, CAS number: 7439-96-5, atomic mass of 54.9 Da) is a metal which can exist in a number of oxidation states,
ranging from —3 to +7, with Mn?* and Mn>* being the predominant forms in biological systems. Manganese is found in
nature in both inorganic and organic species. The inorganic forms include manganese dioxide (MnO,), which is the most
common naturally-occurring form, manganese dichloride (MnCl,), manganese sulfate (MnSO,), manganese phosphate
(MnPO,), manganese tetroxide (Mn;0,) and manganese carbonate (MnCO,). Most manganese salts are readily soluble in
water, with only phosphate and carbonate salts having lower solubilities. The manganese oxides are poorly soluble in
water.'° In natural water, manganese is mostly present as soluble Mn?* species. Depending on the pH and dissolved oxygen
content in water, Mn** compounds may undergo oxidation, e.g. as a consequence of chlorination and ozonisation (during
water treatment) forming insoluble/particulate compounds such as manganese oxides, which can influence the organo-
leptic properties of water (Health Canada, 2019; WHO, 2021).

Manganese is a component of several metalloenzymes, such as arginase, pyruvate carboxylase and MnSOD (EFSA NDA
Panel, 2013).

In the EU, several manganese salts are authorised for addition to foods or use in food supplements (Table 3).

TABLE 3 Formsof manganese authorised as nutrient sources in the

EU.

Addition to foods  Food supplements
Regulation (EC) Directive
1925/2006° 2002/46/EC°

Mn carbonate X X

Mn chloride X X

Mn citrate X X

Mn gluconate X X

Mn glycerophosphate  x X

Mn sulfate X X

Mn ascorbate X

Mn L-aspartate X

Mn bisglycinate X

Mn pidolate X

?Regulation (EC) No 1925/2006 of the European Parliament and of the Council of
20 December 2006 on the addition of vitamins and minerals and of certain other
substances to foods. OJ L 404, 30.12.2006, p. 26.

PDirective 2002/46/EC of the European Parliament and of the Council of 10 June
2002 on the approximation of the laws of the Member States relating to food
supplements. OJ L 183, 12.7.2002, p. 51-57.

3.2 | Absorption, distribution, metabolism and excretion (ADME)
3.21 | Absorption

Intestinal uptake and transfer of manganese occurs via active transport and passive diffusion in the small intestine, where it
is mainly absorbed as Mn?*. The mechanisms of Mn?* intestinal absorption and efflux from the enterocytes into the portal
blood are not completely elucidated (Liu et al., 2021). The divalent metal transporter-1 (DMT1) at the apical membrane of
enterocytes may participate in manganese uptake, as well as other transporters that are not fully characterised. Several
transporters, such as SLC40A1 (ferroportin, FPN), have been proposed to be involved in the efflux of manganese from the
enterocytes. Mn?* in portal blood is mostly taken up into the liver via SLC39A14 at the basolateral membrane of hepato-
cytes (Liu et al., 2021). When manganese is administered orally, it is exposed to a high first-pass effect in the liver, where it
is taken up by the hepatocytes and subsequently actively excreted into the bile, thus resulting in only very small amounts
of manganese reaching the systemic circulation. The fraction of absorbed manganese which enters circulation is predomi-
nantly associated with carrier proteins such as transferrin, albumin and «2-macroglobulin (Section 3.2.2).

The absorption of manganese from foods is generally low and considered to be below 10% (EFSA NDA Panel, 2013). The
chemical properties of manganese compounds (i.e. form, solubility and oxidation state) can influence the absorption of
manganese. In rats, soluble compounds (e.g. MnCl,, Mn%") were found to be more readily absorbed than insoluble ones

'eWater solubility at 20°C: manganese dichloride (MnCI2): 799 g/L; manganese sulfate (MnSO4): 450 g/L; manganese dioxide (Mn02): 0.073 mg/L; manganese oxide (MnO):
0.85 mg/L. European Chemicals Agency (ECHA) substance infocard. https://echa.europa.eu/substance-information
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(e.9.MnO,, Mn*") (Roels et al., 1997) and kidney and liver levels were significantly higher in mice fed manganese acetate or
MnCO,, compared to MnCl, or MnO, (Komura & Sakamoto, 1991). However, data regarding the influence of the chemical
form on manganese absorption are limited. In its previous evaluation of the safety of Mn?" organic salts (i.e. manganese
ascorbate, manganese aspartate, manganese bisglycinate and manganese pidolate'), the ANS Panel assumed that these
sources would ‘dissociate in the stomach and/or in the gastrointestinal fluids into their constituents, and that bioavailability
of manganese from these sources would be at least similar to that from other dissociable sources of manganese’ (EFSA ANS
Panel, 2009¢). The composition of food matrices can influence the level of manganese absorption, depending on the pres-
ence of other dietary compounds, including other minerals (e.g. iron) or phytates (Davidsson et al., 1995). Using radiola-
belled **Mn manganese in adult men and women, average true absorption'® rates from various foods were estimated to
range between 1.7% and 5.2% (Davidsson et al., 1991; Johnson et al., 1991), and 8.9% for Mndl, dissolved in water (Johnson
et al., 1991).

The amount of manganese present in food may also influence manganese absorption. Using **Mn in humans,
Finley (1999) estimated an absorption rate of 4.9% in individuals receiving a ‘low’ manganese diet (0.7 mg/day) compared
to 2.3% among those receiving a ‘high’ manganese diet (9.5 mg/day), in women with low iron status (serum ferritin
< 5 pg/L). Among women with high iron status (serum ferritin > 50 pg/L), the absorption rate was similar under the respec-
tive diets (~ 1%). In a subsequent experiment, average percent manganese absorption was 1.8%-2.6% among women who
consumed a ‘high” manganese diet (20 mg/day) compared to 3.2%-3.7% among women who consumed a ‘low’ manga-
nese diet (0.8 mg/day) (Finley et al., 2003). Upon administration of a multimineral supplement containing 2.5 mg of man-
ganese, 18 mg of iron and 15 mg of zinc, manganese true absorption, measured after 30 weeks of supplementation, was
found to be around ~ 1% (Sandstrom et al., 1990).

The Panel notes that the absorption of dietary manganese is low (< 10%). Although some evidence indicates that the
oxidation state and solubility of manganese forms and the presence of some food compounds (e.g. iron, phytates) may
affect manganese absorption, data on the influence of these factors on manganese absorption are limited. The Panel also
notes that regulation at the level of its intestinal uptake and systemic transfer appear to be part of the homeostatic mech-
anisms which are involved in maintaining manganese levels in the organism. The regulatory mechanisms, e.g. at the level
of manganese transporters involved in the intestinal uptake of manganese, are not yet elucidated.

3.2.2 | Distribution and metabolism

Manganese is subject to high first-pass clearance in the liver, with active excretion into the bile resulting in only a limited
fraction of absorbed manganese reaching the systemic circulation under normal physiological conditions (Section 3.2.1). In
the systemic circulation, most of the manganese is in the cellular components of blood, with the erythrocytes containing
approximately 65%, lymphocytes and platelets 30% (Milne et al., 1990), and only a minor fraction is bound to plasma pro-
teins such as albumin and a2-macroglobulin (Mn?*) or transferrin (Mn3+) (Liu et al., 2021). Manganese blood concentrations
in healthy adults are reported to range from 4 to 15 pg/L, with concentrations reported to be 5-10 times lower in plasma
or serum (Forrer et al., 2001; Goullé et al., 2005; Heitland & Kdster, 2006). Circulating manganese is generally rapidly cleared
through either distribution to other tissues or excretion into the small intestine via hepato-biliary secretion (Section 3.2.3).

Manganese in plasma is taken up by all tissues. The liver, pancreas, kidneys and tissues with high energy demand (e.g.
brain) or high-pigment content (e.g. retina, dark skin) contain the highest manganese concentrations. Bone represents
the largest reservoir of manganese in the body (25%-40% of total body content) (Aschner & Aschner, 2005). Manganese
secretion into breast milk was reported to be below 1% of intake in one balance study (Schéfer et al., 2004), although no
correlation between maternal dietary intake and human milk Mn concentrations were reported elsewhere (Leotsinidis
et al.,, 2005; Qian et al.,, 2010; Winschmann et al., 2003). As summarised by EFSA (EFSA NDA Panel, 2013) mean manganese
concentrations in milk vary from 0.8 to 30 pug/L. Miller et al. (1975) reported manganese content in rats' milk fed with normal
diet to be 54 ug/L. Overall, the body burden of an adult human is about 10 mg (Lucchini et al., 2022).

Limited data suggest that manganese may undergo changes in its oxidation state in the body. The oxidation state of
the manganese ion in several enzymes appears to be Mn>*, while most manganese intake from the environments is either
Mn% or Mn** (Section 3.1). Mn?"in plasma is presumed to be, in part, oxidised to Mn>* over time, although the precise ratio
of the two species and the mechanisms involved in this conversion are not elucidated (Liu et al., 2021; Roth, 2006).

The mechanism for cellular uptake of manganese has not been identified conclusively, but there is evidence that the
uptake of Mn?* into the cells takes place via cell type-specific membrane-bound transport mechanisms. These include
high affinity metal transporters, such as DMT1, SLC39A8 (ZIP8) and SLC39A14 (ZIP14) (Liu et al., 2021). Mn>*is thought to be
transported into the cells via transferrin-dependent mechanisms similar to Fe3t (Gunter et al., 2013). In cells, manganese is
mainly found in the mitochondrial and nuclear fractions (Gunter et al., 2004; Maynard & Cotzias, 1955).

Brain manganese concentrations between 1.1 and 2.9 ug/g have been reported in healthy human (Csaszma et al., 2003).
Under conditions of excess exposure, manganese has been found to accumulate most prominently in the globus palli-
dus. Deposition of manganese in the brain causes distinct magnetic resonance imaging (MRI) brain appearances, with

"Water solubility was described as follows: manganese pidolate: readily soluble in water; manganese aspartate: soluble in water; manganese ascorbate and manganese
bisglycinate: slightly soluble in water.
"®True absorption is calculated as manganese dietary intake minus total faecal losses of manganese plus endogeneous gut losses of manganese.
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pronounced hyperintensity of the globus pallidus on T1-weighted and hypointensity on T2-weighted images (Li et al., 2014).
In primates, brain regions such as frontal cortex have also been found to be affected by deposition of manganese and to
exhibit neurodegenerative changes (Guilarte et al., 2006). Two possible routes for manganese to enter the brain from the
blood stream are currently being discussed: (1) directly via the blood brain barrier (BBB) and (2) via the brain cerebrospinal
fluid (CSF) barrier, followed by translocation to the brain (Schmitt et al., 2011). Several transporters and channels have been
proposed to be involved in the uptake of manganese into the brain, including DMT1 and SLC39A8 (ZIP8) for Mn** species,
transferrin receptor-mediated process for Mn®*, calcium channels as well as other transporters such as citrate and choline
transporters (Lockman et al., 2001; O'Neal & Zheng, 2015). The role of each of these transporters in the regulation of man-
ganese uptake and efflux in brain tissues is still under investigation (Section 3.4.4).

3.2.3 | Elimination/excretion

The liver plays a primary role in manganese homeostasis by taking up manganese from portal blood, thereby regulating
the amount of manganese that enters the circulation for delivery to other organs (Sections 3.2.1 and 3.2.2), and by regulat-
ing excretion of manganese via the hepatobiliary route and elimination via the faeces. Manganese is excreted into the bile
via SLC30A10 located at the apical canalicular membrane of hepatocytes. Hepatocyte SLC39A8 at the apical canalicular
membrane reclaims manganese from the bile. Manganese in bile is secreted into the small intestine where a small fraction
may undergo enterohepatic recirculation, while the rest is eliminated via faeces. Manganese in blood plasma may also be
excreted directly by the intestine via SLC39A14 located on the enterocyte basolateral membrane and SLC30A10 located at
the enterocyte apical membrane (Liu et al., 2021). Pancreatic excretion of manganese contributes only a small fraction of
the absorbed manganese dose (Davis et al., 1993). Urinary excretion of Mn is generally low (normally below 1 pg/L) (Chen
et al.,, 2018; Davis et al., 1993; Horning et al., 2015; Malecki et al., 1996).

Using >*Mn tracer techniques, estimations of average manganese half-life have ranged between 14 and 48 days (Finley
etal., 1994; Finley et al., 2003; Johnson et al., 1991; Sandstrom et al., 1986) In the study by Finley et al. (2003), where individ-
uals received a ‘low’ (0.8 mg/day) versus ‘high’ (20 mg/day) manganese diet for 4 weeks before ingestion of the tracer dose,
average manganese half-lives were estimated to be about 30 days in the low manganese groups versus 15 days in the high
manganese groups. Based on a two-component exponential model, short (< 2 days) and long (9-27 days) half-life compo-
nents were predicted. The long half-life was shorter when subjects consumed the high (12 days) versus the low Mn diet
(22 days). After 60 days, the tracer retention was 0.7%-1% in participants consuming the low manganese diet compared to
0.1%-0.2% in participants consuming the high manganese diets, corresponding to 6-8 ug versus 18-34 ug of total manga-
nese from the test meal retained in the body in the respective groups.

The Panel notes that manganese homeostasis is primarily achieved by biliary excretion. Manganese is removed from the
blood by the liver where it is secreted into the bile and is excreted into the intestine and faeces. Biological half-life in humans
is 2-6 weeks. Homeostatic mechanisms appear to regulate manganese body content over a wide range of intakes. In the
study by Finley et al. (2003), a 25-fold increase in manganese intake (0.8-20 mg/day) resulted in a three- to four-fold increase
in retention of whole-body manganese after 60 days. The Panel also notes that, under conditions of excess exposure, manga-
nese can accumulate, in particular in the brain (Section 3.2.2). Available data are insufficient to characterise levels of dietary
intake at which manganese excretion mechanisms may be overwhelmed, leading to excess manganese body burden.

3.24 | Factors affecting ADME

3241 | Sex
Manganese concentrations in whole blood are generally higher in women than men (Finley et al., 1994). Lower absorption
of manganese and longer half-lives have been observed in men than in women (Finley et al., 1994). It has been suggested
that the greater manganese absorption in women may be related to reduced iron stores in women that result in greater
iron and likely manganese co-absorption than in men (Finley et al., 1994) (Section 3.2.5.6). Some sex differences in manga-
nese metabolism have been reported in rat studies (Gruden, 1988; Lee et al., 1990), but data are limited.

The Panel notes that available data regarding sex differences in the ADME of manganese are limited and thus require
further investigation.

3242 | Age

Blood manganese concentrations have been found to be elevated at birth and gradually decrease during infancy and
childhood. Hatano et al. (1983) reported three- to four-fold higher erythrocyte manganese concentrations in 1-month-
old Japanese infants than in adults; the concentration was found to decrease rapidly and was constant from 4 months to
11 years of age. Similarly, high blood manganese concentrations were reported in Japanese newborns (average 56 pg/L),
while it gradually decreased over the first year of life and concentrations similar to adults were found in children and
adolescents aged 1-18years (Mizoguchi et al., 2001). A steady decrease in mean manganese serum concentration was re-
ported by (Alarcén et al., 1996) among Venezuelan infants aged 5 days to 12 months. Examining individuals aged 1 month
to 75years in Germany, (Rukgauer et al., 1997) observed an age-related decrease in serum manganese concentrations up
to the age of 18years.
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Animal studies have reported higher manganese retention in early life than in adulthood (Keen et al., 1986; Kostial
et al,, 1978; Rehnberg et al., 1985) (Section 3.2.6). Although early data from immature rodents had suggested that elimina-
tion of manganese undergoes a period of maturation with adult patterns of excretion developing at about the time of
weaning, later studies provided evidence that regulatory mechanisms were operating soon after birth (Ballatori et al., 1987;
Kostial et al., 2005) (Section 3.2.6). Data in human infants are scarce. In a nutrient balance study in infants, Dérner et al. (1989)
reported apparent relative retention of manganese from breast milk of 37% (average breast milk manganese content 6.2
pg/L) and 16%-31% from infant formulae (manganese content 77-99 ug/L). It is notable that manganese intakes of exclu-
sively breastfed or formula-fed infants are relatively low (some dozens of micrograms per day) until the diet starts being
diversified (Section 3.3.3). This is due to the relatively low concentration of manganese in breast milk and infant formula
(average breast milk concentrations: 3-30 pg/L (EFSA NDA Panel, 2013); average infant formula concentrations: 46 pg/100
g for powders, 100 pg/L for liquids'®) as compared to other foods (Section 3.3.2). Thus, enhanced percentages of manga-
nese absorption and retention in early life as compared to later in life have been suggested to act as compensatory mech-
anisms for the scarcity of manganese in the diet at a time of high metabolic demand due to growth (Ballatori et al., 1987).
Wilson et al. (1992) found no differences in mean plasma manganese concentrations between preterm infants fed maternal
milk containing 4.1 pg/L or preterm infant formula containing 303 pg/L, which suggests that homeostatic mechanisms are
effective over this range of manganese intake even in preterm infants (Aschner & Aschner, 2005).

In rats a higher uptake of manganese in the brain has been found in pups (aged ~ 1 week), which coincided with the
period of peak brain growth, compared to older animals (Kostial et al., 1978; Takeda et al., 1999). These observations have
raised concerns about a potential higher susceptibility of infants to accumulate manganese in the brain.

The Panel notes the scarcity of data regarding the maturation processes of manganese homeostatic mechanisms in
human infants. Available data are inadequate to determine whether infants have a similar capacity as older age groups to
regulate manganese body burden.

3.24.3 | Pregnancy

Manganese blood concentrations are known to increase throughout pregnancy (Spencer, 1999; Tholin et al., 1995).
Maternal blood concentrations of manganese in pregnant women at delivery have been measured to be at least twice as
high as in non-pregnant women, while manganese concentrations in cord blood were two- to three-fold higher than in
maternal blood (Oulhote et al., 2014; Yamamoto et al., 2022). This might be due to increased manganese absorption dur-
ing pregnancy, as has been reported in rats (Kirchgessner et al., 1982), and/or changes in manganese metabolism during
pregnancy related to physiological changes occurring during pregnancy as an adaptation to meet the metabolic demands
of the developing foetus. Limited data suggest that manganese is transported actively across the placenta (Nandakumaran
etal., 2016; Yoon et al., 2011). Several metal transporters including DMT1 are expressed in the placenta and may participate
in the transfer. Further studies on placental manganese transfer are needed to elucidate the mechanisms involved and
their regulation.

3.244 | Hepatic function
Since liver is the organ responsible for manganese excretion (Section 3.2.3), pathologies affecting liver functions can lead
to excess manganese retention. A high incidence of pallidal signal hyperintensity on T1-weighted MRI has been reported in
patients with chronic liver disease, the intensity of which was found to correlate with blood manganese concentrations and
the presence of extrapyramidal symptoms (Spahr et al., 1996). A two- to seven-fold increase of manganese in globus pal-
lidus was also measured in autopsied patients with chronic liver disease, together with concomitant loss of dopamine D2
binding sites (Butterworth et al., 1995). Hyperintensity of T1-weighted MRI signals was also detected in the globus pallidus
of patients with acquired hepatocerebral degeneration secondary to impaired biliary excretion (Devenyi et al., 1994; Ikeda
et al,, 2000) or portosystemic shunts (Listik et al., 2012). Liver transplantation was found to normalise blood manganese
concentrations and MRI signals in these patients.

The Panel notes that patients with liver diseases, especially cholestatic liver diseases, may be particularly susceptible to
manganese-induced neurotoxicity due to impaired manganese elimination/excretion.

3.24.5 | Genetics

Mechanistic assays in cell culture and SLC30A10 or SLC39A14 knockout mice have provided evidence that SLC30A10 and
SLC39A14 are critical transporters that mediate manganese excretion and play a protective role against manganese toxicity
(Gurol et al., 2022) (Section 3.2.3).

Homozygous mutation in the SLC30A10 gene was reported in 2012 as the first hereditary disorder of manganese metab-
olism. It is characterised by hypermanganesemia, manganese accumulation in the liver and brain, dystonia, polycythemia
and chronic liver disease (Quadri et al., 2012). The majority of patients present with dystonia during early childhood.

A few years later, a homozygous mutation in the SLC39A14 gene was described, which is characterised by progressive
dystonia with variable parkinsonism and other neurological signs with onset during infancy or early childhood. It differs
from SLC30A10 deficiency by absence of liver involvement and polycythaemia (Tuschl et al., 2016).

*Median of MINTEL GDP data for the respective food categories.
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Both inherited Mn transporter defects are associated with MRI brain appearances with hyperintensity on T1-weighted
images of the globus pallidus and striatum, and the white matter of the cerebrum and cerebellum, midbrain, dorsal pons
and medulla (Anagianni & Tuschl, 2019) To date, a few dozens of patients have been reported (Anagianni & Tuschl, 2019).

Mutations in other transporter proteins such as DMT-1 and FPN have also been described that may affect manganese
homeostasis; however, blood manganese concentrations remain unaffected and there is no evidence of manganese depo-
sition (Anagianni & Tuschl, 2019).

The Panel notes that rare inherited disorders of manganese transport, involving SLC30A10 and SLC39A14 transporters,
have been identified in the last decade, which are characterised by increased manganese body burden and neurological
symptoms, with typical onset during early childhood.

3.24.6 | |Interaction with iron intake and status
Some evidence suggests that iron and manganese share common absorption and transport mechanisms, including trans-
porters such as DMT-1 and FPN (Bjerklund et al., 2020; Fitsanakis et al., 2010; Liu et al., 2020).

Early experiments in rats reported a decrease in iron absorption in animals exposed to high amounts of manganese
through the diet (33 g MnCl,/kg diet) or intestinal perfusion (10 mmol/L MnCl,); no effect was found when the content of
the diet was in the physiological range (up to 50 mg manganese/kg diet) or with perfusate concentration up to 5 mmol/L
(Diez-Ewald et al., 1968; Thomson et al., 1971). In a controlled human experiment using iron isotopes, Rossander-Hultén
et al. (1991) found that the addition of 7.5 mg or 15 mg manganese reduced the absorption of a dose of 3 mg nonheme
iron by up to 40% in human subjects, suggesting direct competitive inhibition of manganese on iron absorption. In other
human studies, manganese intake was not found to affect serum ferritin concentrations at a dietary intake of 20 mg/day
for 56 days (Finley et al., 2003) or a supplemental dose of 15 mg/day for 125 days in addition to the background diet (Davis
& Greger, 1992). Iron balance was not affected by manganese dietary intake of 20 mg/day for 56 days (Finley et al., 2003) or
9.5 mg manganese per day for 60days (data not shown) (Finley, 1999). In these studies, the participants were maintained
on their normal diet (Davis & Greger, 1992) or given a controlled diet supplying nutritionally adequate amounts of iron and
other nutrients (Finley et al., 2003).

Conversely, elevated intestinal absorption of manganese has been described in iron-depleted rats (Davis et al., 1992;
Davis et al., 1993; Diez-Ewald et al., 1968; Rodriguez-Matas et al., 1998). Upon intravenous injection of >*Mn, Diez-Ewald
et al. (1968) observed a faster rate of manganese excretion in iron-depleted rats compared to control rats or iron-loaded
rats, with similar manganese retention towards the end of the observation period between the iron-depleted and control
rats (~ 10% of the test dose after 65 days). Rodriguez-Matas et al. (1998) found that the greater absorption of manganese
was not reflected in the concentration of the mineral in the organs (i.e. liver, spleen, femur and sternum) after 40days
on an iron-free diet containing 50.3 mg manganese/kg. In humans, intestinal absorption of manganese was found to be
increased in individuals with iron deficiency (Mena et al., 1969; Sandstrom et al., 1986; Thomson et al., 1971). On the other
hand, upon administration of an oral dose of >*Mn to individuals with iron deficiency versus normal iron stores, Thomson
et al. (1971) found no difference in the average retention of manganese in the body. In a later study investigating the effect
of iron status on manganese absorption and retention using >*Mn, Finley (1999) found a higher manganese absorption
in women with low ferritin concentrations (< 15 ug/L) compared to those with high ferritin concentrations (>50 pg/L), i.e.
2.3% versus 1.03% respectively after 60 days of consuming a diet supplying 9.5 mg manganese per day. Mean manganese
half-life was 13.0 days versus 11.8 days and mean manganese retention was 0.07% versus 0.03% in the respective groups.

It has been suggested that iron status could also influence cellular uptake and toxicity of manganese, especially in brain
tissues (Roth & Garrick, 2003). In rats, (Erikson et al., 2002) have reported elevated manganese concentrations in the brain
of iron deficient animals. There is little information about the manganese content in the brain of iron deficient humans. Ina
preliminary clinical study with a small sample size, elevated blood manganese concentrations were found in iron deficient
patients compared to controls but measures of MRl signal intensity in the globus pallidus provided no evidence of elevated
manganese concentration (Kim et al., 2005).

Overall, the Panel notes that there is evidence for manganese-iron interactions with regards to their absorption and
distribution. Although manganese may compete with iron for intestinal absorption, data are lacking to characterise levels
of chronic manganese intake which might affect iron status. There is no indication of an adverse effect of manganese
intake on iron status at the manganese doses that were tested (i.e. 9.5-20 mg/day) in the limited studies available. The
Panel also notes that there are indications that individuals with low to deficient iron status might have higher manga-
nese absorption. Although it has been proposed that such individuals may accumulate greater amounts of manganese,
particularly in the brain, thereby being more susceptible to manganese toxicity, human data confirming this hypothesis
are currently lacking.

3.2.5 | Manganese toxicokinetics in animal models

As in humans, regulation of biliary excretion of manganese acts as a critical homeostatic mechanism in rodents (Davis
et al., 1993; Malecki et al., 1996; Miller et al., 1975; Papavasiliou et al., 1966) and other mammals (Klaassen, 1974), with
SLC30A10 and SLC39A14 transporters in liver playing central roles in excretory processes (Liu et al., 2021). Regulation at
the level of intestinal absorption is also likely, although the regulatory mechanisms remain to be elucidated (Liu et al., 2021;
Scheiber et al., 2019). Using oral administration of tracer dose (54MnCI2), Davis et al. (1993) reported a manganese true
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absorption® of ~8% in young, growing rats fed a 45 mg of manganese/kg diet (mean endogenous faecal losses: ~ 3% of
intake).

With habitual manganese intake levels, Kostial et al. (1978); Kostial et al. (1989) estimated whole body retentions of
40%-67% in suckling rats, compared to ~ 1%-6% in weaned juvenile rats and 0.2% in adult rats, 6 days after oral dosing of
54MnCI2. Immature homeostatic mechanisms in early life have been proposed to cause the higher retention rate observed
in pups compared to older animals (Miller et al., 1975; Nordberg et al., 1978). Later studies indicate that excretory mecha-
nisms are functional before the age of weaning (Ballatori et al., 1987; Kostial et al., 2005). Ballatori et al. (1987) observed a
rapid increase in the rate of manganese excretion concurring with the transition from a maternal milk, low in manganese,
to a diversified diet, with a two-three orders of magnitude higher content of manganese. Similar findings have been re-
ported in mice (Miller et al., 1975). Thus, the higher relative retention of manganese in neonatal rats may be explained by
the low content of this essential element in maternal milk relative to neonatal requirements (Ballatori et al., 1987).

In rats, Kostial et al. (2005) reported efficient placental and mammary transfer of manganese: after maternal exposure
to ~270 mg manganese/kg bw per day administered during gestation and/or 480 mg manganese/kg bw per day during
lactation, total body burdens in neonates and pups were found to be six to eight times higher than in controls, irrespective
of the period and duration of exposure. When dams were treated with 360 and 482 mg manganese/kg bw per day during
the gestation and lactation periods, manganese concentrations in the brain of rat pups were found to be elevated by about
2.5-fold compared to controls (Oshiro et al., 2022; Pappas et al., 1997). The concentration of manganese in rodents' milk is
low (~0.1-0.3 mg/L), even upon manganese overexposure of the dams (mean concentration 0.4 mg/L upon administration
of ~320 mg manganese/kg bw per day throughout lactation) (Rehnberg et al., 1982). It is notable that similar increases in
the brain of rat pups were found upon direct exposure via micropipette to substantially lower doses of manganese, e.g.
two to three-fold increases in whole brain concentrations upon exposure to 25 mg manganese/kg bw per day in the stud-
ies by (Kern et al., 2010) and (Beaudin et al., 2013; Beaudin, Strupp, Strawderman, & Smith, 2017).

Oral high dose exposure to manganese compounds leads to dose-related increases in manganese concentrations in
tissues such as the liver, kidneys, brain, testes and bones (Foster et al., 2018; O'Neal et al., 2014; Rehnberg et al., 1980). Upon
prolonged exposure starting at birth, several folds increases have been observed during the first weeks of life, while the
magnitude of increase became smaller later in life. For instance, Rehnberg et al. (1982) found that the manganese concen-
trations in, respectively, the brain and liver of rats, receiving about 320 mg manganese/kg bw per day (as Mn,0,) starting
at birth, were elevated by 5.4 and 8.1-fold compared to controls at post-natal day (PND) 24, while the differences were 1.7
and 1.4-fold at PND 60 and 1.2 and 1.4-fold at PND 224. Similarly, in rats exposed to 50 mg manganese/kg bw per day (as
MnCl,), brain concentrations were increased by three-fold in comparison to control animals at PND 24 and by 1.2-fold at
PND 66 and beyond (Beaudin et al., 2013; Beaudin, Strupp, Strawderman, & Smith, 2017; Conley et al., 2020). Upon admin-
istration of 50 mg manganese/kg bw per day (as MnCl,) to adult rats by oral gavage 5days per week for up to 10 weeks,
O'Neal et al. (2014) reported a substantial increase in manganese concentration in the CSF (up to 10-fold by 6-8 weeks) and
a gradual increase in bone manganese concentrations (up to 2-3.2-fold by 10 weeks); transient increases in manganese
concentrations of plasma and muscle (peak after 2 and 4 weeks) were also observed. At doses of 76 and 153 mg manga-
nese/kg bw per day administered to adult animals, Torrente et al. (2005) found ~two to three-fold higher concentrations in
the brain of treated rats versus controls after 19 weeks of exposure.

Whole body half-life between 68 and 146 days were estimated in adult mice, rats, dogs and monkeys, after intravenous
administration of >*Mn (Furchner et al., 1966). Upon cessation of manganese administration, initial manganese accumulation in
brain tended to return to baseline levels after some weeks (Beaudin et al., 2013; Beaudin, Strupp, Strawderman, & Smith, 2017;
Conley et al., 2020; Kern & Smith, 2011; Moreno et al., 2009; Reichel et al., 2006; Tran, Chowanadisai, Lonnerdal, et al., 2002; Vezér
et al,, 2007). Estimates of manganese half-life in different brain regions ranged between 51 and 74 days in rats after intravenous
injection (Takeda et al., 1994) and around 53 days in macaque monkeys after subcutaneous injection (Newland et al., 1987).

Foster et al. (2015) investigated the equivalence of gavage, dietary and drinking water exposure of manganese in rats.
Adult male rats were allocated to a control diet (10 mg manganese/kg diet), high manganese diet (200 mg/kg diet), manga-
nese supplemented drinking water and manganese gavage treatment groups for 61 days. In the latter two groups, the diet
was supplemented with manganese chloride (MnCl,) in drinking water or once-daily by gavage to provide a daily manga-
nese intake equivalent to that seen in the high manganese diet group. The average intake of manganese was estimated to
be 0.48, 11.1, 11.1 and 11.2 mg/kg bw per day, for the control, high manganese diet, drinking water and gavage exposure
groups, respectively. Samples of bile and blood, as well as striatum, olfactory bulb, frontal cortex, cerebellum, liver, spleen
and femur were analysed at the end of the study period (day 61). Liver and bile manganese concentrations were elevated in
all treatment groups relative to controls. Bile manganese concentrations were 34.5 ug/g in the high manganese diet group,
38.6 ug/gin the drinking water group and 67.4 ug/g in the gavage group, compared to 1.48 ug/g in the control group. There
were little differences between the diet and drinking water-exposed groups and the control group regarding the striatum,
frontal cortex and cerebellum manganese contents. In contrast, the highest increases in tissue manganese concentrations
were observed in the group exposed to manganese via gavage, with significantly increased manganese concentrations
found in the cerebellum, olfactory bulb, striatum, frontal cortex, femur and liver in the animals exposed through this route
compared to controls. These results suggest that the dose rate (i.e. bolus vs. gradual intake) may be an important factor in
the pharmacokinetics of orally ingested manganese.

see footnote 18.
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The Panel notes that data indicate that neonatal and pre-weaning animals have relatively higher retention of manga-
nese in targeted organs (e.g. brain) than adult animals. There are also data to indicate that, upon prolonged overexposure
to manganese, increases in manganese concentration in targeted organs will usually diminish over time. Also, the method
of administration impacts manganese accumulation in targeted organs, i.e. administration by gavage was found to result
in higher retention than administration via drinking water/feed.

3.2.6 | Biomarkers of intake

As a result of the efficient homeostatic control of manganese body content, the association between external and in-
ternal exposure indicators at the individual level is weak (Lucchini et al., 2022). Normal concentrations of manganese in
blood show a wide range (4-15 pg/L; Section 3.2.2), with relatively higher concentrations found among women versus
men (Section 3.2.4.1), during infancy versus later in life (Section 3.2.4.2), and among pregnant women versus non-pregnant
women (Section 3.2.4.3). Normal urine concentrations are below 1 pg manganese/L (Section 3.2.3). The relatively short
biological half-life of manganese in urine (<30 h) suggests that it may reflect rather recent exposure. Blood manganese
concentration has been shown to be a useful indicator of exposure on a group basis in the context of occupational ex-
posure (i.e. to distinguish exposed vs. unexposed workers); however, the individual measurements of blood manganese
do not correspond to individual external exposure levels (Lucchini et al., 2022; Zheng et al., 2011). Blood/serum/plasma
manganese levels become relevant in cases of very high exposure, in which case they may be useful to identify individuals
with excess manganese intake (Section 3.4.1.7). Faecal manganese levels are also potentially useful biomarkers of recent
dietary intake, since this is the main route of manganese excretion, but the limitation is that it is not possible to differentiate
between unabsorbed manganese and that arising from hepato-biliary excretion.

The manganese level in hair has been explored as a marker of exposure over a longer period, but it is affected by hair
characteristics as well as external exposure to manganese (via dust or water). In general, manganese levels in hair do not
correlate with manganese blood concentrations. Under controlled conditions, no correlation was found between internal
manganese exposure and hair manganese concentrations in rodents (Balachandran et al., 2021).

MnSOD activity has been proposed as a marker of manganese exposure. In a trial involving 47 healthy women, changes
in MnSOD activity in lymphocytes was measured over a 124-days period upon supplementation with 15 mg/day manga-
nese (with or without 60 mg/iron per day) or placebo (Davis & Greger, 1992). The average background intake of manganese
during the intervention was estimated to be 1400-1800 ug/day. Manganese supplementation resulted in an increase in
lymphocyte MnSOD activity (+0.7 U/mg protein and +0.45 U/mg protein in the group receiving manganese alone or man-
ganese in combination with iron, respectively). Serum manganese concentrations gradually increased in the manganese
supplemented groups over the intervention period, reaching +2.7 pg/L at the end of the intervention. The biological rele-
vance of these changes is unclear. MnSOD activity lacks specificity, as it can be affected by a variety of factors that induce
oxidative stress, and is more likely to be useful to assess manganese insufficient intakes (Greger, 1998).

MRl is a promising biomarker as the images associated with manganese toxicity are relatively specific. MRI has been
used to support a diagnosis of manganese neurotoxicity in welders, individuals receiving total parenteral nutrition and
patients with hepatobiliary insufficiency (Kim et al., 2007; Sadek et al., 2003; Santos et al., 2014; Stewart et al., 2005) and
has been useful in identifying manganese excess exposure as the potential cause of neurotoxicity in individual cases
(Section 3.4.1.7). Bilateral symmetrical T1 hyperintensities in the globus pallidus of the basal ganglia are typical of manga-
nese deposition. As manganese in the brain has a longer half-life than in blood, pallidal signal intensity is likely to reflect
the cumulative dose better than does blood manganese level (Lucchini et al., 2022). However, due to impracticality of its
use in large studies, there is a lack of data on the relationship of this marker and dietary exposure to manganese.

Other biomarkers such as manganese in saliva, deciduous teeth, nails or the Mn/Fe ratio in plasma or erythrocytes are
being explored, but they lack sufficient validation to date (Lucchini et al., 2022).

The Panel notes that several potential biomarkers of manganese exposure have been investigated, mostly in the con-
text of occupational and environmental exposures. As manganese is actively controlled by homeostatic mechanisms, the
associations between manganese concentrations in biological fluids and manganese exposure are typically weak at the
individual level. Blood manganese concentrations may however be useful in suspected cases of overexposure, as they are
found to be elevated in individuals exposed to excess manganese. Signal intensities in T1-weighted MRI, because of their
specificity, are a promising biomarker of manganese cumulative exposure. It has been mostly explored in the context of
occupational exposure and further research is needed to assess its utility in the context of dietary risk assessment.

3.3 | Intake assessment

This section provides harmonised intake estimates of manganese naturally present in foods (i.e., from the background
diet) across European countries. These estimates were calculated using the EFSA Comprehensive food consumption and
the EFSA food composition databases, following extensive data cleaning to exclude fortified foods (Section 2.3.2). Data
available to EFSA in such databases were insufficient to provide harmonised intake estimates of manganese from fortified
food and/or food supplements, thus data collected from national food consumption surveys (Section 2.2.1) are presented
instead.
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3.31 | Sources of dietary manganese.

Manganese is naturally present in a wide variety of plant-based products (Annex C). High concentrations (up to 5000
ng/100 g) are found in nuts, tea leaves, legumes, grains and some fruits such as pineapples, banana and berries, while
lower concentrations (<400 pg/100 g) are found in most fruits and vegetables. Milk products, meat (except offals), fish and
eggs have a relatively low content of manganese (< 100 pg/100 g). Whole grains contain more manganese than polished
grains as most of it is in the bran. A cup of tea (200 mL) may contain 300-1000 pg manganese (Hope et al., 2006). Other
herbal infusions, such as maté and hibiscus infusions, also contain substantial amounts of manganese (>500 pg/100 mL).

Manganese in water is predominantly present as soluble Mn?* species (Section 3.1). As per Directive (EU) 2020/2184,21
the parametric value for the manganese content of drinking water is 50 pg/L in the EU. In 2021, the WHO established a
provisional HBGV of 80 ug/L for drinking water (WHO, 2021).

Fortified foods. ~ Currently, in the EU, Mn carbonate, Mn chloride, Mn citrate, Mn gluconate, Mn glycerophosphate and Mn
sulfate are authorised for addition to foods®? and foods for specific groups? (Section 3.1). EU regulations set minimum and
maximum content of manganese in infant and follow-on formulae,?* and maximum content of manganese in processed
cereal-based foods and baby foods for infants and children.?

In the Mintel GNPD (from November 2017 to November 2022), a total of 1488 packaged food products available in 24
EU Member States and Norway were identified as containing added manganese in the ingredients list. Only 17% (n=249)
of the products had available data on content per serving. Among these, the Mintel categories with most products cap-
tured were ‘baby foods’, which include baby formulae and growing up milks (n=675, median=0.011 mg/100 g), baby
cereals (=9, median=1.17 mg/100 g) and baby yogurts or desserts (n=5, median=0.02 mg/100 g) and ‘nutritional drinks
and other beverages’ in powder form (n=120, median=0.7 mg/serving) and reconstituted form (n=52, median=0.5 mg/
serving). The highest manganese content declared in the label was found in eight meal replacement drinks in powder
form (3-3.6 mg/serving), and five soups in powder form (3 mg/serving), under the category ‘nutritional drinks and other
beverages'. In addition, 125 cereal or energy bars, mostly intended for use as meal replacements or weight control, were
retrieved from the database. From these, data on the content per serving was only available for 30 products (median=0.6
mg/serving).

Food supplements. Inthe EU, Mn carbonate, Mn chloride, Mn citrate, Mn gluconate, Mn glycerophosphate and Mn sulfate,
Mn ascorbate, Mn L-aspartate, Mn bisglycinate and Mn pidolate are authorised for use in food supplements? (Section 3.1).

A search in the Mintel GNPD (from November 2017 to November 2022) yielded a total of 693 products available in the
‘vitamins and dietary supplements’ category across 24 EU Member States and Norway. The median dose per serving” (as
recommended by the manufacturer) declared on labels was 1.7 mg. About 74% of supplements contained 0.5-2 mg man-
ganese per serving, and about 7% had doses >3 mg per serving, with a maximum of 8 mg per serving (Figure 1).

ZDirective (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (recast). OJ L 435,
23.12.2020, p. 1-62.

22Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins and minerals and of certain other
substances to foods. OJ L 404, 30.12.2006, p. 26-38.

ZRegulation (EU) No 609/2013 of the European Parliament and of the Council of 12 June 2013 on food intended for infants and young children, food for special medical
purposes and total diet replacement for weight control and repealing Council Directive 92/52/EEC, Commission Directives 96/8/EC, 1999/21/EC, 2006/125/EC and
2006/141/EC, Directive 2009/39/EC of the European Parliament and of the Council and Commission Regulations (EC) No 41/2009 and (EC) No 953/2009. OJ L 181, 29.6.2013,
p. 35-56.

**Commission Delegated Regulation (EU) 2016/127 of 25 September 2015 supplementing Regulation (EU) No 609/2013 of the European Parliament and of the Council as
regards the specific compositional and information requirements for infant formula and follow-on formula and as regards requirements on information relating to infant
and young child feeding.

ZCommission Directive 2006/125/EC of 5 December 2006 on processed cereal-based foods and baby foods for infants and young children, OJ L 339, 6.12.2006, p. 16.
®Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the Member States relating to food
supplements. OJ L 183, 12.7.2002, p. 51-57.

“The Mintel GNPD provides data on the content of supplements per serving which may not always reflect the daily dose recommended by the manufacturer.
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FIGURE 1 Distribution of manganese content in food supplements as displayed on labels in 24 EU Member States and Norway (mg/serving).
Source: Mintel GNPD. Search for manganese-containing supplements available in the EU market in the last 5 years (from November 2017 to November
2022). A total of 693 products available in 24 EU Member States and Norway were identified with complete data on mg/serving.

3.3.2 | EFSA'sintake assessment of manganese background intake

Background manganese intakes from natural food sources in European populations were calculated based on the data
from the latest version of the EFSA Comprehensive Database and the EFSA FCDB (Annex C).

3.3.2.1 | Estimated intakes across countries and age groups
The intake estimates are presented below by age group, sex and country of origin (Figures 2, 3 and 4). A summary overview,
providing the ranges of means and 95th percentiles (P95) across EU surveys is given in Table 4.
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Mean, median, 5th and 95th percentiles of background manganese intakes in infants (=4 to <12 months), toddlers (= 1 year to

<3years), young children (= 3years to <7 years), older children (= 7 years to < 10 years), intakes in young adolescents (= 10 to < 14 years) and older
adolescents (= 14 to < 18years), by sex and country. AT, Austria; BE, Belgium; BG, Bulgaria; CY, Cyprus; CZ, Czech Republic, DE, Germany; DK, Denmark;
EE, Estonia; EL, Greece; ES, Spain; Fl, Finland; FR, France; HU, Hungary; IT, Italy; LV, Latvia; NL, The Netherlands; PT, Portugal; RO, Romania; SE, Sweden;
Sl, Slovenia. Estimates for females are shown in orange and for males in blue. Squares correspond to medians and stars to means. Lines represent
the range between the 5th and 95th percentiles. Estimated intakes from 5th and 95th percentiles are not presented when sample size is below 60

participants.
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FIGURE 3 Mean, median, 5th and 95th percentiles of background manganese intakes in adults (= 18 years to <65 years old) and older adults
(=65years), by sex and country. AT, Austria; BE, Belgium; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark; EE, Estonia; EL, Greece; ES, Spain;
Fl, Finland; FR, France; HR, Croatia; HU, Hungary; IE, Ireland; IT, Italy; LV, Latvia; NL, The Netherlands; PT, Portugal; RO, Romania; SE, Sweden; SI, Slovenia.
Estimates for females are shown in orange and for males in blue. Squares correspond to medians and stars to means. Lines represent the range
between the 5th and 95th percentiles. Estimated intakes from 5th and 95th percentiles are not presented when sample size is below 60 participants.
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FIGURE 4 Mean, median, 5th and 95th percentiles of manganese intakes in pregnant women and lactating women by country. AT, Austria; CY,
Cyprus; EE, Estonia; EL, Greece; ES, Spain; LV, Latvia; PT, Portugal; RO, Romania. Squares correspond to medians and stars to means. Lines represent
the range between the 5th and 95th percentiles. Estimated intakes from 5th and 95th percentiles are not presented when sample size is below 60
participants.
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TABLE 4 Background manganese intake from food sources (supplements and fortified foods excluded) across European dietary surveys, by
population group (mg/day).

Males Females

Mean P95? Mean P95?
Population group, age range N of surveys Min.? Max.” Min.P Max.” Min.? Max.” Min.P Max.”
Infants, >4 to <12 mo 12 0.59 1.51 1.26 2.92 0.60 1.42 141 2.78
Toddlers,=1to <3y 15 1.47 2.68 247 4.52 1.28 241 191 4.66
Young children,>3to <7y 20 1.95 413 3.14 5.98 1.90 3.62 3.17 5.68
Older children, 27to <10y 15 2.52 4.06 4.65 6.88 2.26 3.62 3.30 6.15
Young adolescents, 210 to <14y 20 2.49 418 4.71 7.52 2.25 3.79 4.22 6.40
Older adolescents, =14 to <18y 19 3.04 499 5.01 7.87 2.37 3.81 4,51 7.20
Adults, >18to <65y 22 2.60 5.25 4.81 9.87 2.20 4.69 3.94 8.48
Older adults, 265y 23 2.41 5.57 4.06 9.28 2.20 5.25 413 8.93
Pregnant women 6 - - - - 2.36 5.27 4.31 8.27
Lactating women 2 - - - - 2.83 4.89 4.92 8.97
Vegetarians® 1 6.07 6.07 11.30 11.30 5.05 5.05 9.22 9.22

Abbreviations: mo, months; n, number; P, percentile; y, years.

*The 95th percentile estimates obtained from dietary surveys and population groups with fewer than 60 subjects may not be statistically robust (EFSA, 2011) and are not
considered in this table.

PMinimum and maximum mean and 95th percentile estimates across European surveys, for each population group.

‘Age range (12-70years).

EFSA's manganese intake estimates are generally in line with national estimates which reported on the intake from the
background diet (i.e. excluding food supplements and fortified foods). Although some national estimates included both
natural sources of manganese and fortified foods, the latter most probably have a negligible contribution to the total
dietary intake of manganese (Section 3.3.2). Differences between EFSA's and national intake estimates may be due to the
use of specific country FCDBs in most national intake assessments (as opposed to the pooled average manganese content
across countries used in the EFSA estimates), the use of different methodologies to estimate habitual intakes (e.g. statistical
models), as well as the use of slightly different age categories. It should be noted that data from only a few countries (i.e. 5
or less depending on the population group considered) were available for the same or similar age range to compare with
the EFSA assessment.

3.3.2.2 | Mainfood contributors
The main food groups contributing to background manganese intake were grains and grain-based products (mainly bread
and similar products and breakfast cereals), tea beverages and fruits (with highest contribution from banana) in all age
groups, except for infants and toddlers, where instead of the tea beverages foods for the young populations (mostly cereal-
based products) were important contributors (Annex C).

In the one dietary survey on vegetarians from Romania, grain and grain-based products remain the main contributor to
total manganese intake, followed by legumes (especially pulses) (Annex C).

3.3.2.3 | Sources of uncertainties
Sources of uncertainty and their potential impact on the intake estimates, where possible, are identified and further dis-
cussed in Annex B.

For this opinion, food composition data from nine European countries were pooled considering a common EU food
market. Although this approach may mask country-specific differences in the manganese concentration of different foods
it allowed for a larger number of composition values to be considered for each food category, leading to a more robust da-
tabase. However, most of the data (40%) was coming from one country (Germany), which adds some uncertainty regarding
the representativeness of the manganese food composition data for the EU market.

As the scope of intake assessment was to consider natural food sources of manganese only, a data cleaning strategy
was applied to exclude fortified foods from the composition database. Since fortification was not always clearly reported,
assumptions had to be made to exclude suspected fortified foods. However, few foods appeared to be fortified with man-
ganese on the EU market between 2017 and 2022 (Section 3.3.1), thus the impact of this uncertainty is expected to be
negligible.

Tea beverages are one of the main contributors to the average manganese dietary intakes. The manganese content
of tea infusions can vary substantially due to parameters such as the variability of manganese content in tea leaves (e.g.
due to the use of fertilisers) or the manganese content of the water, as well as due to individual habits such as the dura-
tion of infusion or the quantity of tea leaves soaked in the drink (Basgel & Erdemoglu, 2006; Dtugaszek & Kaszczuk, 2020;
Samolinska et al., 2017). An average concentration of 284 ug/100 g of tea infusion was used in this assessment, which could
lead to over- or underestimation of individual estimates, depending on the conditions described above. Also, there is high
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variability in manganese concentrations of other non-tea herbal infusions (e.g. values from 5 ug/100 g in lime blossoms
infusion to 908 ug/100 g in hibiscus infusion have been reported). A literature search was conducted to assign composition
values that were representative of the specific infusion, to the extent possible (Annex C). However, assumptions had to be
made regarding consumption occasions of unspecified herbal and other non-tea infusions, or for those plants for which
insufficient data were available in the literature, which could lead to over- or underestimation of the actual contribution of
those beverages. For instance, an average concentration of 140 pug/100 g was assigned to fruit infusions, which takes into
account that hibiscus is a common ingredient of these beverages.

For certain foods for which the amount consumed was reported in the national food consumption data in dry form
before reconstitution (e.g. infant and follow-on formula powder, dry porridges), the contribution of the water added for the
preparation of the product might not always be considered, however in most of the cases water is reported as a separate
record. It is acknowledged that the relative contribution of water to the overall content of these foods could be significant
(e.g. the mineral water used for the preparation of infant formula could contribute about one third of the total manganese
content?®). However, the overall impact on the intakes estimates is expected to be marginal, given that these food catego-
ries are small contributors to overall manganese intake of infants (1%-6%, Annex C), due to the limited numbers of exclu-
sively formula-fed infants in the surveys.

3.3.3 | Data on fortified foods and food supplements

Data on manganese intake from fortified foods and food supplements in nationally representative consumption surveys
and TDS were collected. Survey characteristics, mean and P95 intake estimates are presented in Annex D. Key information
is summarised in the following paragraphs.

3.3.31 | Intake from foods and fortified foods
There is no mandatory manganese fortification policy among EU countries and voluntary fortification practices have not
been reported by European authorities contacted {EC, unpublished #582}.

Intake estimates from national surveys. Manganese intake has been estimated in seven national surveys conducted in seven
countries: Austria (Osterreichischer Ernahrungsbericht 2017), Denmark (DANSDA 2011-2013), France (INCA 3, 2014-2015),
Germany (NVS I, 2005-2007), Hungary (OHAT/NTP, 2019), Lithuania (Food consumption and nutrient intake study in Lithuania,
2019-2020) and Slovenia (National representative study on the dietary habits of Slovenian adolescents' 2003-2005). None of the
survey reports distinguished between manganese intake from natural sources and intake resulting from manganese added to
foods (i.e. fortified foods). The survey characteristics, intake estimates and bibliographic references are provided in Annex D.

The highest P95 intakes (P95 reported only in three countries) in males were found in the Danish national survey (all
children 5.8 mg/day; adolescents 7.5 mg/day; adults 8.3 mg/day; elderly 8.3 mg/day). Estimated intakes for females were
generally lower than for males in all surveys and age groups.

Intake estimates from total diet studies. Data from the Czech (Statni zdravotni Ustav, 2021), French (ANSES, 2011), Italian (F.
Cubadda, unpublished data) and German Total Diet Studies (TDS) (Sachse et al., 2019) were collected. None of the TDS used
in this assessment distinguished between manganese intake from natural sources and intake resulting from manganese
added to foods (i.e. fortified foods).

The highest estimated intakes of manganese for all age groups in the two countries where the TDS have been carried
out are reported in the Italian TDS. At the P95, intake is up to 2.8 mg/day in toddlers, up to 3.9 mg/day in all children, up to
5.1 mg/day in all adolescents and all adults. Higher estimated intakes are found in the male population across all the age
groups and countries evaluated.

The German TDS provided a P95 estimate for the general population (14 to 80years, not including vegetarians or sup-
plement users) of 83.2 ug per kg of body weight per day (upper bound approach®). Assuming a body weight of 70 kg as
basis for this population (EFSA NDA Panel, 2022), these values result in a calculated average intake of 5.8 mg/day.

3.3.3.2 | Intake from food supplements
There are no nutritional guidelines or recommendations at national level in the EU advising supplementation with
manganese.

Information on manganese supplementation was available from six surveys conducted in four countries (Denmark,
Germany, Ireland and Poland). Data on manganese supplement use and contribution of supplements to the total manga-
nese intake is described below. Survey characteristics and intake estimates are presented in Annex D.

The mean percent contribution of manganese-containing supplements to total manganese intake in supplement users
ranged from 1.9% to 10.6% across all age ranges. An exception was Denmark, where the contribution of supplements
ranged between 16% and 26% of total manganese intake, with higher contributions in females than in males (all ages).

%Considering an average manganese content of 46 1g/100 g in the powder and an average concentration of in 2.5 pg/100 mL in mineral water and a dilution factor of 8.
%At the upper bound approach non-detect results were replaced by the limit of quantification.
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Absolute intakes of manganese from food supplements in adults were available only from the national surveys in Germany
and Poland and mean intakes ranged between 1.3 and 2.2 mg/day (Table 5).

Absolute manganese intakes from all sources among supplement users were reported in two surveys in two countries
(Germany and the Netherlands) and are provided in Annex D.

TABLE 5 Percent manganese supplement users in EU surveys and manganese intake from food supplements among users.

% Mn supplement % Contribution of
Dietary users in total survey  Mn intake from supplements to total
Country Survey name method (N of sample/among supplements Mn intake in users,
(N subjects) Reference days) Sex Age range users P95 (mg/day) mean or median
Denmark NR m+f  4-10y 60°/NA NR 22°
DANSDA 2011-2013 m 117y 47%/NA 20°
(n=3936) f 117y 43°/NA 26°
(Hindborg, 2015, m 18-50y 42°/NA 16°
unpublished) f 18-50y 49°/NA 20°

m 51-75y 37°/NA 20°

f 51-75y 54%/NA 24P
Ireland Weighted food m+f  1-4y 3.0/14.0 3.8 5.3¢
NPNS 2011-2012 records (4-d)
(n=500)
(Kehoe & Walton, 2022)
Ireland Weighted food m+f  5-12y 3.9/17.9 0.5 1.9°
NCFS 112017-2018 records (4-d)
(n=600)
(Kehoe & Walton, 2022)
Ireland Weighted food m+f 13-18y 4.5/31.9 2.0 8.4¢
NTFS 11 2019-2020 records (4-d)
(n=428)
(Kehoe & Walton, 2022)
Germany 24-hrecall (2d) m 15-80y 3.0/NR 2.0 10.5¢
NVS 112005-2007 f 4.0/NR 2.0 10.6°
(h=13,753)
(Heuer et al., 2012)
Poland 24-h recall (2 m 18-65+y NR Mean=+SD -
National Dietary Survey d)+FPQ f NR 2.2+09

2019-2020 (n=1831) 1.3+£0.6

(Stos et al., 2021)

Abbreviations: DANSDA, The Danish National Survey of Diet and Physical Activity; d, days; FPQ, food propensity questionnaire; h, hour; N, number; NA, not applicable;
NCFS 11, National Children's Food Survey II; NPNS, National Pre-School Nutrition Survey; NTFS II, National Teen's Food Consumption Survey II; NVS I, Nationale
Verzehrsstudie II; NR, not reported in the publication; y, years.

%% users of multivitamin/mineral supplements. By default, multivitamin/mineral supplements were considered to contain manganese based on Danish households
purchases data.

PMedian %.
“Mean %.

3.34 | Data on specific population groups

3.34.1 | Vegetarians and vegans
Plant-based foods are the main contributors to manganese intake (Section 3.3.2.2). Available evidence suggests that veg-
etarians have 1.5 to 2.4-fold higher intakes of manganese compared with those following omnivorous diets (Donovan &
Gibson, 1996; Haddad et al., 1999; Hunt et al., 1998). A study in Canada compared nutrient intakes of female adolescents
following omnivorous, semi-vegetarians (SV) and lacto-ovo-vegetarian (LOV) diets, using 3-day weighed food records. The
authors reported that LOV had higher mean intakes of manganese (4.1+1.8 mg/day) than SV (3.2+ 1.9 mg/day) and the
omnivorous groups (2.8 + 1.2 mg/day) (Donovan & Gibson, 1996). Another study followed 21 women (mean age 33 years;
range: 20-42 years) consuming controlled LOV and non-vegetarian diets during a period of 8 weeks. The mineral content
of the diets was analysed, and the LOV diet was reported to provide more than twice the amount of manganese, 6 mg/day
compared to 2.5 mg/day for the omnivorous diet (Hunt et al., 1998). Finally, a study in American adults, aged 20 to 60years
old, assessed dietary intakes using 4-day dietary records of vegans (i.e. individuals excluding meat, fish, poultry, dairy prod-
ucts and eggs from their diets) and ‘non-vegetarians’ (i.e. omnivores). Estimated intakes from foods only in women were
4.1+2.5 mg/day in the vegan group compared with 2.3+ 1.3 mg/day in the non-vegetarian group. In men intakes were
5.6+ 2.0 mg/day and 2.8 + 1.6 mg/day for the vegan and non-vegetarian groups, respectively (Haddad et al., 1999).

In line with these findings, slightly higher intakes were also reported among vegetarians (14-80years old) in the German
TDS performed in 2014-2015 (Sachse et al., 2019). Assuming a body weight of 70 kg, and using the upper bound approach,*

*Non-detects were replaced by the corresponding Limit of Quantification.
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median intake estimates in vegetarians were 3.3 mg/day (P95 =7.5 mg/day), compared to 2.9 mg/day (P95 =5.8 mg/day) in
non-vegetarians. Results for vegetarians stratified by sex are presented in Table 6.

TABLE 6 Manganese intake among vegetarians in the German TDS (Sachse et al., 2019).

Manganese intake (mg/day)

Males Females

Median P95 Median P95
Vegetarians (14-80y) - lower bound?® 3.5 9.9 29 6.3
Vegetarians (14-80y) - upper bound® 3.8 10.3 3.3 6.6

Abbreviations: TDS, total diet study; y, years.
“Lower bound: Non-detects were replaced by zero.
bUpper bound: Non-detects were replaced by the corresponding Limit of Quantification.

3.34.2 | Teadrinkers

Tea and other herbal infusions, such as maté and hibiscus infusions, contain substantial amounts of manganese
(Section 3.3.1). Thus, high consumers of these beverages may have high manganese intake. Hope et al. (2006) compared
the total dietary manganese intake between 24 black tea drinkers (consuming >1 L tea/day; mean age 45.6+ 12.0years)
and 28 non-tea drinkers (mean age 38.5+13.2years), using a 111-food item FFQ. Manganese concentration in black tea
infusions was estimated by the authors to be 0.51 mg Mn/100 mL. Additionally, a value of 0.14 mg/100 g from the UK food
composition database was used in a parallel analysis. Mean manganese intakes were significantly greater in tea drinkers
(5.5 mg/day [range 2-12 mg/day] or 10 mg/day [range 5-20 mg/day], according to the value used for Mn levels), than in
non-tea drinkers (3.2 mg/day [range 0.5-6.5 mg/day]).

3.3.5 | Overall conclusions on intake data

The Panel notes that the P95 estimated background intake of manganese from natural food sources (i.e. without forti-
fied foods and food supplements) is up to 2.92 mg/day in infants (4 to <12 months), up to 4.66 mg/day in toddlers (1 to
<3years), up to 5.98 mg/day in young children (3 to <7 years), up to 6.88 mg/day in older children (7 to < 10years), up to
7.52 mg/day in young adolescents (10 to < 14 years), up to 7.87 mg/day in older adolescents (14 to < 18 years), up to 9.87 mg/
day in adults (= 18years), up to 8.27 mg/day in pregnant women and up to 8.97 mg/day in lactating women across surveys
included in EFSA's intake assessment (Table 4) (Annex C). Intakes are slightly lower in females, mainly due to smaller quanti-
ties of food consumed per day.

The Panel notes that the main contributors to manganese intake from the background diet are grain-based products,
tea and other manganese-rich beverages (e.g. hibiscus, maté infusions), and that specific subgroups of the population,
such as high consumers of tea and other manganese-rich beverages, or vegans and vegetarians, may have a habitual intake
of manganese in the higher range of the intake distribution of the general population.

In the EU market, manganese may be added to foods voluntarily. The Mintel GNPD database suggests that most foods
fortified with manganese found in the EU market are infant and follow-on formulae and meal replacement drinks, with
very similar within-group content of manganese.

Manganese is also used in food supplements. A search in the Mintel GNDP database indicates some variability in the
dose per serving across food supplements, with most values between 1.1 and 2 mg of manganese per serving (see Figure 1),
and about 7% of products with values >3 mg (maximum 8 mg) per serving.

The Panel notes that estimates of the contribution of fortified foods and food supplements to manganese intake in EU
populations are scarce.

3.4 | Hazard identification
341 | Human data

In the occupational setting (e.g. mining, welding), inhalation of air contaminated with manganese has been found to
cause neurotoxic effects. Manganese neurotoxicity has been described as manganism: a neurological disorder that shares
some similarities with idiopathic Parkinson's disease, including neuropsychological abnormalities and motor symptoms
such as impaired motor skills, tremors, facial muscle spasms and difficulty walking (Balachandran et al., 2020; Guilarte &
Gonzales, 2015).

The following sections review the available evidence from the pertinent studies retrieved through the systematic liter-
ature search on the relationship between the dietary intake of manganese and neurological effects in humans. Studies are
grouped by lines of evidence, according to the type of endpoints and populations investigated.
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34.1.1 | Cognitive impairment in children
Regarding impairment of cognitive function in children, studies addressing functional measures of cognitive function and
IQ scores are included in the standalone main LoE. Studies addressing academic achievement are included in a comple-
mentary LoE.

An overview of the eligible studies retrieved is provided in Table 7.

TABLE 7 Outcome of the systematic search on dietary exposure to manganese and cognitive impairment in children.

LoE Endpoints RCTs PCs/NCCs cs
LoE1. Standalone (main) Functional measures of cognitive function and 1Q scores 0 2 8
LoE2. Complementary Measures of academic achievement 0 0 1

Abbreviations: CS, cross-sectional; LoE, line of evidence; NCC, nested-case control; PC, prospective cohort; RCT, randomised controlled trial.

LoET (standalone): functional measures of cognitive function and IQ scores

Preliminary UA

Ten publications from five independent studies in children reported on the relationship between manganese exposure
through drinking water and cognitive function. Two were prospective analyses (Dion et al., 2018; Rahman et al., 2017) and
eight were cross-sectional analyses (Wasserman et al., 2004; Wasserman et al., 2006; Wasserman et al., 2011). All studies used
the manganese concentration in drinking water as a measure of exposure. Three papers also estimated manganese intake
from drinking water (Bouchard et al., 2011; Bouchard et al., 2018) and one paper further investigated manganese intake
from food sources (Bouchard et al., 2011). The study populations were in Canada, Brazil and Bangladesh. Eight publications
reported associations with intelligence quotient (IQ) scores (Bouchard et al., 2011; Bouchard et al., 2018; Dion et al., 2018;
Nascimento et al., 2015; Rahman et al., 2017;Wasserman et al., 2004; Wasserman et al., 2006; Wasserman et al., 2011), and two
publications associations with various cognitive domains using specific tests (Nascimento et al., 2016; Oulhote et al., 2014).
The evidence table is provided in Appendix C.

The studies are described below in increasing order of manganese concentrations in water observed for the study
populations.

Studies in Brazil. In cross-sectional analyses in Brazil among children (6-12years of age) from a rural area and an urban
area, the association between manganese concentrations in tap water and measures of cognitive function was investigated
using the Raven's Coloured Progressive Matrices (RCPM) test (n=59) (Nascimento et al., 2015) and the Brazilian Child Brief
Neuropsychological Assessment Battery (NEUPSILIN-Inf) (n=63) (Nascimento et al, 2016). Mean (range) manganese
concentrations in water, sampled in each household, were 0.020 (0.00003-0.280) mg/L in the rural area and 0.001 (0.001-
0.002) mg/L in the urban area (Nascimento et al., 2015). Higher concentrations of iron were also found in the water samples
from the rural areas versus urban areas. A negative correlation was reported between the manganese concentration in
water and RCPM scores (r=— 0.317; p=0.014) (Nascimento et al., 2015). The result was judged at high risk of bias (tier 3),
due to the lack of information regarding the validation of the RCPM test for Brazilian children and the lack of adjustment
for potential confounders (Appendix B.1). After adjustment for confounders, Nascimento et al. (2016) reported that higher
manganese concentration in water was associated with lower language scores (f=-0.390, p=0.002), written language
score (f=-0.361, p=0.007) and performance on a go/no go task (a test of executive function) (f#=-0.547, p=0.001).
Associations with other endpoints (i.e. visual attention, visual perception, working memory, phonological awareness) were
not observed. The study was judged at moderate risk of bias (tier 2) (Appendix B.1).

Studiesin Canada. Two cross-sectional analysesinvolved a sample of children (6-13 years of age) in Canada. The associations
between manganese intake through drinking water and 1Q scores and measures of cognitive functions were investigated
(Bouchard et al., 2011). Water consumption from different sources (i.e. bottled, tap, tap filtered with a pitcher and tap with
an attached filter) was estimated. The median (5th-95th percentiles) tap water manganese concentration, measured in
each household, was 0.031 (0.0005-0.255) mg/L (arithmetic mean: 0.098 mg/L; geometric mean: 0.020 mg/L). The median
(5th—95th percentiles) estimated manganese intake from water consumption was 0.008 (0-0.286) mg/kg bw per month.

Bouchard et al. (2011) reported findings on IQ scores, measured by the Wechsler Abbreviated Scale Of Intelligence (WASI)
(n=362). After adjustment for potential confounders, 10-fold increases in manganese concentration in water and estimated
manganese intake from water consumption were associated with a decrease of —2.4 full-scale 1Q points (95% Cl -3.9, —0.9)
and—1.2 full-scale 1Q points (95% Cl -2.3, —0.1), respectively. A decrease in mean full-scale IQ scores was observed across
quintiles of manganese concentration in water (—6.2 points lower IQ score in the 5th quintile [median 0.216 mg/L] vs. the 1st
quintile [median 0.001 mg/L]), while no consistent pattern was observed across quintiles of estimated manganese intake from
water consumption. In sex-stratified analyses, a higher decrease was found for girls (3=-3.2 [95% ClI 5.0, —1.5]) than for boys
(B=-2.3[95% ClI -4.8, 0.2]). Stronger associations were found with performance 1Q than with verbal 1Q. The dietary intake of
manganese from foods was also estimated using an FFQ. Median (5th-95th percentiles) of estimated manganese intakes from
dietary sources was 2.335 (0.840-13.159) mg/kg bw per month. The authors reported that estimated dietary manganese intake
was not associated with IQ scores (data not shown). The study was judged at low risk of bias (tier 1) (Appendix B.1).
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Oulhote et al. (2014) used the California Verbal Learning test and the digit span test to construct a memory score and the
Conners' continuous performance test to construct an attention score (n=375). After adjustment for potential confound-
ers, 10-fold increases in estimated manganese intake from water consumption and water manganese concentration were
associated with a decrease of —0.4 (95% Cl: —0.9, 0.1) and — 1 (95% Cl: —1.6, —0.4) points on the memory score, respectively.
Association estimates were similar for boys and girls (data not shown). Using generalised additive models, evidence for de-
parture from linearity was found for the relationships with estimated manganese intake from water and manganese con-
centration in water. For the latter a steeper decrease in memory score was reported at levels > 100 ug/L. No association was
found between any of the exposure variables and the measures of attention. Associations with dietary intake estimates
were not reported. The study was judged at low risk of bias (tier 1) (Appendix B.1).

In a prospective analysis of the same population, new samples of home tap water were collected during a follow-up
examination after an average of 4.4 years and |Q scores were re-evaluated (n=287) (Dion et al., 2018). Associations between
IQ scores and manganese concentration in water at baseline and a time-averaged manganese concentration (i.e. based on
the manganese concentrations measured at baseline and follow-up, accounting for changes to water supply in-between
analyses), were investigated. At follow-up examination, manganese concentration in tap water ranged from 0.0002 to 0.961
mg/L (arithmetic mean, 0.058 pg/L; geometric mean, 0.015 pg/L). No association was found between time-averaged man-
ganese concentration and 1Q scores when both sexes were analysed together. Stratified analyses by sex were conducted.
After adjustment for potential confounders, a 10-fold increase in time-averaged manganese concentration was associated
with a decrease in full IQ score (2.5 [95% Cl 4.5, —0.7]) in girls. The results were similar when baseline manganese con-
centration in water was used. In boys, no associations with time-averaged manganese concentration were found; a 10-fold
increase in baseline manganese concentration in water was associated with an increase in IQ scores. Lower performance 1Q
scores were observed in girls across quintiles of time-averaged manganese concentration, while the pattern was opposite
among boys. Verbal 1Q scores were not associated with manganese exposure in either sex. The study was judged at low
risk of bias (tier 1) (Appendix B.1).

In a separate cross-sectional study in Canada, Bouchard et al. (2018) investigated the association between exposure to
manganese intake from drinking water and |Q scores in a population of 259 children consuming well water (6-14 years of
age). Manganese intake from water consumption was estimated based on manganese concentrations in water measured
in each household and in school's water fountains. Children's IQ was measured using the Wechsler Intelligence Scale For
Children, 4th Edition (WISC-IV). The median manganese concentration in home water was 0.005 mg/L; and 4.3% of samples
contained >0.400 mg/L (arithmetic mean: 0.062 mg/L; geometric mean: 0.006 mg/L). Manganese concentrations in water
from school's water fountains were below 0.060 mg/L in all schools except one in which it was 0.532 mg/L. The estimated
manganese intakes were not reported. No associations between estimates of manganese intake from water consumption
or water manganese concentration and 1Q scores were found when both sexes were analysed together. In sex-stratified
analyses, no consistent pattern was found when analysing the association between manganese intake from water or man-
ganese concentration in water and 1Q scores. Regarding full IQ scores, the associations were —1.29 (95% Cl -3.21, 0.63) with
estimated manganese intake and 0.09 (95% Cl -2.00, 2.18) with manganese concentration in water in girls and —6.75 (95%
Cl-17.22,3.72) and 1.10 (95% Cl -0.97, 3.16) for the respective measures of exposure in boys. The study was judged at low
risk of bias (tier 1) (Appendix B.1).

Studies in Bangladesh. In a study by Rahman et al. (2017), 1607 children born within the Maternal and Infant Nutrition
Interventions in Matlab (MINIMat) trial in Bangladesh were invited for a follow-up examination at 10years of age, during
which children's IQ was measured with tests from the WISC-IV (n = 1265 included in the analysis). Drinking water was sampled
during pregnancy and at 5 and 10years of age from the wells used by each household. The median (range) manganese
concentrations in water were 0.204 mg/L (0.0013-6.550 mg/L) during pregnancy, 0.228 mg/L (0.0001-6.550 mg/L) at
5years and 0.339 mg/L (0.0001-8.680 mg/L) at 10years. Positive associations were found between water manganese
concentrations measured at the various timepoints and IQ score and its sub-dimensions, which were largely attenuated
after adjustment for potential confounders). In sex-specific analysis among children with low arsenic content in water (< 20
pg/L), the adjusted associations of water manganese concentrations, measured during pregnancy or at 5 or 10years of
age, with the different cognitive measures, were generally inverse among boys. For girls, a linear spline regression analysis
with prenatal manganese concentration in water indicated that, below 3000 pg/L, increasing manganese concentration
in water was associated with increasing cognitive scores. Above 3000 pg/L (n=27), these associations tended to be in the
opposite direction (e.g. —5.4 [95% Cl -13, 2.0] for full-scale 1Q). Considering manganese concentration in water measured at
5 and 10years of age, no evidence for non-linearity was found and the associations with cognitive measures tended to be
positive. The study was judged at low risk of bias (tier 1) (Appendix B.1).

In cross-sectional analyses, Wasserman et al. investigated associations between manganese concentrations in water
and measures of cognition among several samples of offspring of participants of the Health Effects of Arsenic Longitudinal
Study (HEALS) in Bangladesh (Wasserman et al., 2004; Wasserman et al., 2006; Wasserman et al., 2011). Cognitive function
was assessed using a sub-set of tests from the WISC, 3rd Edition (WISC-Ill), adapted to Bangladeshi children. Water arsenic
and manganese concentrations of tube wells at each child's home were measured.

In a sample of 201 children (10-year old), no association was found between manganese concentration in water and IQ
scores after adjustment for water arsenic concentration (Wasserman et al., 2004). The mean (SD) manganese concentration
in water was 1.386 (0.927) mg/L. The study was judged at low risk of bias (tier 1) (Appendix B.1).
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In a later analysis of the same sample, restricted to a subgroup of 142 children consuming drinking water with arsenic
concentrations below 0.010 mg/L, a negative association between manganese concentration in water and full 1Q score
[-4.35, p<0.001; —3.76 for performance IQ (p=0.001) and —0.63 for verbal IQ (p=0.05)] was found (Wasserman et al., 2006).
Mean (range) manganese concentration in water was 793 (4-3908) ug/L. Adjustment for water arsenic concentration did
not affect the associations. Differences between children in the top category of manganese concentration in water
(>1 mg/L, n=28) versus bottom category (<0.2 mg/L, n=38) were —21.28 for the full IQ score (p <0.0001; —18.43 for per-
formance 1Q [p=0.0001] and-3.19 for verbal IQ [p=0.02]). The study was judged at low risk of bias (tier 1) (Appendix B.1).

In a subsequent analysis, different sample of 299 children (8-11years old) was recruited and stratified according to
water concentrations of arsenic (above and below 0.010 mg/L) and manganese (above and below 0.5 mg/L). The authors
reported that neither manganese nor arsenic concentrations in water were found to be associated with 1Q scores (data
not shown) (Wasserman et al., 2011). Mean (SD) manganese concentration in water was 0.725 (0.730) mg/L. The study was
judged at low risk of bias (tier 1) (Appendix B.1).

Conclusions. QOverall, the Panel notes that evidence on an association between manganese exposure through drinking
water (mostly assessed as manganese water concentration) and measures of cognitive functions is inconsistent.

The cross-sectional studies among Brazilian children reported inconsistent associations between water manganese
concentration and various measures of cognitive function (Nascimento et al., 2015). The Panel notes the relatively low
water manganese concentration compared to the other studies. Dietary intake of manganese from food sources was not
estimated in any of these studies.

In the studies conducted in a population of children in Quebec, an increase in manganese intake from water consump-
tion and in water manganese concentration were associated with a decrease in IQ scores and measures of memory in
cross-sectional analyses, with stronger associations observed in girls than in boys (Bouchard et al., 2011). In a prospective
analysis of the same population (Dion et al., 2018), no association with 1Q score was found when both sexes were analysed
together; an increase in water manganese concentration was associated with a decrease in IQ score in girls, while the op-
posite pattern was observed in boys. In another population of children in Canada (Bouchard et al., 2018), no evidence for a
positive association between manganese exposure from water and an impairment of IQ score was found when both sexes
were analysed together; the evidence from sex-stratified analyses was inconclusive. The distributions of water manganese
concentrations observed in the respective studies, and related estimated manganese intakes from water, were compara-
ble. The Panel notes the low contribution of drinking water to total dietary intake of manganese relative to food sources
in these studies.

Among the studies conducted in Bangladesh, which reported the highest manganese concentrations in water among
the eligible studies, one study found no evidence that higher water manganese concentration measured at several time-
points (cross-sectional and prospective analyses) was associated with lower 1Q scores (Rahman et al., 2017). Results were
inconsistent across several cross-sectional analyses involving children selected through the HEALS cohort, after controlling
for concomitant contamination with arsenic (Wasserman et al., 2004; Wasserman et al., 2006; Wasserman et al., 2011).
Dietary intake of manganese from food sources was not estimated in these studies.

The available BoE has several limitations, including the partial characterisation of manganese dietary exposure (limited
to measures of manganese concentration in tap water used at home in most studies), the small size of the study popula-
tions (in particular in the ‘high’ dose range), and the cross-sectional design of most studies. The Panel also notes the incon-
sistent findings in sex-specific analyses across studies.

Overall, the Panel considers that the available BoE is inconclusive. No comprehensive UA is performed.

LoE2 (complementary): measures of academic achievement.  In a cross-sectional study among 840 children from Bangladesh
(8-11years old), (Khan et al., 2012) examined the associations between manganese and arsenic concentrations in drinking
water and academic achievement in languages and mathematics (annual scores obtained from school records). Median
(range) water manganese concentration, measured in well water samples from each participant's household, was 1.302
mg/L (0.010-5.710 mg/L). After adjustment for sociodemographic confounders and water arsenic concentration, a
decrease in math test scores was observed among children consuming water with manganese concentrations in the four
‘high” exposure categories compared to the bottom category (<0.400 mg/L); the adjusted decreases in scores were —7.1
(0.401-1.000 mg/L), —6.4 (1.001-1.440 mg/L), —5.5 (1.441-2.000 pg/L) and —5.9 (2.001-6.000 mg/L). When water manganese
concentration was dichotomised (below 0.400 or above 0.400 mg/L), a decrease of —6.4 (95% CI-12.3, —0.5) in mathematics
achievement test score was observed. No association was found with languages scores. The study was judged at moderate
risk of bias (tier 2), due to concerns regarding the risk of residual confounding (Appendix B.1).

The Panel notes that the available evidence is scarce and cannot be used as supportive evidence for a positive relation-
ship between dietary intake of manganese and impaired cognitive function.

Overall conclusions on cognitive impairment. The Panel considers that the available BoE is insufficient to conclude on a
relationship between high dietary intake of manganese (from water and/or other sources) and impaired cognitive function
in children over the range of exposures investigated in these studies. The Panel notes that the available studies mostly
address manganese water concentration and that studies investigating the relationship between total dietary intake of
manganese and this outcome are lacking.
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34.1.2 | Impairment of motor function in children
Regarding impairment of motor function in children, studies addressing functional measures of motor function are in-
cluded in the standalone main LoE.

An overview of the eligible studies retrieved is provided in Table 8.

TABLE 8 Outcome of the systematic search on dietary exposure to manganese and impairment of motor function in children.

LoE Endpoints RCTs PCs/NCCs cs

LoE1. Standalone (main) Functional measures of motor function 0 0 32

Abbreviations: CS, cross-sectional; LoE, line of evidence; NCC, nested-case control; PC, prospective cohort; RCT, randomised controlled trial.
“Two cross-sectional studies reported in three publications.

LoET (standalone): measures of motor function

Preliminary UA

Two cross-sectional studies investigated the association between manganese from drinking water and measures of motor
function. The evidence table is provided in Appendix C.

In the previously described study by Oulhote et al. (2014) (Section 3.4.1.1), a cross-sectional analysis investigated the associa-
tion between manganese exposure from drinking water and motor function performance among Canadian children (n=375). A
motor function score was derived from children's performance on the Santa Ana Pegboard test and the Fingertapping test.
Estimated manganese intake from water ranged from 0 to 1.059 mg/kg bw per month (geometric mean 0.0055 mg/kg bw per
month). Manganese concentration in water ranged from 0.001 to 2.701 mg/L (arithmetic mean 0.099 mg/L; geometric mean
0.020 mg/L). After adjustment for confounders, a 10-fold increase in estimated manganese intake from water consumption was
associated with a decrease in motor function score, —1.3 ([95% Cl]: —2.4, —0.2). Similar results were found when using water man-
ganese concentration as measure of exposure. Association estimates were similar for boys and girls (data not shown). Using
generalised additive models to assess the dose-response relationship with manganese concentration in water, evidence for
non-linearity was found, indicating that scores decreased more steeply at concentrations above 0.180 mg/L. No evidence for
departure from linearity was found for the relationship with estimated manganese intake from water. The study was judged at
low risk of bias (tier 1) (Appendix B.1). The Panel notes the low contribution of drinking water to total dietary intake of manganese
relative to food sources in these studies. In a subsample of this study, MRl examination was performed in 13 children consuming
water with a manganese concentration below 0.030 mg/L and 10 children consuming water with a manganese concentration
above 0.100 mg/L (Dion et al,, 2016). No between-group differences in standard pallidal index®' was found, while lower pericra-
nial pallidal index®* was reported in the ‘high exposure’ group versus ‘low exposure’ group. These results were judged at mod-
erate risk of bias (tier 2) (Appendix B.1), due to concerns regarding confounding.

In a cross-sectional study among offspring of participants of the HEALS in Bangladesh, Parvez et al. (2011) investigated
the association between manganese concentrations in water with motor function, using the Bruininks-Oseretsky test (2nd
edition, BOT-2). Children (8-11 years) were recruited and grouped based on their home well-water manganese and arsenic
concentrations. In the two groups exposed to low arsenic concentration (< 10 pg/L), the mean (+ SD) manganese concen-
trations were 1.111 (+ 0.686) mg/L in the ‘high’ exposure group (n=74) and 0.202 (+ 0.145) mg/L in the ‘low’ exposure group
(n=77). No difference between the two groups was found on motor function scores. The study was judged at moderate
risk of bias (tier 2) (Appendix B.1), due to lack of adjustment for potential confounders.

The Panel notes the paucity of data from observational studies that would allow the evaluation of an association between
‘high” manganese intake and impaired motor function in children. No comprehensive uncertainty analysis (UA) is performed.

Overall conclusions on motor function. The Panel considers that the available BoE is insufficient to conclude on a relationship
between high dietary intake of manganese (from water and/or other sources) and impaired motor function in children over the
range of exposuresinvestigated in these studies. The Panel notes that the available studies address manganese water concentration
and that studies investigating the relationship between total dietary intake of manganese and this outcome are lacking.

3413 | Impairment of behaviour in children
Regarding impairment of behaviour in children, studies investigating measures of behaviour using standard behaviour
scales are included in the standalone main LoE (Table 9).

TABLE 9 Outcome of the systematic search on dietary exposure to manganese and impairment of behaviour in children.

LoE Endpoints RCTs PCs/NCCs cs

LoE1. Standalone (main) Measures of behaviour 0 2 2

Abbreviations: CS, cross-sectional; LoE, line of evidence; NCC, nested-case control; PC, prospective cohort; RCT, randomised controlled trial.

*'The standard pallidal index is a marker of manganese accumulation in the brain defined as the signal intensity ratio of the globus pallidus relative to the frontal white
matter on T1-weighted images.
*This index was defined as the signal intensity ratio of the globus pallidus relative to the pericranial muscles on T1-weighted images.
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LoET (standalone): measures of behaviour

Preliminary UA

Four papers examined the association between manganese intake and behavioural problems in children. Two were pro-
spective analyses (Miyake et al., 2022) and two were cross-sectional analyses (Rahman et al., 2017). Three studies used man-
ganese concentration in drinking water as a measure of exposure (Oulhote et al., 2014) and one study assessed manganese
intake from the diet (Miyake et al., 2022). The evidence table is provided in Appendix C.

In a cohort of 1199 Japanese mother—child pairs, Miyake et al. (2021) examined the association between dietary
manganese intake during pregnancy, with offspring behavioural problems at 5 years of age, using the strengths and
difficulties questionnaire (SDQ). Mean (IQR) maternal dietary manganese intake, estimated by semi-quantitative com-
prehensive diet history questionnaire, was 3.6 (2.8-4.5) mg/day. After adjustments, no association was found between
maternal intake of manganese and childhood behavioural problems (i.e. emotional problems, conduct, hyperactiv-
ity, peer problems and low prosocial behaviour). The study was judged at low risk of bias (tier 1) (Appendix B.1). The
Panel notes that the dietary manganese intake in the study population is comparable to observed dietary intakes in
European populations.

In the previously described study by Rahman et al. (2017) (Section 3.4.1.1), the association between water manganese
concentrations and behavioural problems was examined in 1265 Bangladeshi children. Drinking water was sampled during
pregnancy and at 5 and 10years of age from the wells used by each household and behavioural problems were assessed
using the SDQ at 10years of age. The median (range) manganese concentration in water were 0.204 mg/L (0.0013-6.550
mg/L) during pregnancy, 0.228 mg/L (0.0001-6.550 mg/L) at 5 years and 0.339 mg/L (0.0001-8.680 mg/L) at 10 years. Higher
water manganese concentrations at all timepoints were associated with increased conduct problems and lower prosocial
behaviour, while they were associated with lower emotional problems; no association was found regarding hyperactivity
or peer problems. In sex-stratified analyses restricted to children using water with <20 ug/L arsenic, a stronger associa-
tion between manganese concentrations in water and increased conduct problems was found among boys than among
girls (prenatal water manganese concentration: OR 1.43; 95% Cl 1.06, 1.91 among boys, 1.18; 95% Cl 0.95, 1.46) among
girls). Among girls, increased manganese concentrations in water were associated with lower prosocial behaviour (prenatal
water manganese concentration: OR 1.48; 95% Cl 1.07, 2.06). In contrast, higher manganese concentrations in water were
associated with decreased emotional problems especially in boys (prenatal water manganese concentration: OR 0.39; 95%
Cl10.19, 0.82). The study was judged at low risk of bias (tier 1) (Appendix B.1).

In the previously described study by Oulhote et al. (2014) (Section 3.4.1.1), a cross-sectional analysis investigated the
association between manganese exposure from drinking water and hyperactivity among Canadian children (n=375).
Hyperactivity was assessed using the Conners' Rating Scales completed by a teacher (CRS-T) and a parent (CRS-P). Estimated
manganese intake from water ranged from 0 to 1.059 mg/kg bw per month (geometric mean 0.0055 mg/kg bw per month).
Manganese concentrations in water ranged from 0.001 to 2.701 mg/L (arithmetic mean 0.099 mg/L; geometric mean 0.020
mg/L). No association was found between manganese intake from water consumption or manganese concentration in
water and hyperactivity. The study was judged at low risk of bias (tier 1) (Appendix B.1). The Panel notes the low contribu-
tion of drinking water to total dietary intake of manganese relative to food sources in this study.

In a cross-sectional analysis among offspring of participants of the HEALS in Bangladesh, Khan et al. (2011) investigated
the association between manganese concentration in water and classroom behaviour, using the child behaviour check-
list-teacher's report form. A total of 201 children (8-11 years) were included. Home well-water manganese concentration
was 0.889+0.784 mg/L (range: 0.040-3.442 mg/L). An increase in manganese concentrations in water was associated with
more problematic classroom behaviours after adjustment for confounders, including water arsenic concentration (3 [Cl
95%] for total behavioural score: 3.35 [0.86, 5.83]). Compared with the lowest quartile (Q1, 0-264 ug/L), estimated {3s for Q2
(265-641 pg/L), Q3 (642-1279 pug/L) and Q4 (=1280 pg/L) were 4.20 (95% Cl 0.43, 7.97), 6.42 (95% Cl 0.80, 12.06) and 6.80
(95% Cl 1.42, 12.19), respectively. The study was judged at low risk of bias (tier 1) (Appendix B.1).

The Panel notes the paucity of data from observational studies that would allow the evaluation of an association be-
tween ‘high’ manganese intake and impaired behaviour in children. No comprehensive UA is performed.

Overall conclusions on behaviour impairment. The Panel considers that the available BoE is insufficient to conclude on
a relationship between high dietary intake of manganese (from water and/or other sources) and impaired behaviour
in children over the range of exposures investigated in these studies. The Panel notes that the available studies mostly
address manganese water concentration and that studies investigating the relationship between total dietary intake of
manganese and this outcome are lacking.

3414 | Impaired neurodevelopment in young children
Regarding impaired neurodevelopment in young children (1-3 years), studies with measures of neurodevelopment using
standard neurodevelopment test batteries are included in a standalone main LoE.

An overview of the eligible studies retrieved is provided in Table 10.
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TABLE 10 Outcome of the systematic search on dietary exposure to manganese and impairment of neurodevelopment in young children.

LoE Endpoints RCTs PCs/NCCs cs Ecological

LoE1. Standalone (main) Measures of neurodevelopment 0 0 1 1

Abbreviations: CS, cross-sectional; LoE, line of evidence; NCC, nested-case control; PC, prospective cohort; RCT, randomised controlled trial.
LoET (standalone): measures of neurodevelopment

Preliminary UA

In a prospective birth cohort study, the association between manganese concentration in water, analysed in the first trimes-
ter of pregnancy and offspring neurodevelopment at 20-40 months of age, was investigated in two areas of Bangladesh
(Pabna [n=285] and Sirajdikhan [n=239]) (Rodrigues et al., 2016). Bayley Scales Of Infant And Toddler Development, 3rd
Edition (BSID-IIl) were used. Water was collected from the tube well used by each household. Median (IQR) water manga-
nese concentration was 0.515 (0.299, 0.969) mg/L in Pabna and 0.948 (0.164, 1.820) mg/L in Sirajdikhan. After adjustment
for potential confounders, including water arsenic concentration and blood lead concentration, a positive association was
found between manganese concentration in water and fine motor scores in Pabna ([3an water manganese —0.08 [0.03]),
but not in Sirajdikhan. No association was found with cognitive scores, receptive and expressive language, or gross motor
domains in both areas. The study was judged at moderate risk of bias (tier 2), due to the lack of adjustment for potential key
confounders and attrition (35% of the initial sample excluded from analyses) (Appendix B.1).

An ecological study in the US examined the association between manganese concentrations in water in wells with prev-
alence of adverse neurodevelopmental effects (speech/language disorders and delayed milestones) among children up
to 35 months of age from counties in North Carolina (Langley et al., 2015). Manganese concentrations in private wells were
measured in each county (n=73,220). Children with a ‘developmental speech or language disorder’, ‘delayed milestones’ or
‘sensorineural hearing loss’ were included in this analysis (based on the International Classification of Disease, 9th edition).
A proportion of 7.9% of wells had manganese concentrations >0.200 mg/L and 5.2% were >0.300 mg/L. The authors re-
ported positive associations between manganese concentrations in water and delayed milestones (RR [95% Cl]: 1.48 [1.20,
1.84]) and hearing loss (RR [95% Cl]: 1.15 [1.03, 1.30]). No association was found with speech/language problems. Ecological
observations, because of their nature, are considered at high risk of bias.

The Panel notes the paucity of data from observational studies that would allow the evaluation of an association be-
tween ‘high’ manganese intake and impaired behaviour in children. No comprehensive UA is performed.

Overall conclusions on impaired neurodevelopment. The Panel considers that the available BoE is insufficient to
conclude on a relationship between high dietary intake of manganese (from water and/or other sources) and impaired
neurodevelopment in young children over the range of exposures investigated in these studies. The Panel notes that the
available studies address manganese water concentration and that studies investigating the relationship between total
dietary intake of manganese and this outcome are lacking.

3.4.1.5 | Riskof attention-deficit hyperactivity disorder (ADHD)
Regarding risk of attention-deficit hyperactivity disorder (ADHD), studies investigating the incidence of ADHD are included
in a standalone main LoE.

An overview of the eligible studies retrieved is provided in Table 11.

TABLE 11 Outcome of the systematic search on dietary exposure to manganese and impairment of neurodevelopment in young children.

LoE Endpoints RCTs PCs/NCCs cs Ecological

LoE1. Standalone (main) Incidence of ADHD 0 1 0 0

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; CS, cross-sectional; LoE, line of evidence; NCC, nested-case control; PC, prospective cohort; RCT,
randomised controlled trial.

LoET (standalone): risk of ADHD

Preliminary UA

A nationwide population-based cohort study in Denmark investigated the association between manganese concentra-
tions in drinking water during childhood and later risk of ADHD (Schullehner et al., 2020). A total of 643,401 children were
included. Mn measurements from 82,574 drinking water samples collected from 3509 public waterworks were used to
estimate exposure during the first 5years of life. Mn concentrations in water were assigned to all cohort members based
on longitudinal spatial linkage of their residential history and water supply areas. Exposure was modelled as the highest
level of manganese in drinking water that each individual was exposed to during the first 5 years of life or a time-weighted
average manganese concentration. Sex-specific hazard ratios (HRs) were estimated after adjusting for sociodemographic
variables. The authors reported that, of all 82,574 drinking water samples, 67% were below the analytical detection limit. In
the total study population, 20% of the children were exposed to more than 0.100 mg/L manganese at some point during
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their first 5years of life. No association between higher concentrations of manganese in drinking water and risk of over-
all ADHD was observed. When restricting the analyses to ADHD-Inattentive subtype, girls exposed to water manganese
concentrations above 0.005 mg/L at least once during their first 5years of life had an increased risk of ADHD-Inattentive
compared to girls exposed to < 0.005 mg/L (HR [95% Cl] across exposure categories: 1 [reference], 1.28 [1.00, 1.65], 1.50 [1.16,
1.93], 1.55 [1.21, 1.99], 1.53 [1.19, 1.96]). A similar pattern was observed in boys (HR [95% Cl] across exposure categories: 1
[reference], 1.08 [0.90, 1.27]1,0.99 [0.83, 1.18], 1.19 [1.00, 1.40], 1.20 [1.01, 1.43]). No exposure-response pattern was observed
in the association with ADHD-Combined subtype in either sex. In the time-weighted average analysis, water manganese
concentration was positively associated with the risk of ADHD-Inattentive subtype (HR [95% Cl] across exposure categories
in girls: 1 [reference], 1.16 [0.79, 1.72], 1.53 [1.08, 2.17], 1.31 [0.96, 1.79]; in boys: 1 [reference], 1.06 [0.78, 1.43], 1.40 [1.06, 1.83],
1.38[1.08, 1.76]). The study was judged at low risk of bias (tier 1) (Appendix B.1). The Panel notes that dietary intake of man-
ganese from food sources was not estimated in this study. At the manganese concentrations observed in drinking water,
the contribution of water to overall manganese intake is expected to be low as compared to the rest of the diet.

The Panel notes the paucity of data from observational studies that would allow the evaluation of an association be-
tween ‘high’ manganese intake and risk of ADHD in children. No comprehensive UA is performed.

Overall conclusionson ADHD.  The Panel considers that the available BoE is insufficient to conclude on a relationship between
high dietary intake of manganese (from water and/or other sources) and risk of ADHD in children over the range of exposures
investigated in the eligible study. The Panel notes that the available study addresses manganese water concentration and
that studies investigating the relationship between total dietary intake of manganese and this outcome are lacking.

34.1.6 | Impaired neurological functions in adults
Regarding impairment of neurological functions in adults, studies addressing functional measures of neurological func-
tions are included in a standalone main LoE.

An overview of the eligible studies retrieved is provided in Table 12.

TABLE 12 Outcome of the systematic search on dietary exposure to manganese and neurological function in adults.

LoE Endpoints RCTs PCs/NCCs cs Ecological

LoE1. Standalone (main) Measures of neurological functions 1 0 2 3

Abbreviations: CS, cross-sectional; LoE, line of evidence; NCC, nested-case control; PC, prospective cohort; RCT, randomised controlled trial.

Intervention study. In a randomised cross-over trial, healthy women (n=16) were randomly assigned to receive 0.8 mg
or 20 mg manganese per day (as MnSO,) for 8 weeks (a 1 week wash-out period was applied). Ten participants received
15% of total daily energy from cocoa butter, while six participants received 15% of total daily energy from corn oil (Finley
et al., 2003). During the last week of each dietary period, participants were examined by a neurologist for the presence and
severity of neurological signs and symptoms, including tests of steadiness and ability to control muscular tremor, signs of
Parkinson's and related neurologic diseases, as well as tests to determine a range of components related to hostility and
anger [by Buss-Durkee Hostility Inventory (BDHI), the State—Trait Anger Expression Inventory (STAXI) and the interpersonal
behaviour survey (IBS)]. The total amount of manganese absorbed was 0.030+3 and 0.450+3 mg from the low and high
manganese diets, respectively (estimated through the use of manganese stable-isotope in a test meal), independent from
the fat source. The authors reported that no signs or symptoms of neurological impairment were detected by clinical
examination in any dietary treatment group. There was no consistent effect of dietary ‘high’ manganese intake on the
psychological functions measured by the BDHI, STAXI or IBS. Changes from baseline (mean = SEM) on self-confidence score
in the low manganese groups were —1.6£2.8% (corn oil group) and 14.3 £3.8% (cocoa butter) versus —4.2 +2.8% (corn oil
group) and —3.9+5.8% (cocoa butter) in the high manganese groups. Changes from baseline (mean + SEM) on requesting
help score in the low manganese groups were 0.7 +2.1% (corn oil group) and 7.9+2.8% (cocoa butter) versus 7.7 +2.1%
(corn oil group) and —14.2 £4.3% (cocoa butter) in the high manganese groups. The study was judged at moderate risk of
bias (tier 2), due to uncertainties regarding the blinding of the outcome assessor (not reported) (Appendix B.1).

The Panel notes that no adverse effect on neurological functions was identified in this study with a supplemental dose
of 20 mg manganese/day for 8 weeks. However, due to its small size and relatively short duration, the Panel considers that
this study cannot be used to establish the long-term safety of this dose.

Cross-sectional and ecological studies. Kondakis et al. (1989) investigated neurological signs in residents (n=188; > 50years
of age) from three areas from the same region in Greece, with different levels of manganese concentrations in drinking
water, i.e. one area with ‘high’ manganese concentrations (1.8-2.3 mg/L; n=77 participants), one area with ‘intermediate’
concentrations (0.082-0.250 mg/L; n=49 participants) and one area with ‘low’ concentrations (0.004-0.015 mg/L; n=62
participants). Participants were examined by a neurologist and a neurological score was given based on the presence and
severity of neurological signs, and their diagnostic value for parkinsonism. The mean (range) neurological scores were 5.2
(0-29) in the 'high exposure’ area, 3.9 (0-43) in the ‘intermediate exposure’ area and 2.7 (0-21) in the ‘low exposure’ areas.
The study was judged at moderate risk of bias (tier 2) due to concerns regarding the exposure characterisation and the
lack of adjustment for potential confounders (Appendix B.1). The water supply of the ‘high’ and ‘intermediate’ manganese
concentration areas was then changed. Thirteen years later, water manganese concentration was analysed again and
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found to be 30-60 pg/L in both areas (‘high’ and ‘intermediate’ concentrations) and, upon examination of people living
there, the authors reported that ‘'no more neurological disturbances were observed’ (number of subjects NR; criteria and
method for the neurological examination NR) (Ermidou-Pollet et al., 2003).

In a cross-sectional study in Germany, neurological examination was performed among adults (41-84 years old) who
consumed drinking water from wells with ‘high’ water manganese concentrations (0.30-2.16 mg/L; N participants=41)
versus ‘low’ water manganese concentrations (< 0.05 mg/L; N participants=74) for at least 10years (Vieregge et al., 1995).
Mean age was similar between the two groups. Similarities between the two groups were also observed regarding the con-
sumption of alcohol, mineral water and other beverages, smoking, dietary habits and drug use. A neurologist blinded to
participants' status performed a standardised neurological examination of each participant. No difference was found be-
tween the two groups on any of the neurological signs and symptoms evaluated. Fine motor skills abilities were also tested
using the standard ‘Motorische Leistungsserie’ (MLS, Motor Performance Series) test battery. There was no between-group
difference regarding the performance on these tests. The study was judged at moderate risk of bias (tier 2) due to concerns
regarding the lack of adjustment for potential confounders and attrition (68% of the initial sample excluded from analysis)
(Appendix B.1).

Iwami et al. (1994) studied manganese concentrations in food and environmental samples in a Japanese town which
reportedly had a high incidence of motor neuron disease (MND). Manganese intake for the local rice eater (5.79 mg/day),
when coupled with low manganese concentration in drinking water (0.0023 mg/L), was positively correlated with the in-
cidence of MND (r*=0.99), while no correlation was found with manganese concentration in drinking water (latter already
reported in previous study by this group of researchers [lwami, Watanabe, Moon, Nakatsuka, & Ikeda, 1994]). Ecological
observations, because of their nature, are considered at high risk of bias.

The Panel considers that the available BoE is insufficient to conclude on a relationship between high dietary intake of
manganese (from water and/or other sources) and impaired neurological functions in adults, over the range of exposures
investigated in these studies. The Panel notes that the available studies mostly address manganese water concentration
and that studies investigating the relationship between total dietary intake of manganese and the outcomes investigated
are lacking.

3417 | Casereports
Six published cases of suspected manganese intoxication were identified, two in children and four in adults.

Severe neurotoxicity symptoms (withdrawn behaviour, less verbal with repetitive stuttered speech and decline in bal-
ance, coordination and fine motor skills) were described in a 6-year old girl from Canada, with severe iron deficiency and
polycythaemia (Brna et al., 2011; Sahni et al., 2007). MRl indicated manganese accumulation in the basal ganglia and man-
ganese concentration in blood was elevated (39.7 pug/L; reference range: 4.3-15.9 ug/L). Elevated blood cobalt concentra-
tion was also observed. No source of manganese inhalation exposure was identified. The family of the child was found to
regularly use well water for drinking and cooking, with manganese concentrations of 1700-2400 pg/L. The sister of the
child and other family members were asymptomatic, suggesting an individual susceptibility to manganese toxicity.

A 10-year old boy in the USA was found to have an elevated blood manganese concentration (38.2 ug/L; reference value:
<14 ug/L) (Woolf et al., 2002). The family was found to have consumed well water with elevated manganese concentrations
(1210 pg/L) for 5years. Water was also found to have an elevated iron concentration. MRI did not reveal Mn accumulation
in brain. His neurological examination was normal. As a result of cognitive tests, impaired visual and verbal memory was
found. Other cognitive skills and IQ were normal.

Ghosh et al. (2020) reported neurological symptoms in a 40-year old Indian man, which included chorea, multi-domain
cognitive impairment, dysarthria and generalised rigidity. MRI suggested manganese deposition in the brain basal gan-
glia. The serum manganese levels were 3281 nmol/L (reference value <320 nmol/L). Screening for mutations for SLC39A14,
SLC30A10 and SLC39A8 was negative. Acquired manganism related to high consumption of black tea for over 10 years was
suspected. The patient was found to consume an average of 3L (20 cups) of tea per day, which was estimated to correspond
to 26 mg manganese per day. After chelation therapy, the majority of symptoms were improved or resolved.

Sista and Dronacharya (2021) reported a case of symmetric parkinsonism and vertical gaze paresis in a 70-year old
woman with elevated serum manganese concentration (60.1 ng/mL, reference range: 4.7-18.3 ng/mL). MRI suggested
manganese accumulation in the bilateral globus pallidus and subthalamic nuclei. The patient was found to have consumed
a food supplement providing over ‘500% of recommended daily allowance for manganese’ > After stopping the supple-
ment intake, serum concentrations were reported to normalise with partial clinical improvement, but the MRI results re-
mained unchanged a year later.

(Ohtake et al., 2005) described the case of a 62-year old Japanese man with chronic renal failure due to diabetic ne-
phropathy, managed by haemodialysis, who was admitted to the hospital due to impaired motor function. The results
of his MRI scan suggested manganese deposition in the bilateral basal ganglia. Manganese concentrations in serum (0.8
pg/dL; reported value for patients with haemodialysis: 0.2+£0.1 pg/dL) and cerebrospinal fluid (2 pg/L; reported value in
healthy individuals: 0.88+0.76 ug/L) were found to be elevated. The patient was found to have consumed several food
supplements (including a Chlorella extract containing 139 ug manganese/g) for over 4 years, which were estimated to pro-
vide 2.2 mg manganese per day. Chelation therapy improved the MRl abnormalities and the symptoms. The authors noted

*This corresponds to 9000 pg/day considering the RDA for manganese of 1800 pg/day for adult women in the US established by the IOM (2001).
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that excess intake of manganese from supplements alone could not fully explain the onset of the patient's condition and
hypothesised that long-term haemodialysis may have contributed to their manifestation through unknown mechanisms.

Schuh (2016) reported the case of an African American woman (37 years old) diagnosed with Parkinson's disease. The
patient reported to have consumed multiple herbal preparations and food supplements over the previous years. Among
those, the patient reported taking 100 mg manganese per day for more than 2 years. The blood manganese concentration
was normal (1 ng/mL). No MRI was performed. The authors attributed the symptoms to excess manganese intake, although
it was unclear whether manganese was the unique cause due to multiple concomitant supplement uses.

The Panel notes that these case reports are consistent with a potential neurotoxicological effect of manganese with
oral exposure. However, the limited number of cases, uncertain and partial characterisation of the overall dietary intake of
manganese, and concomitant supplementation with other substances in some cases, preclude using these data to identify
any critical intake level.

34.2 | Animal data

A systematic review of the literature was conducted on studies which investigated the impact of manganese upon oral
exposure to the nervous system and behavioural changes in experimental animals at different life stages (see protocol in
Annex A). The PRISMA flow chart is provided in Appendix A.2.

Manganese chloride was used as test substance in all eligible studies. The endpoints tested belonged to three families
of neurological functions, i.e. motor and sensory functions, cognitive functions and anxiety. The results of the multiple
dose studies are discussed below. Whenever available, measures of tissue manganese concentrations are discussed, as
indicative of internal exposure.

The key characteristics and findings of eligible multiple dose studies are tabulated in Appendix D.1 and are discussed
below for the purpose of identifying a reference point for manganese toxicity.

A number of single dose studies were also retrieved (key characteristics and findings tabulated in Appendix D.2). The
Panel notes that these studies were designed to investigate potential mechanisms of manganese neurotoxicity and, upon
review, they did not bring additional information that could be used in support of the multiple dose studies to identify a
reference point for manganese-induced toxicity.

34.21 | Developmental studies
Eleven multiple dose studies investigated the effect of neonatal exposure to manganese on neurological functions, tested
either early in life or during adulthood (Table 13). Key findings are summarised in Appendix D.1 and discussed below.

TABLE 13 Overview of multiple dose developmental studies.
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TABLE 13 (Continued)

Mn exposure mg/kg  Exposure
bw per day window Motor and sensory functions Cognition Anxiety

-]
°
@
<
=
-]
o
3 2
S &
= °
g , £ = g -
w B ° 5 @ <
5 s = 2 ° ) £ =
2 s 2 > o B ] (%)
g 2 = S 2 = < 2 g = o
o = 9 ¥ o 9 g 0 € = of .= o c N
2 @ S o X @ ] 2 2 3 © o T t e 7 -]
o L &8 = o s [ @ = £ 2 £
& £ ] s £ O = t & @ =2 < o ©° © X
) £t © & £ £ = s 5 2 @ = S = ° ) v
° ° ! 8 9 ¥ s B 8 s = 9 N 1] = © s s =
= = k] 5 © o°o ¢ 2 4 w o o 9 S ® > = o
H H .} v ¢ » 2 3 @ S £ g =© ¥ ¢ s ¢ <
H o € £ 2 ¢ g E 3z 2 &£ s = ©° § g v = 2 1
£ 2 £ 3 % § £ & & = s S £ ® & & 2 E E ®
= ] 2 e ©» T &8 2 £ £ SR ® H s © a o 2 2
g © Qo S 9 @ ®w = & ) S 5 o ° £ = © o < K]
Reference Species @ o < 2 x o v = I o = o ) 4 a v (-9 U u ]
Beaudin Rat 0, 25,50 n PND 1-21 (o) ()
etal. (2013),
Beaudin,
Strupp,
Strawderman,
etal. (2017)
Foster etal. (2018) Mice 0, 11,25, (50) n PND 1-21 ()
Goullé et al. (2005) Monkey 0.02,0.11,0.32 n PND 1-120 o O Y Y

Abbreviations: CANTAB, Cambridge Neuropsychological Test Automated Batteries; DE, dams exposure; GD, gestational day; n, negligible (maternal milk); PND, post-natal
day; WGTA, Wisconsin General Test Apparatus; e, tested in early life; o, tested during adulthood.

“Treatment doses are standardised to daily doses of manganese by kg body weight (see Section 2.2.2.2).
PAfter conversion from the test substance to elemental manganese (see Section 2.2.2.2).

“The testing conditions in open-field tests differed across studies in terms of the apparatus used, mode of activity recording (most often computer-assisted or automated)
and test conditions (dark/light, habituation period yes/no), the number of test repetitions (from 1 to 5 testing days), and the duration of the testing session (from 1 min
[Reichel et al., 2006] to 72 min Dorman et al., 2000).

dPupillary reflex, pain reflex.
®Morris water maze, Biel water maze, radial arm maze.
fTasks of visual object discrimination (OD), delayed nonmatch to sample (DNMS), position learning and reversal learning.

Maternal exposure (in utero and via milk.  In three studies, rat dams were exposed to manganese through drinking water or
diet throughout gestation up to post-natal day (PND) 21 and neurological functions were assessed in their offspring (Ohishi
etal.,, 2012; Oshiro et al., 2022; Pappas et al., 1997).

(Ohishi et al., 2012) exposed rat dams to 0, 119 and 482 mg manganese/kg bw per day via drinking water (background
diet calculated: 5 mg/kg bw per day). Their offspring were maintained on the same regimen post-weaning (until PND
30), corresponding to 81 mg/kg bw and 406 mg/kg per day. Higher activity (locomotor activity and number of rears) was
found among the offspring of the high dose group, compared to the low dose and control groups (PND 17), while no be-
tween-group differences were found on a Morris water maze (MWM) test (PND 25). At PND 32, mean manganese concen-
trations in rats brain were elevated in the treatment groups compared to controls (by 1.4 and 2.5 fold in the low and high
dose groups, respectively). When tested later in life (PND 90-95), no between-group differences were found on the MWM
test, a 12-arm radial maze test or an elevated plus maze.

At doses of 0, 180 and 360 mg/kg bw per day (background diet calculated: 6 mg/kg bw per day), with or without appli-
cation of a perinatal stress paradigm, (Oshiro et al., 2022) found no consistent evidence of an adverse effect using a novel
object recognition task at PND 34-37. At PND 22, mean manganese concentrations in rats brain were elevated in the treat-
ment groups compared to controls (by 1.7 and 2.4 fold in the low and high dose groups, respectively). Later in life, no ad-
verse effects of manganese treatments were found on a MWM test and a differential reinforcement of low-rates procedure
(DRL task; a test of associative learning, timing perception and impulsivity) (PND 62-77). On cued and uncued two-choice
reaction time tests performed at PND 135-140, a decreased accuracy of responses (cued only, males only) and decision
time (uncued only, both sexes) were found in both dose groups not subject to perinatal stress compared to controls, while
the trend was the opposite when manganese treatment was combined with stress; no adverse effects on movement time
or anticipatory responses were found.

Upon addition of manganese doses of 0, 1, 6 and 29 mg/kg bw per day to a diet providing 9 mg manganese/kg bw per day,
(Conley et al., 2020) found no effect on sensory function and reflexes early in life (surface righting [PND 101, pupillary, Preyer's
and pain reflex [PND 21]), except for a dose-dependent decrease in the number of animals showing normal air righting reflex
in both sexes (PND 15). In the absence of effect on the other reflexes measured, the latter finding was considered incidental.
Later in life, no between-group differences were found in a Biel water maze (BWM) test (learning ability) (PND 55-57) or in
locomotor activity and grip strength (PND 71). Mean cerebellum concentrations were slightly elevated in the mid and high
dose groups at PND 21 [1.3 and 1.2 higher than control in the respective groups (not dose-related)]; no between-group dif-
ferences were detected when brain manganese concentrations were analysed at PND 77. The Panel notes that the reported
doses represent marginal manganese amounts as compared to the manganese intake provided by the rodent chow.

The Panel notes that the three available studies did not identify adverse effects of maternal manganese exposure, ex-
cept for an indication of hyperactivity in the offspring of the dams exposed to the highest manganese dose (482 mg/kg bw
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per day) in the study by Reichel et al. (2006). No effect on learning abilities were found up to 360 mg/kg bw per day Conley
et al. (2020) and 482 mg/kg bw per day (Pappas et al., 1997). The three studies were considered at moderate risk of bias (tier
2) (Appendix B.2), mostly due to insufficient reporting. Information was lacking on the blinding of behavioural outcome
assessors and on the randomisation process/similarity in baseline characteristics between the experimental and control
groups, allocation concealment and blinding of the research personnel. There was largely no concern regarding the purity
of the test substance, description of experimental conditions across study groups or attrition/exclusion bias.

Neonatal exposure. In nine studies, manganese was administered directly to pups (by micropipette), from birth to PND
21 Kern et al. (2010). In these studies, the additional manganese intake provided by maternal milk to suckling animals is
assumed to be negligible as compared to the test doses, in view of the low concentration reported in rodents' milk (0.1-0.3
mg/L) Reichel et al. (2006).

In the study by Tran, Chowanadisai, Crinella, et al. (2002), which used three manganese doses (0, 1.3, 6, 12 mg/kg bw per
day), rat pups in the mid and high dose groups tended to have slower surface righting reflex (mean 2 seconds) than those
in the low dose and control groups (mean 1 second) (PND 6) and prolonged time on a homing test was found in the high
dose group compared to the other groups (mean 39, 46, 37 and 75 seconds in the control, low, mid and high dose groups,
respectively) (PND 10). In a passive avoidance test, the number of foot-shocks received tended to increase with the dose
(mean 1.2, 1.6, 2.8 and 3.8 for the control, low, mid and high doses, respectively); other standard endpoints were not re-
ported, particularly step-through latency and time spent in the dark chamber, although the latter was reported indirectly
as number of shocks at 2-second intervals (PND 32). No between-group differences were found on a burrowing detour
test and on the passive avoidance test conducted at later timepoints (PND 50-56 and PND 60-64, respectively) (Tran,
Chowanadisai, Lonnerdal, et al., 2002). Manganese concentrations in brain and other tissues were analysed at PND 40 and
did not differ among treated and control animals (Tran, Chowanadisai, Crinella, et al., 2002).

In the study by Reichel et al. (2006), motor and sensory functions measured in rat pups were not altered at doses of 5
and 15 mg manganese/kg bw per day [open-field test; negative geotaxis test; homing test; performed between PND 8 and
14]. No between-group differences were found regarding locomotor activity and neuromuscular coordination (balance
beam task) tested in the adult animals (PND 91). Manganese in the brain striatum of the high dose group was found to be
elevated by five and three-fold compared to controls, when analysed at PND 14 and 21, respectively. Striatum contents
were similar on PND 90.

Brenneman et al. (1999) observed a higher activity in rat pups treated with 17 mg manganese/kg bw per day (restricted
to the last 30 min of observation), while no difference was found between the group treated with 8.5 mg/kg bw per day
and the control group (PND 21). In a further experiment with the same dose levels, the same laboratory did not detect be-
tween-group differences in locomotor activity (PND 13, 17, 21) and in a passive avoidance test (PND 21) Vezér et al. (2007).
Elevated acoustic startle responses were found during pulse-elicited trials in both dose groups compared to controls (by
1.2 fold, not dose-related), while no between-group differences were found in prepulse-elicited trials (PND 21). In both
studies, manganese concentrations in the various tissues of the brain were found to be elevated in both dose groups
compared to controls, in a dose-related fashion (by around 1.5-fold in the mid dose and two-fold in the high dose groups).

In the study by Kern et al. (2010), where rats received doses of 0, 25 and 50 mg manganese/kg bw per day, impairment in
cognitive performance was reported as tested through variants of the 8-arm radial maze test. During the acquisition phase
(PND 27-32), the learning performance of both treatment groups was lower than controls, i.e. both ability and speed of
reaching the learning criterion dose-dependently affected. On the trial days (PND 33-46), a higher number of errors were
found in the treatment groups compared to controls (mean number of reference errors: 48, 55 and 62 in the control, low and
high dose groups [p for ANOVA =0.01]; working errors: 11, 17 and 19 [p=0.06]), which was accompanied by a more frequent
use of a stereotypic response strategy (mean number of test days when utilised: 1.9, 4.5 and 5.8, p for Dunnett's test < 0.05).
An increased locomotor activity and increased activity in the centre zone in the open-field (behavioural disinhibition) were
also observed in the high dose group (PND 23). No between-group differences were found on an elevated plus maze test
(PND 23). Manganese concentrations in the brain and blood were elevated in both treatment groups compared to controls
on PND 24 (by 1.8 and 2.6-fold in the brain of the mid and high dose groups), while differences in brain concentrations were
small when measured on PND 36 (1.1 and 1.2-fold higher than controls in the respective groups; blood not measured). When
tested later in life (PND 97), no between-group differences were found regarding locomotor activity (Kern & Smith, 2011). No
between-group differences were found in blood and brain manganese concentrations measured on PND 107.

After administration of 0, 25 and 50 mg/kg bw per day to rats, (Beaudin et al., 2015) reported increased total distance trav-
elled at both levels across 5 days of testing in an open-field (PND 24-29) (not dose-related). Unlike Brenneman et al. (1999),
increased locomotor activity was restricted to the first period of the test (first 5-10 min of observation). Manganese tissue
concentrations were not measured in early life.

In an investigation of long-lasting effects of neonatal exposure (PND 1-21) to 0, 25 or 50 mg manganese/kg bw per day
in rats, no difference was found between the low dose and the control groups on a Montoya staircase test (skilled forelimb
performance) conducted between PND 120 and 150 with different pellet sizes, i.e. 45 mg and 20 mg pellets (8 days of habit-
uation and training with 45 mg, 12 days of testing with 45 mg and 5 days of testing with 20 mg pellets) Beaudin et al. (2013).
Animals in the high dose group were found to have more reaching difficulty than controls (lower number of pellets taken
from the most distant steps), but there was no indication of impaired ability to manipulate pellets (the numbers of pellets
eaten [from each step and total] or misplaced were comparable between groups). The data suggest that basal ganglia sys-
tems involved in forelimb extension versus reaching and grasping/retrieval movements in the rat are differentially sensitive
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to high dose manganese, but more data would be necessary to clarify this. Effects on attention were also assessed using
different variants of a five-choice serial reaction time task (i.e. with fixed cue duration [visual discrimination], with combi-
nations of variable pre-cue delays and fixed or variable visual cue duration [tests of focused attention] or with use of ol-
factory distractors [tests of selective attention]) starting at PND 80 (Beaudin, Strupp, Strawderman, & Smith, 2017). A lower
performance in the selective attention task using olfactory distractors was found in the two treatment groups compared
to controls (no dose-response) and a lower performance of the low dose group compared to both the control and high
dose groups on the focused attention task. In the same experiment, the effect of life-long exposure at the same dose levels
were also investigated, with inconsistent findings (i.e. lower performance in the focused and selective attention tasks in
the high dose group only) (Section 3.4.2.2). Overall, the pattern of findings regarding attention is inconsistent. The brain
and blood concentrations measured on PND 24 were substantially elevated in both dose groups compared to controls (by
about three-fold in the brain and by 8 to 11-fold in the blood), while they were similar in all groups when analysed on PND
66 and ~400.

In a study in mice, Ohishi et al. (2012) compared the effects of manganese exposure in wild-type (C57BL/6J) and parkin
mice (with Park2 gene defect, a model which develops motor dysfunction and other neurologic effects during ageing).
Exposure doses were selected based on their previous experiment in rats (Brenneman et al., 1999), i.e. 0, 11, 25 and 50 mg/
kg bw per day. Severe weight loss and high mortality rates were observed in the high dose group and the authors therefore
reduced the highest dose to 25 mg Mn/kg bw per day. In contrast to rats, lower motor activity was reported in the mice
pups exposed to manganese (PND 19-22). The decrease tended to be more pronounced in the highest dose group and
in the wild-type strain. The same trend was observed in both dose groups when tested again at PND 29-32. The Panel,
however, notes that the number of mice tested were unbalanced across dose groups and timepoints (between 13 and 28
per test group). At PND 29, dose-dependent increases in manganese concentrations were found in brain tissues (by two
to three-fold in the low dose group and 3.6 to 4-fold in the high dose group) and other tissues (femur, liver and olfactory
bulb), which were comparable in both mouse strains. The reason for the high mortality rate observed among mice re-
ceiving 50 mg/kg bw per day is unclear. In an experiment in juvenile mice (C57BI/6), no signs of severe toxicity was found
upon administration of a daily manganese dose of 50 mg/kg bw (as manganese chloride) by gavage (PND 21-34) (Streifel
etal,, 2012); doses up to 731 mg manganese/kg bw per day (as manganese sulfate) and 2250 mg manganese/kg bw per day
(as manganese chloride) were found to be tolerated by adult mice without lethality (Dorman et al., 2000).

The Panel notes that for some studies, there are uncertainties related to the assumptions applied to express the treatment
doses as elemental manganese (Section 2.2.2), as it was not always clear whether the reported doses referred to elemental
manganese, manganese chloride dihydrate or manganese chloride tetrahydrate Reichel et al. (2006). The impact of these
uncertainties on the characterisation of the overall manganese exposure can be substantial, especially when the test doses
are low. The quality of reporting was low in most studies and the majority of studies were considered at moderate risk of bias
(tier 2) and one study at high risk of bias (tier 3) (Kern et al., 2010; Kern & Smith, 2011). In particular, information was lacking on
the identity of the test substance (producer or purity not reported; Beaudin et al., 2013; Beaudin, Strupp, Strawderman, et al.,
2017; Conley et al., 2020; Kern et al., 2010; Kern & Smith, 2011; Tran, Chowanadisai, Crinella, et al., 2002; Tran, Chowanadisai,
Lonnerdal, et al., 2002), on the blinding of behavioural outcome assessors (Brenneman et al., 1999; Dorman et al., 2000;
Kern et al., 2010; Kern & Smith, 2011; Reichel et al., 2006; Torrente et al., 2005; Tran, Chowanadisai, Crinella, et al., 2002; Tran,
Chowanadisai, Lonnerdal, et al., 2002), and on the randomisation process/similarity in baseline characteristics between the
experimental and control groups, allocation concealment and blinding of the caregivers/researchers. There was largely no
concern regarding the identity of description of the experimental conditions across study groups or attrition/exclusion bias,
except for the study by Foster et al., (2018), due to substantial differences in the numbers of mice tested across groups and
timepoints. The studies by Kern et al. (Kern et al., 2010; Kern & Smith, 2011), which used a comprehensive battery of tests,
provide the most consistent findings, with dose-dependent effects found on several endpoints when tested in early life, at
doses of 25 and 50 mg/kg bw per day. However, the Panel considers that, due to the concerns regarding their internal valid-
ity (lack of reporting on the randomisation process of the animals to the groups, on the blinding of the research personnel
and outcome assessors, on the purity and producer of the test substance), which categorised this study to be high risk of
bias (tier 3; Appendix B.2) these studies cannot be used to derive of a reference point for manganese-induced neurotoxicity.

One study investigated the effect of neonatal exposure to manganese in Rhesus monkey (Golub et al., 2005). Male ani-
mals (n=_8/group) were exclusively fed with a commercial cow's milk based formula (control group, 0.02 mg manganese/
kg bw per day), a commercial soy protein based formula (low dose group, 0.11 mg manganese/kg bw per day) or the same
soy formula with added manganese (high dose group, 0.32 mg Mn/kg bw per day) for the first 120 days of life (as noted in
erratum, Golub et al., 2012). After that, the monkeys received a standard primate diet containing 44 mg manganese/kg dry
matter (corresponding to ~ 1.3-2.2 mg/kg bw per day34) over a 18-month period. Throughout that period, a battery of tests
was conducted, which included measures of motor and cognitive functions and sociability. No adverse effect of manga-
nese exposure was detected regarding gross motor development (1-14 weeks of age). Between-group differences in mea-
sures of activity during rest/activity cycles, tested at 4 and 8 months of age, showed inconsistent patterns across time
points. Compared to controls, the groups fed with the two soy-based formulae had less play behaviour and a higher fre-
quency of clinging in dyadic social interactions and the group receiving the soy formula + manganese had more rough
play than the two other groups (1-5.5 months). Few between-group differences were found on cognitive tests (5-18

3*Mn intake was calculated under the assumptions that Rhesus monkeys weight approx. 3-4 kg at 18 months of age and that their daily consumption of feed is approx.
3%-5% of their body weight.
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months) but considered as isolated findings. The Panel notes that the standard laboratory diet, to which all animals transi-
tioned after 4 months of age, supplied several times higher amounts of manganese compared to the formulas. The Panel
also notes that cow's milk based formula, which was used as control, differs from soy-based formulas in other aspects than
just manganese content which may contribute to the observed differences in behaviour between groups of animals.

Finally, the study lacked information regarding the purity of the test substance, the blinding of behaviour outcomes
assessors and research personnel and randomisation of the animals to the groups (high risk of bias (tier 3); Appendix B.2).
Therefore, the Panel considers that this study cannot be used to derive a reference point for manganese-induced
neurotoxicity.

34.2.2 | Neurotoxicity studies in adult animals (sub-acute and sub-chronic)

Ten studies investigated the effect of sub-acute or sub-chronic oral exposure to manganese on neurological functions in
rodents (Table 14). Studies were further divided as per method of administration of Mn, i.e. by gavage or via drinking water
due to different toxicokinetic profile (Section 3.2.5).

TABLE 14 Overview of multiple dose sub-acute, sub-chronic and chronic neurotoxicity studies.

Mn exposure
mg/kg bw per  Exposure

day duration Motor and sensory functions Cognition Anxiety
‘-Ui o
c 0 >
S @ v E € E o @
mm - ) o o “ [ - 1 v o—
g z e 3% 8§ 5 §: %
“n = - = - 7 . < — o 4
8 S T T 5 e = = L 3 ©
o s I8 © 2 = v ® O 4 3 = 1
= £ Ty & °© © 2 %« 85 s & 8 3
g 3 22 Y8 %oy 9 & 2YE ¢85 W
g g $9 ®¥ec Ec %o & 2 ¢ ® g £ %
& g s 32882 5 a £ £2% ¥ % 5
¢ 2 2% 8o 5% 5 £ & 338 22 =2
Reference Species - 08 < zft xcx U = ¢ a U a o
Sentiirk and Oner  Rat 0,04,07 55 30d °
(1996)
Dorman Rat 0,8517° 9 21d o . o o . .
etal. (2000)
Vezéretal. (2005, Rat 0,3, 1% 8 70d ° ° °
2007)
Torrente Rat 0,76,153 8 133d o ° o
etal. (2005)
Avila et al (2008) Rat 0,260,629 8° 30d °
Beaudin Rat 0,25,50 11 PND 1-150" ° °
etal. (2013),
Beaudin,
Strupp,
Strawderman,
etal.(2017)
Bonilla et al. Rat 0,9,450 8¢ 240d °
(1984)
Moreno Mice 0,4, 130 17° 14d(PND20-34) e °
etal. (2009) 0,4, 130 17°  49d (wk 12-20)
0,4,13°  17° 14+49d (PND
20-34+wk
12-20)
Yang et al. (2021) Mice 0,7, 14, 17 90d ° °
28°
Ohgami Mice 0,0.3,3 17 28d e o
etal.(2016)

Abbreviations: d, day; PND, post-natal day; wk, week.

*Treatment doses are standardised to daily doses of manganese by kg body weight (see Section 2.2.2.2).
PAfter conversion from the test substance to elemental manganese (see Section 2.2.2.2).

“Not reported; inferred based on the average content of standard rodent chows (see Section 2.2.2.2).

“The testing conditions in open-field tests differed across studies in terms of the apparatus used, mode of activity recording (most often computer-assisted or automated)
and test conditions (dark/light, habituation period yes/no), the number of test repetitions (from 6 min [Reichel et al., 2006] to 72 min [Dorman et al., 2000]).

Pupillary, pain reflex.

*Morris water maze, radial arm maze.

9As measured by the time spent in the margin of the arena.
"Until end of behavioural tests.

'Administered 5days per week.
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Exposure by gavage. Five studies administered manganese by gavage (Avila et al., 2010; Bonilla, 1984; Vezér
et al., 2007).

Senturk and Oner (1996) investigated the effects of 0, 0.4 and 0.7 mg manganese/kg bw per day administered to female
albino rats by gavage for 30 days (background diet: 5.5 mg/kg bw per day). After 15 and 30 days of exposure, the time re-
quired to reach the food in a T-maze test was three-fold longer in the low and high manganese dose groups (~ 100-120s),
compared to the control group (~ 30 s). In both groups treated with manganese, the concentrations of the element in brain
tissues and serum were elevated compared to the control groups (by up to 2.5 and 2.9-fold, respectively). The Panel notes
that the reported doses represent marginal manganese amounts as compared to the average manganese intake provided
by the rodent chow, and this contrasts with the substantial increases reported in the tissue concentrations of manganese.

Vezér et al. (2005, 2007, one experiment published twice) treated adult rats (Wistar) with 0, 4 and 16 mg manganese/kg
bw, administered by gavage for 5 days a week (which gives daily doses of 0, 3 and 11 mg/kg bw) for 70 days (assumed back-
ground diet: 8 mg/kg bw per day). Variants of an eight-arm radial maze test were conducted throughout the duration of
the study. Results of the majority of tests showed impaired performance on the spatial learning and memory tasks in both
treatment groups and in a dose-dependent manner. The pattern was the same when the working memory tasks were re-
peated 3-5 weeks post-treatment. Lower activity was found in both dose groups compared to controls after 35 and 70 days
of exposure. When tested after a 49-days recovery period, locomotor activity was comparable between the treatment and
control groups. After 70 days, the number of acoustic startle responses decreased in a dose-dependent manner, associated
with increased onset latency (similar in both dose groups). The effect of pre-pulse inhibition was also reduced in the two
treatment groups compared to the control group, with a more pronounced effect found in the low dose group. At the end
of the recovery period, the same pattern was observed regarding the number of acoustic startle responses across dose
groups, while no differences were observed when tested with pre-pulse inhibition. Compared to controls, the high dose
group had 1.5 times higher manganese concentrations in brain tissues after 35 and 70 days of exposure, accompanied by
elevated manganese concentrations in blood and other tissues. Manganese concentrations in the brain, blood and other
tissues concentrations in the low dose group were comparable to controls, except for a 1.5-fold increase in hippocampus
tissues reported after 35 days. Considering an additional manganese intake from the background diet of 8 mg/kg per bw
day (Table 2), the total manganese intakes would be 11 and 19 mg manganese/kg bw per day in the respective treatment
groups.

In another experiment in adult rats (Sprague Dawley) using comparable doses (0, 8.5 and 17 mg manganese/kg bw per
day) by gavage (background diet: 9 mg manganese/kg bw per day), Dorman et al. (2000) found no between-group differ-
ences on locomotor activity in open-field, surface righting and other reflexes, grip strength and passive avoidance test
after 21 days of treatment. A lower acoustic startle responses in the rats from the low dose groups, compared to the high
dose and control groups was reported; this isolated finding is considered incidental. Elevated manganese concentrations
were found in brain tissues in the treatment groups compared to controls, which were generally more pronounced in the
high dose group (e.g. by 1.7-fold in the cerebellum and striatum).

The Panel notes that the studies by Vezér et al. (2005, 2007) and Ohishi et al. (2012) provide inconsistent results, although
careful interpretation is needed given that several factors might have contributed to this heterogeneity [e.g. different rat
strains (Wistar vs. Sprague Dawley), tests and durations of exposure]. Further uncertainty relates to the lack of characterisa-
tion of the manganese content of the rodent chow used in the study by Vezér et al. (2005, 2007). In addition, there are
concerns given that its results were duplicated in two publications35 (Vezér et al., 2005, 2007). In view of these limitations,
the Panel considers that the experiment by Vezér et al. (2005, 2007) cannot be used to derive a reference point for manga-
nese-induced neurotoxicity.

In a study in mice, Moreno et al. (2009) investigated the effect of 0, 4 or 13 mg manganese/kg bw per day by gavage
(assumed background diet: 17 mg/kg bw per day). Three exposure time windows were tested: a juvenile exposure (14 days,
PND 20-34), adult exposure (49 days, PND 84-140) and a combined juvenile + adult exposure (14 days, PND 20-34 +49 days,
PND 84-140). Under the juvenile or adult exposure regimen, no between-group differences were found on locomotor ac-
tivity (both sexes), while decreased time in the margin of the arena was found in both treatment groups of males subject
to juvenile exposure (indicative of disinhibited behaviour) but not to adult exposure. In contrast, in the combined exposure
regimen, male mice spent more time in the margin of the arena in both treatment groups compared to controls (indicative
of increased anxiety). Regarding locomotor activity, a reduction in the total numbers of movements was observed in the
high dose group in males only, with no differences detected on the other parameters of locomotor activity (total distance
travelled and rearing movements) (both sexes). In the combined juvenile + adult exposure group, modest differences were
found between the treatment and control groups regarding manganese concentrations in serum and brain tissues, while
under the other two exposure regimens, substantially elevated concentrations of manganese were measured in various
brain tissues in both dose groups compared to controls (by three-fold and five-fold in the cortex of mice subject to juvenile
and adult exposure, respectively). The Panel notes that the number of animals across the groups varied from 11 to 18 for
the juvenile mice and 8-10 for the adult mice and as such presents a source of bias. The Panel also notes the contrasting
findings regarding the effect of manganese on mice behaviour across exposure regimens (disinhibition vs. null effect vs.
anxiety in males; no effect in females). They are considered as incidental and cannot serve as a basis to derive a reference
point for manganese-induced neurotoxicity.

*The later paper mentioned compliance with GLP conditions (Vezér et al., 2007), which was not mentioned in the initial publication (Vezér et al., 2005).

85U801 SUOWWIOD aAEa1D) a|qeal|dde ay) Aq pauieAob afe sopiLe O ‘8sn Jo se|n 10} Aid1T8uluO 8|1/ UO (SUONIPUD-pUe-SWLB)WOD" A8 | 1M Afe1q 1 jBUI|UO//:SdNY) SUONIPUOD pue SWS | 841 89S *[yZ02/£0/ST] Uo Akelqiauluo 48| ‘8oueld aUeIyooD AQ £Ty8'€20z es e’ (/2062 0T/I0p/LL0D A Atelg1jpuljuoes j9//:sdny WoJj pepeojumoq ‘2T ‘€202 ‘ZELPTEST



TOLERABLE UPPER INTAKE LEVEL FOR MANGANESE | 41 of 100

In another study in adult mice, animals were treated with 0, 7, 14 and 28 mg manganese/kg bw per day by gavage for
90days (calculated background diet: 17 mg/kg bw per day) (Reichel et al., 2006; Tran, Chowanadisai, Crinella, et al., 2002). No
between-group differences were found in performance on a rotarod test. A Morris water maze test was performed on six
consecutive days, starting 48-hours after the last manganese administration. During the first 5 days (acquisition period), no
differences in escape latency were observed between the groups. On the last day (probe trial), the animals in the high dose
group crossed the platform less times in comparison to controls (mean (range) number of platform crossings: 1.7, 1.5, 1.1 and
0.8, in the control, low, mid and high dose groups, respectively). No consistent pattern was observed regarding the swim-
ming path lengths in the target quadrant. Manganese content of mice hippocampi were slightly elevated in the three dose
groups compared to controls (ca. 1.3-fold higher; not dose-related) (no other tissues analysed). The Panel considers that the
findings regarding the number of platform crossings in the probe trial provide weak evidence for an adverse effect of the
manganese treatment and are insufficient to derive a reference point for manganese-induced neurotoxicity from this study.

Exposure through drinking water.  Five studies administered manganese through drinking water (Dorman et al., 2000;
Ohishi et al., 2012; Vezér et al., 2007).

Torrente et al. (2005) exposed adult rats to 0, 76 and 153 mg manganese/kg bw per day via drinking water for 133 days
(assumed background diet: 8 mg/kg bw per day). In addition, half of the animals from each dose groups were subject to a
restraint stress. Locomotor activity in an open-field was recorded and passive avoidance test and water maze test were per-
formed, indicating no consistent patterns. Among animals not subject to stress, higher number of rearings and increased
distance in the centre were found in the low dose compared to control groups, but not in the high dose group (open-field
test), while lower performance compared to controls was found on the water maze task in the high dose group only. Among
the animals subject to stress, no between-group differences were found on those tests, except for a reduced total distance
travelled in the high dose versus control groups (open-field). No between-group differences were found on the passive
avoidance test under neither of the stress regimens. Manganese concentrations in whole brain and cerebellum were found
to be elevated in all groups treated with manganese compared to controls (by two to three-fold; not dose-related).

In an experiment in which adult rats were administered 0, 260 and 629 mg manganese/kg bw per day for 30 days via
drinking water (assumed background diet: 8 mg/kg bw per day), (Beaudin et al., 2015) reported decreased ambulation
(both dose groups), lower incidence of vacuous chewing movements (high dose group), and lower frequency of tongue
protrusion (both dose groups), compared to controls. The numbers of rearing were similar across groups. Manganese con-
tent of brain or other tissues was not reported in this study.

In the above-mentioned study by (Foster et al., 2018; Moreno et al., 2009; Yang et al., 2021), long-term effects of manga-
nese exposure were assessed in additional groups of rats by administrating 0, 25 and 50 mg manganese/kg bw per day from
the neonatal period throughout adulthood [via micropipette (PND 1-21) and drinking water (= PND 22)]. The post-weaning
background diet provided 10.6 mg manganese/kg bw per day. Montoya staircase test was conducted between PND 120
and 150. Animals in the low and high dose group had more reaching difficulty than controls (lower number of pellets taken
from the most distant steps), with some indication of impaired ability to manipulate pellets (lower number of pellets eaten
from more distant steps, lower percent grasping success [i.e. (pellets eaten/pellets taken)x 100] on more distant steps,
higher number of pellets misplaced). The effects were more pronounced in the low dose than the high dose group. Overall,
no between-group differences were detected in the total number of pellets eaten. Effects on attention were also tested
using the same variants of a five-choice serial reaction time task as described above, starting on PND 80 (see Section 3.4.2.1)
Foster et al. (2018). Lower % response accuracy on the focused attention task (with the 3 and 6 second pre-cue delays) and
the selective attention task (when applying an odour distractor) were found in the high dose compared to the low dose
and control groups. No between-group differences were found regarding the % of premature responses or omission errors
on either tests. When tested at PND 66 and ~ 400, manganese blood and brain concentrations were higher in the treatment
groups compared to the control, although the differences in brain content were small [mean 2.14 ug/g dw (control); 2.36
pg/g dw (low dose, NS vs. control); 2.58 pug/g dw (high dose, p <0.05 vs. control) at PND 66] compared to those observed
upon neonatal exposure [mean 4.28 pg/g dw (control); 11.5 pg/g dw (low dose, p <0.05 vs. control); 13.4 pug/g dw (high
dose, p<0.05 vs. control) at PND 24]. The Panel notes that the low dose group had more pronounced impairment of motor
function than the high dose group. Therefore, in the absence of a consistent and reliable dose-response, this study is not
suitable to identify a reference point for manganese-induced neurotoxicity.

The same laboratory conducted a similar experiment in which rats were treated with 0 and 50 mg manganese/kg bw
per day from PND 1 to PND 145 (Beaudin et al., 2015; Beaudin, Strupp, Uribe, et al., 2017). On the Montoya staircase test
conducted from PND 110 to 140, the percent grasping success was lower on the more distant steps, and the total number
of pellets eaten was lower in the treated group versus control group; the number of pellets taken from more distant steps
tended to be lower in the treated versus control group (not statistically significant) Yang et al. (2021). In the baseline atten-
tion task, which started at PND 85, no between-group differences were found (% response accuracy, premature responses
and omission errors) Ohgami et al. (2016). In the selective attention task, an increase in % premature (when applying the
odour distractor) were observed in treatment versus control groups (no differences in % omission errors and decrease
in % accurate response restricted to the trial with 2-sec odour distractor). At PND 145, blood manganese concentration
was elevated in the treatment group to a level comparable to those reported by Beaudin et al. (2013); Beaudin, Strupp,
Strawderman, and Smith (2017); manganese concentration in the brain was not determined. The Panel notes that the two
experiments found consistent evidence for an impairment of fine motor functions at a dose of 50 mg/kg bw per day Foster
et al. (2018). In contrast, the pattern of findings regarding measures of attention were inconsistent Streifel et al. (2012).
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Upon administration of 0, 9 and 450 mg manganese/kg bw per day to rats via drinking water for 240days (assumed
background diet: 8 mg/kg bw per day), Bonilla (1984) reported increased activity in both dose groups compared to controls
after 1 month of exposure. No between-group differences were detected during the following months of exposure until
activity was found to be lower in both dose groups compared to controls towards the last months of observation (starting
at 6 month). The Panel notes that the level of activity increased gradually in the control group over the course of the study
and was generally similar in both dose groups (no dose-dependency). Manganese concentration of the brain or other tis-
sues was not reported in this study.

Ohgami et al. (2016) tested auditory brainstem response in young adult wild-type mice exposed to manganese in doses
of 0, 0.3 and 3 mg/kg bw per day for 28 days via drinking water (assumed background diet: 17 mg/kg bw per day). Mice of
both dose groups showed acceleration of age-related hearing loss compared to controls (dose-dependent). Decreased
density of spinal ganglion neurons with increased number of lipofuscin granules was reported in the high dose group
(findings in low dose group NR). The Panel notes that the doses used provided marginal manganese amounts as compared
to the average manganese intake provided by standard rodent diets. In a single dose study by Muthaiah et al. (2016), no dif-
ference in auditory brainstem response was found between rats exposed to 359 mg manganese/kg bw per day for 90 days
via drinking water and controls. The Panel notes that the studies evaluating possible manganese-induced ototoxicity are
scarce.

Conclusions on neurotoxicity studies in adult animals.  The Panel notes that in several studies, the low (and sometimes high)
experimental doses represented marginal increases as compared to the manganese intake from the background diet
(Tables 13 and 14) (Moreno et al., 2009; Ohgami et al., 2016; Sentlirk & Oner, 1996; Vezér et al., 2005; Vezér et al., 2007; Yang
et al., 2021). There are uncertainties regarding the total oral exposure to manganese in most studies as only three out of
10 studies reported the manganese content of the background diet (Beaudin et al., 2013; Beaudin, Strupp, Strawderman,
etal,, 2017; Dorman et al., 2000; Sentiirk & Oner, 1996). Another uncertainty relates to the assumptions applied to express the
treatment doses as elemental manganese (Section 2.2.2), as it was not always clear whether the reported doses referred to
elemental manganese, manganese chloride dihydrate or manganese chloride tetrahydrate (Moreno et al., 2009; Torrente
et al., 2005; Vezér et al., 2005; Vezér et al., 2007; Yang et al., 2021). The impact of these uncertainties on the characterisation
of the overall manganese exposure can be substantial, especially when the test doses are low. The quality of reporting
was low in most studies and the majority of studies were considered at moderate risk of bias (tier 2) and one study at high
risk of bias (tier 3) (Bonilla, 1984) (Appendix B.2). Information was lacking on the identity of the test substance [producer
or purity not reported; seven studies (Bonilla, 1984; Sentiirk & Oner, 1996; Dorman et al., 2000; Torrente et al., 2005;
Moreno et al., 2009; Beaudin et al., 2013; Beaudin, Strupp, Strawderman, et al., 2017; Yang et al., 2021)], on the blinding of
behavioural outcome assessors (Bonilla, 1984; Torrente et al., 2005; Vezér et al., 2005; Vezér et al., 2007; Avila et al., 2008;
Moreno et al.,, 2009; Yang et al., 2021) and on the randomisation process/similarity in baseline characteristics between the
experimental and control groups, allocation concealment and blinding of the caregivers/researchers. There was largely no
concern regarding the identity of the experimental conditions across study groups or attrition/exclusion bias, except for
the study by Moreno et al. (2009) due to substantial differences in the numbers of mice tested across groups. Overall, the
Panel considers that none of the studies can be used to identify a reference point for manganese-induced neurotoxicity.

34.3 | Mode of action of manganese-induced neurotoxicity

The molecular and cellular mechanisms underlying detrimental effects of manganese on the nervous system remain poorly
understood, although several mechanisms have been proposed and studied, including mitochondrial dysfunction, oxida-
tive stress, inflammation, apoptotic cell death, protein accumulation, endoplasmic reticulum stress (ER stress), autophagy
and glutamatergic and dopaminergic neurotoxicity (Nyarko-Danquah et al., 2020; Pajarillo et al., 2020).

Data suggest that the lysosomes, the Golgi apparatus, the endosome, mitochondria as well as the nucleus may be sig-
nificant pools of intracellular manganese and targets of its toxicity with most studies focusing on mitochondrial dysfuntion
(Chen et al., 2018).

34.3.1 | Mitochondria
Mn?* may have a special affinity for mitochondria, as these organelles are preferable targets for manganese intracellular
accumulation (Gavin et al., 1992) with the highest manganese accumulation rate after chronic exposure observed in the
mitochondria of astrocytes and neurons (Moreno et al., 2009). When in excess, manganese has been reported to disrupt
mitochondrial ATP production and induce oxidative stress (Gunter et al., 2012; Malecki, 2001; Zheng et al., 1998). Other
proposed mechanisms include direct neuronal toxicity by the inhibition of mitochondrial respiration, leading to energy
failure, impaired functions of glial cells (astrocytes and microglia), oxidative stress and excitotoxicity (Morcillo et al., 2021;
Nyarko-Danquah et al., 2020).

A possible further molecular mechanism is proposed by an in vitro study conducted by Diessl et al (2022), who reported
that excess cellular manganese selectively disrupts biosynthesis of coenzyme Q (CoQ) via erroneous insertion of manga-
nese in the diiron centre of Coq7, resulting in failure of mitochondrial bioenergetics.
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34.3.2 | Astrocytes, oxidative stress and neuroinflammation

Hazell et al. (2006) reported that rats dosed intraperitoneally with 50 mg MnCl,/kg bw (once or daily for 4days), had astro-
cytosis (nuclear pallor, chromatin margination, swollen processes) in both cortical and sub-cortical structures (1%-5% of all
astrocytes after 1 day, 10%-20% after 4 days treatment). Astrocytosis was prevented by co-treatment with the antioxidant
manganese chelator CDTA or N-acetylcysteine, suggesting mediation via oxidative stress. The authors suggested that ef-
fects of manganese on mitochondria are consistent with evidence that manganese produces oxidative stress in astrocytes
via production of reactive oxygen species (ROS).

Itis also suggested that manganese can impair the function of astrocytic glutamate transporters (glutamate transporter
1, GLT-1 and glutamate aspartate transporter, GLAST) and glutamate uptake, leading to disruption of glutamate homeo-
stasis and excitotoxic neuronal injury, eventually causing neurodegeneration (Fumagalli et al., 2008; Karki et al., 2015; Lee
et al.,, 2009; Pajarillo et al., 2022).

Several studies noted that hepatic encephalopathy (HE) is another neuropathological condition associated with as-
trocyte-mediated manganese toxicity, which is characterised by brain oedema secondary to astrocyte swelling (Karki
et al,, 2015; Krieger et al., 1995; Norenberg, 1987; Rama Rao et al., 2007).

Since one of the roles of astrocytes is regulation of immune responses with production of cytokines and inflammatory
mediators, several studies have shown that dysregulation of mitochondrial bioenergetics in astrocytes may result in neu-
roinflammation, leading to neuronal injury (Kirkley et al., 2017; Pajarillo et al., 2022; Sarkar et al., 2018; Verina et al., 2011;
Zhao et al., 2009).

34.3.3 | Mechanisms involving alterations in neurotransmitter systems

The build-up of manganese in the brain might affect many different neurotransmitter systems as well as their brain ac-
tivity, but the evidence is mainly coming from in vitro studies (Soares et al., 2020; Kim et al., 2022). Manganese mainly
seems to accumulate in the globus pallidus and basal ganglia regions of the brain, which have a highly complex network
of neurotransmitters and therefore might result in a multitude of deviations from optimum physiology and behaviour
(Balachandran et al., 2020). At the molecular level, manganese is involved as an essential co-factor for a range of enzymes
including astrocytic glutamine synthetase involved in glutamate-GABA-glutamine cycles, the urea cycle enzymes Arginase
1 and 2, Mn superoxide dismutase (MnSOD) involved in mitochondrial oxidative stress response as well as insulin and insu-
lin growth factor receptor signalling which has been discussed to modulate acute Mn-induced acute oxidative stress and
neurotoxicity.

344 | Adverse health effects not related to neurotoxicity

34.4.1 | Infant mortality
An association between manganese concentrations in drinking water and all-cause infant mortality has been investigated
in some ecological and cross-sectional studies.

In a pilot ecological study conducted in North Carolina, manganese concentrations in groundwater (mean concentra-
tion across counties 78 pg/L, range 3-3468 ug/L) was positively associated with infant mortality. Using stepwise multiple
regression analysis, a 2.074 increase in county level infant deaths per 1000 live births for every log increase in groundwater
manganese concentration was reported (Spangler & Spangler, 2009).

The remaining studies identified were all conducted in Bangladesh. In a cross-sectional study, Hafeman et al. (2007)
investigated the relationship between manganese concentrations in well water (median 1280 ug/L, range 0 to 8610 pg/L)
and infant mortality rate among a sub-set of participants in the HEALS study (n =3824 infants born from mothers drinking
from the same well for most of their childbearing age). Infants exposed to manganese concentration in well water =400
pg/L had an increased risk of mortality in the first year (OR=1.8; 95% Cl 1.2, 2.6) compared to those exposed to manganese
concentrations <400 ug/L. Adjustment for water arsenic and social class among other variables had low impact on the
results. Conversely, no relationship was found between water concentration in tube-wells (mean 660 pg/L, range 10-3780
pg/L) and infant death in an ecological study (Cherry et al., 2010) for which data was available for 600 villages, including
details on 29,744 live births and 934 infant deaths over a period of 2years (OR=1.11; 95% Cl 0.76, 1.61 for manganese con-
centration in tube-wells water =400 pg/L vs. <400 ug/L). Similarly, in a population-based cohort study Rahman et al. (2013),
no increased risk of spontaneous abortion (n=158; OR=0.65; 95% Cl 0.43, 0.99) or perinatal mortality (n=70; OR=0.69;
95% Cl 0.28, 1.71) was found among women (n = 1875) consuming water in the highest tertile of manganese concentration
(median=1292 pg/L) versus the lowest (median =56 ug/L).

The Panel notes the inconsistency of the findings and that none of these studies reported on manganese intake.

34.4.2 | Birth-related outcomes

Preterm birth. Two prospective cohort studies have investigated the relationship between maternal blood concentrations
of manganese in the first and/or second trimester of gestation and risk of preterm birth. One was conducted in Japan
(n=14,847 pregnant women, mean concentrations of manganese in blood =15.3 pg/L) (Tsuji et al., 2018) and the other
in Suriname (n=380 pregnant women; concentrations of manganese in blood <13 pg/L=36.1% and =13 pg/L=63.9%;
(Sewberath Misser et al., 2022). Preterm delivery was defined as < 34 and 37 weeks of gestation, respectively. None of these
studies report an increased risk of preterm delivery at higher manganese concentrations in maternal blood.
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One cross-sectional study conducted in Spain (n=327 mother-infant pairs) (Freire et al., 2019) reported an OR for preterm
birth (< 37 weeks of gestation) of 1.08 (95% Cl, 0.91-1.26) for each 10% increase in placental manganese concentrations. In a case
control study from Indonesia (n=51 women; 26 preterm deliveries (cases) and 25 term deliveries (controls) (Irwinda et al., 2019),
manganese concentrations in maternal and cord blood did not significantly differ between groups, whereas placental concen-
trations of manganese were significantly lower in the preterm group (099 vs. 0.42 pug/g, p <0.001). The Panel notes than none of
these studies reported a positive association between manganese concentrations in the placenta and risk of preterm delivery.

Finally, the only study investigating manganese intake in relation to preterm birth was a prospective cohort study con-
ducted in Iran (n=1033 pregnant women) (Bakouei et al., 2015). Maternal manganese intake was assessed through an FFQ
during the second trimester of pregnancy and preterm delivery was defined as < 34 weeks of gestation. Baseline mean (SD)
daily intake of manganese was significantly higher in mothers with preterm delivery (n=72; 3.60 [3.21] mg) versus those
delivering at term (n=961; 2.99 [2.35] mg), (p=0.03). In multiple logistic regression analysis adjusting for maternal charac-
teristics and maternal dietary intakes of macronutrients and other micronutrients, the manganese intake was positively
associated with the risk for preterm birth (OR=1.12; 95% Cl 1.02, 1.23). The Panel notes that the unit increase in manganese
intake associated with the reported OR was not provided in the publication.

Birthweight

A number of cross-sectional and prospective cohort studies conducted in different geographical areas (US, Canada,
China, Japan, Suriname, Korea, Iran, Costa Rica) have addressed the relationship between manganese concentrations in
maternal or cord blood and/or maternal tissues (teeth, hair) and birthweight (as continuous variable or as dichotomous
variable as risk of being small for gestational age [SGA]) mostly in infants born at term.

Some studies reported an inverted U- or J-shape associations between maternal manganese concentrations in blood at
delivery and birth weight (Ashley-Martin et al., 2018; Chen et al., 2014; Zota et al., 2009) or risk of being SGA (Eum et al., 2014;
Yamamoto et al., 2019) (infant males only) in cross-sectional analyses, whereas no relationship was shown when blood
samples were taken in the first or second trimester in longitudinal analyses (Ashley-Martin et al., 2018; Daniali et al., 2023;
Mora et al., 2015; Sewberath Misser et al., 2022).

Except for one study conducted in China which reported an inverted U-shape relationship (Guan et al., 2014), no asso-
ciation was found between manganese concentrations in cord blood and birthweight (Ashley-Martin et al., 2018; Chen
et al., 2014; Zota et al., 2009).

Two studies have used manganese concentrations in mothers' teeth or hair as indicators of long-term manganese ex-
posure. In the Wayne County Health, Environmental, Allergy and Asthma Longitudinal Study (WHEALS; n=138) (Cassidy-
Bushrow et al., 2019) manganese concentrations in teeth during the second and third trimester of pregnancy were positively
associated with birthweight Z-scores at delivery (8=0.21,95% Cl; 0.05, 0.37, p=0.01 for both time points), whereas hair man-
ganese concentrations were positively associated only with chest circumference in a cohort of 380 mother-infant pairs of
the Infants' Environmental Health Study (ISA) in Costa Rica (Mora et al., 2015).

Few animal studies, retrieved for the systematic review of manganese neurotoxicity (see Section 3.4.2), investigated
the effects of manganese treatment during pregnancy on birthweight (Ohishi et al., 2012; Oshiro et al., 2022; Pappas
et al., 1997). No differences in birthweight between treatment and control groups were reported.

Birth defects. Case—control studies have addressed the relationship between congenital malformations and manganese
concentrations in water, placenta, milk and maternal hair.

Higher manganese concentrations in drinking water (range 0.015-1.116 mg/L) were statistically significantly associated with
a higher prevalence of conotruncal heart defects (Prevalence Ratio for >90th percentile versus < 50th percentile: 1.6, 95% Cl 1.1,
2.5) in a semi-ecological study which included 20,151 infants with selected birth defects (cases) identified by the North Carolina
Birth Defects Monitoring Program (BDMP) and 668,381 infants (controls) with no congenital malformations (Sanders et al., 2014).
No significant association between manganese concentrations in drinking water and other measured birth defects was found.

Two additional studies were conducted in China. One study (80 cases, 50 controls) assessed the relationship between
placental manganese concentrations and risk of neural tube defects (NTDs) (Liu et al., 2013). Median placental manganese
concentration was significantly higher in cases than in controls (131.60 ng/g [95% Cl 99.25, 166.76] vs. 101.54 ng/g [95% Cl
80.14, 119.79], respectively), whereas a placental manganese concentration above the median (> 117.89 ng/g) was associ-
ated with a 4.26-fold increased risk of NTDs (95% Cl 1.23, 14.79), mostly driven by spina bifida, whereas the risk for anen-
cephaly was not significant. The second study (322 cases, 333 controls) (Wang et al., 2022) assessed the risk of congenital
heart defects (CHD) and reported higher concentrations of manganese in maternal hair in cases versus controls, where
mothers with high manganese concentration in hair (=3.01 pg/g) were more likely to have children with CHDs compared
with mothers with medium manganese concentration (adjusted OR=2.68, 95% Cl=1.44-4.99, p <0.002).

A study conducted in India (Dang et al., 1983) reported slightly higher manganese concentrations in mother's milk be-
tween cases of congenital hydrocephalus (n=7) and meningomyelocele (n=2), and controls (n=16). Mean (SD) manganese
concentrations in milk, measured at 1.5-3 months post-partum were 25.3 (13.8) ng/g and 23.0 (8.3) ng/g, respectively.

No animal study, retrieved for the purposes of systematic review, reported birth defects and malformations in treated
animals.

The Panel notes that human data on birth defects are scattered regarding both the exposure and the endpoints as-
sessed, and the limitations of case—control studies to infer causality.
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34.4.3 | Metabolic syndrome
Case—control and cross-sectional studies have addressed the relationship between dietary intake of manganese and prev-
alence of metabolic syndrome (MetS). All the studies identified were conducted in Asia (China, Korea).

Case-control studies reported no association or an inverse association between manganese intake and MetS. Data from
5136 adults (2084 men, 3052 women) was collected in the context of the 2007-2008 Korea National Health and Nutrition
Examination Survey (KNHANES), among which 540 men (25.9%) and 748 women (24.5%) met the diagnostic criteria for
MetS. Dietary data were collected through 24-h dietary recalls (unclear how many days per subject). Manganese intake
was significantly lower in women with MetS(+) versus women without MetS(-) (3.55 vs. 3.81 mg/day; p=0.0086), whereas
no difference was observed in men. No association between manganese intake and prevalence of MetS or any of its com-
ponents was found in any sex (Choi & Bae, 2013). In another study conducted in China (221 cases and 329 controls) dietary
manganese intake (3-day food diary, 2 weekdays and one weekend day) of cases and controls was not significantly differ-
ent (3.68 vs. 4.02 mg/day; p=0.30) (Li et al., 2013). All quartiles of manganese intake were associated with a lower risk of
MetS as compared to the lower quartile (adjusted OR: 0.47, 95% Cl, 0.29-0.79 for the highest vs. the lowest).

In a cross-sectional study conducted also in China, data was collected in the context of the 5th Chinese National Nutrition
and Health Survey [n=2111 adults, 998 men and 1113 women, of which 580 MetS(+), 237 men and 353 women]. Intake data
was assessed using 3-day 24-h dietary recalls. Higher manganese intake was associated with a decreased risk of MetS in
men and with an increased risk of MetS in women (OR for the highest vs. the lowest quartile=0R=0.62; 95% Cl 0.42, 0.92
for men and OR=1.56; 95% Cl 1.02, 2.45 for women, respectively; p-per-trend across quartiles=0.043 for men and 0.078
for women). Intakes of manganese Q1 and Q4 were<5.12 and>6.87 mg/day for men and <4.26 and > 5.79 mg/day for
women. Manganese intake was inversely associated with abdominal obesity (p-trend=0.016) and hypertriglyceridemia
(p-trend =0.029) in men, but positively associated with low HDL-cholesterol in both men (p-trend =0.003) and women (p-
trend <0.001). No significant associations between manganese intake and other components of the MetS were found in
any sex.

In a recent systematic review and meta-analysis on the relationship between different indicators of exposure to man-
ganese (dietary intake, serum, urine, whole blood) and MetS, nine cross-sectional and three case—control studies were
included, among which the only three studies reporting on dietary intake are described above. No increased risk of MetS
was detected when comparing the highest versus the lowest manganese exposure levels for any exposure indicator (Wong
et al., 2022).

3.5 | Hazard characterisation
3.51 | Selection of the critical effect

The Panel retains neurotoxicity as the critical effect of excess manganese dietary intake.

The neurotoxic effects in humans of chronic exposure to high manganese concentrations by inhalation, in particular in
occupational settings, are well documented. However, the doses associated with adverse effects cannot be readily extrap-
olated to the oral exposure route in view of the toxicokinetic differences between inhalation and oral intake. As an essential
element, manganese concentration is actively controlled by homeostatic mechanisms regulating absorption, distribution
and excretion. However, when the hepatic regulatory mechanisms of manganese body burden are impaired (e.g. chronic
liver disease, genetic mutation affecting manganese transporters), dietary exposure to manganese can cause neurotoxicity
(Sections 3.2.4.4 and 3.2.4.5). In the general population, some cases of dietary intoxication with manganese have also been
reported, where typical signs and symptoms of manganism were associated with MRI signals indicative of manganese
accumulation in the globus pallidus (Section 3.4.1.7). In human observational studies, drinking water has been the most
studied source of exposure. In addition to the ecological studies previously assessed by the SCF (SCF, 2000), several obser-
vational studies (mostly cross-sectional) have become available which investigated the association between manganese
concentration in drinking water and neurological outcomes, especially in infants and children (Sections 3.4.1.1-3.4.1.4).
Overall, limited conclusions can be drawn from these studies due to the insufficient characterisation of manganese dietary
exposure (e.g. water concentration as a proxy for manganese exposure through drinking water, no quantification of other
dietary sources of manganese), concerns regarding incomplete adjustment for confounding (e.g. other environmental and
lifestyle risk factors) and/or uncertainties regarding the temporality of the relationship (evidence mostly from ecological
or cross-sectional designs). Of note, except in cases of contaminated drinking water (e.g. due to anthropogenic activities),
this source of manganese is a minor contributor to total manganese dietary intake. One randomised controlled trial (Finley
et al., 2003) among adult female volunteers investigated the potential effects of consuming a supplemental dose of 20 mg
manganese per day (as MnSO,) for 8weeks on the nervous system and clinical neuropsychological tests (Section 3.4.1.6).
Although no adverse effect was identified in that study, due to its' small size and relatively short duration, it cannot be used
to establish the long-term safety of this dose.

The evidence from animal experiments was also reviewed (Section 3.4.2). The Panel notes that eligible studies in animals
were mostly mechanistic and were not designed to identify a reference point. The individual studies had several method-
ological limitations, which affect the Panel's confidence in the robustness of the available data. Despite these limitations,
the Panel considers that the body of evidence indicates that oral exposure to manganese can affect neurological functions
in rodents. Both motor and learning abilities were found to be affected. The Panel notes that there are indications that
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manganese may increase in the brain at a higher rate in the neonatal phase (Beaudin et al., 2013; Dorman et al., 2000) or
juvenile phase (Moreno et al., 2009) compared to adulthood. However, data to assess whether rodents may be more sus-
ceptible to the effects of manganese during the developmental period compared to adulthood are limited. The few stud-
ies which investigated the effect of manganese in early life versus adult under similar exposure and behavioural testing
conditions provided little evidence for a higher susceptibility to the neurotoxic effects of manganese in early life (Beaudin
et al.,, 2013; Beaudin et al., 2015; Beaudin, Strupp, Strawderman, & Smith, 2017; Dorman et al., 2000; Moreno et al., 2009).

Finally, the Panel notes that MnCl, was used in all animal studies included in this assessment (Section 3.4.2). Regarding
human data, most of the evidence relates to manganese forms as present in drinking water (Section 3.4.1). Although some
data indicate the oxidation state and solubility of manganese forms and the presence of some food compounds (e.g. iron,
phytates) may affect manganese intestinal absorption (Section 3.2.1), data on the influence of these factors on dietary
manganese toxicity profile are limited.

Overall, the Panel considers that available human and animal studies support neurotoxicity as a critical effect of excess
dietary intake of manganese. However, data are not sufficient and suitable to characterise a dose-response relationship
and identify a reference point for manganese-induced neurotoxicity.

3.5.2 | Derivation of health-based guidance values

In the absence of adequate data to characterise a dose-response relationship and identify a reference point for manga-
nese-induced neurotoxicity, no UL for manganese intake can be established for any population group. For nutrients for
which there are no, or insufficient, data on which to base an UL, the Panel is requested to ‘give an indication on the highest
level of intake where there is reasonable confidence in data on the absence of adverse effects’ (see Section 1.1), i.e. a safe
level of intake (EFSA NDA Panel, 2022).

The Panel notes that there is no indication in the general population that manganese intake is associated with adverse
effects, including neurotoxicological effects, at the levels of background dietary intake (i.e. manganese intake from nat-
ural dietary sources only). Therefore, the Panel considers that the estimated background dietary intakes of manganese
observed among high consumers (95th percentile) in representative groups of the population can provide an indication
of the highest level of intake where there is reasonable confidence on the absence of adverse effects. The P95 estimates
of background intakes of manganese derived in this assessment (Section 3.3.2) are used to establish safe levels of intake of
manganese. The Panel decided to take the average value of the four highest P95 estimates across countries for the respec-
tive population groups (rounded to the nearest milligram), and the following values of safe level of intake are derived:
8 mg for adults > 18 years (including pregnant and lactating women), 7 mg for adolescents aged > 14 to < 18 years, 6 mg for
children and young adolescents aged >7 to < 14 years, 5 mg for children aged >3 to <7 years and 4 mg for toddlers aged
>1to < 3years. As data are insufficient to determine when manganese homeostatic processes become fully mature during
infancy, a more conservative approach is taken for infants, by calculating the average value of all available P95 across coun-
tries for this age group. A safe level of intake of 2 mg is derived for infant aged >4 months to < 1 year. The Panel considers
that these safe levels of intake apply to total manganese intake from all dietary sources, including fortified foods and food
supplements.

3.6 | Risk characterisation

The Panel notes that the application of safe levels of intake for risk assessment and risk management is more limited than
an UL because the proportion of people at risk of adverse effects in a population cannot be estimated, as the intake level
at which the risk of adverse effects starts to increase is not defined.

The Panel also notes that the main contributors to manganese intake from the background diet are grain-based prod-
ucts, tea and other manganese-rich beverages (e.g. hibiscus, maté infusions) (Section 3.3.2.2). The Panel notes that specific
subgroups of the population, such as high consumers of tea and other manganese-rich beverages or vegetarians, may
have habitual intakes of manganese in the higher range of the intake distribution in the general population (Section 3.3.4).
The potential risk of adverse effects related to additional consumption of manganese from other sources (e.g. fortified
foods and/or food supplements) among high consumers of manganese from natural sources is unknown.

Individuals with impaired hepatic function or with iron deficiency have been suggested to be possibly at higher risk of
manganese toxicity (Section 3.2.4.6). In addition, evidence from some case reports indicates that some individuals in the
population may be particularly vulnerable to manganese toxicity due to specific genetic mutations of manganese trans-
porters impairing manganese excretion (Section 3.2.4.5). The Panel considers that current data are insufficient to charac-
terise subgroups of the population who may be potentially at higher risk of manganese toxicity.

4 | CONCLUSIONS

No UL for manganese can be established for any population group. The Panel establishes the safe levels of intake of manga-
nese reported in Table 15, based on observed background intake of manganese among high consumers from the general
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population (P95 estimates). The Panel considers that these safe levels of intake apply to total manganese intake from all
dietary sources, including fortified foods and food supplements.

TABLE 15 Safe levels of intake for manganese.

Safe level of intake

Age (mg/day)
>4 months to <1 year 2
>1to <3years 4
>3 to<7years 5
27 to <14years 6
> 14 to <18years 7
>18years® 8

®Including pregnant and lactating women.

5 | RECOMMENDATIONS FOR RESEARCH

» There is a lack of biomarkers of exposure and biomarkers of effect that can be used for the risk assessment of dietary
manganese. Further investigation of homeostatic and adaptive responses to excess manganese intakes and of the
mode(s) of action of manganese neurotoxicity may allow the identification of specific biomarkers of effect (e.g. neuro-
logical biomarkers) and/or early signs of toxicity, which could support the characterisation of a dose-response.

» Observational studies in humans have mostly investigated associations between manganese water concentration and
neurological functions. Further studies investigating the relationship between total dietary intake of manganese and
adverse effects on neurological functions especially during developmental phase and in populations with high dietary
exposure are needed.

 Further investigation of potential specific susceptibility (e.g. age, iron status) to manganese toxicity is needed. Genetic
traits that may influence individual susceptibility also requires further investigation, including the prevalence of specific
mutations of manganese transporters in European populations.

« Additional research is needed regarding potential differences in the toxicity profile of the various dietary forms of man-
ganese (e.g. organic vs. inorganic manganese).

« Additional research is needed regarding potential manganese toxicity on other endpoints besides neurotoxicity.

« For the intake assessment of manganese and risk characterisation, there is a need to generate more data on manganese
intake from food supplements and fortified/enriched foods among users of those products.

ABBREVIATIONS

Ach acetylcholine

AD Alzheimer's disease

ADHD attention-deficit hyperactivity disorder

ADME absorption, distribution, metabolism and excretion

Als adequate intake

ANOVA analysis of variance

Anses French Agency for Food, Environmental and Occupational Health & Safety
ANS Panel Panel on Food Additives and Flavourings

AR average requirement

As arsenic

ASR acoustic startle response

aSy a-Synuclein

ATP adenosine triphosphate

ATSDR US Agency for Toxic Substances and Disease Registry

AB amyloid-f3

BBB blood brain barrier

BDHI Buss-Durkee Hostility Inventory

BDMP Birth Defects Monitoring Program

BMI body mass index

BoE body of evidence

BOT-2 Bruininks-Oseretsky test, 2nd edition

BSID-III Bayley Scales of Infant and Toddler Development, 3rd edition
bw body weight

BWM Biel water maze

CANTAB Cambridge Neuropsychological Test Automated Batteries
CAS Chemical Abstracts Service
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CHD congenital heart defects

a confidence interval

CRS-P Conners' Rating Scales-Parent's version

CRS-T Conners' Rating Scales-Teacher's version

cS cross-sectional

CSF cerebrospinal fluid

DA dopamine

DANSDA The Danish National Survey of Diet and Physical Activity
DE Dams exposure

DMT1 divalent metal transporter-1

DNMS delayed no match to sample

DRL differential reinforcement of low rates of responding
EPA US Environmental Protection Agency

EVM Expert Group on Vitamins and Minerals

FAO Food and Agriculture Organization

FCDB EFSA Food composition database

FEEDAP Panel Panel on Additives and Products or Substances used in Animal Feed
FFQs Food frequency questionnaires

FoodEx Food classification and description system

FPN ferroportin

FPQ food propensity questionnaire

GABA gamma aminobutyric acid

GD gestational day

GNPD Global New Products Database

HBGVs health-based guidance values

HCT human controlled trial

HDL high-density lipoprotein

HEALS Health Effects of Arsenic Longitudinal Study

HOME Home Observation for Measurement of Environment
HR hazard ratio

IBS interpersonal behaviour survey

INCA 3 Third French Individual and National Food Consumption Survey
IOM Institute of Medicine

IQ intelligence quotient

IQR interquartile range

ISA Infants' Environmental Health Study

KNHANES The Korea National Health and Nutrition Examination Survey
LOAEL lowest-observed adverse effect level

LoE lines of evidence

LOV lacto-ovo-vegetarian

MetS metabolic syndrome

MINIMat Maternal and Infant Nutrition Interventions in Matlab
MLS motor performance series

Mn,O, Manganese tetroxide

Mndl, Manganese dichloride

MnCO, Manganese carbonate

MND Motor neuron disease

MnO, Manganese dioxide

MnPO, Manganese phosphate

MnSO, Manganese sulfate

MnSOD manganese superoxide dismutase

MRI magnetic resonance imaging

MRL minimal risk levels

mRNA messenger RNA

MWM Morris water maze

NCFS I National children's food survey Il

NDA Panel EFSA Panel on Nutrition, Novel Foods and Food Allergens
NOAEL no-observed adverse effect level

NA not applicable

NCC nested-case control

NEUPSILIN-Inf Brazilian Child Brief Neuropsychological Assessment Battery
NPNS National Pre-School Nutrition Survey
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NR not reported

NTDs neural tube defects

NTFS National Teen's Food Consumption Survey |
NTP National Toxicology Program

NVS I Nationale Verzehrsstudie Il

oD object discrimination

OHAT Office of Health Assessment and Translation
OR odds ratio

OTAP Office of Health Assessment and Translation
PC prospective cohort

PD Parkinson's Disease

PND post-natal day

PPI pre-pulse inhibition

PRI population reference intake

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
P5 5th percentile

P95 95th percentile

RCPM Raven's Coloured Progressive Matrices

RCT randomised control trial

RfD reference dose

RNA ribonucleic acid

RoB risk of bias

ROS reactive oxygen species

RP Reference point

RR relative risk

SC Scientific Committee

SCF Scientific Committee on Food

SD Sprague Dawley

SD standard deviation

SDQ strengths and difficulties questionnaire
SEM standard error of the mean

SGA small for gestational age

sQ sub-question

SOD superoxide dismutase

STAXI State—Trait Anger Expression Inventory

SUL safe upper level

SV semi-vegetarians

TA time averaged

TDI tolerable daily intake

TDS total Diet Study

UA uncertainty analysis

UF uncertainty factor

UL tolerable upper intake level

WASI Wechsler Abbreviated Scale of Intelligence
WG Working Group

WGTA Wisconsin General Test Apparatus

WHEALS Wayne County Health, Environmental, Allergy and Asthma Longitudinal Study
WHO World Health Organization

WISC-IV Wechsler Intelligence Scale for Children, 4th Edition
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APPENDIX A

Literature screening and selection

A1

Flow Diagram for the selection of human studies for sub-question 3a
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Records excluded
n =6205

Full-text articles excluded, with
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A.2 | Flow chart for the selection of animal studies for sub-question 3b
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APPENDIX B
Risk of Bias appraisal

B.1 | RISKOF BIAS (ROB) APPRAISAL OF HUMAN STUDIES

B.1.1. | Intervention study
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8 = 8 5 3 e 9 g ©

(] c 9 c o = o £ o c E 2

= £ v 5 (S £ = c ) s ®

H s 32 o ) s S £ 1 v 2

) o =0 & 8 T s v Y T = 3 £

g 3 5 5& £3 58 2§ £ E £3

Reference a (<) = g3 U2o e X =< S @ < o £
Finley RCT Steadiness 2 + + - + - + +
etal.(2003)  per Hostility 2 5 i S o = + +
RCT Anger 2 + + - + - + +
RCT Behaviour 2 + + - + - + +

Abbreviations: RCT, Randomised cross-over trial.

*The individual rating for each question was combined by an algorithm and translated to an overall tier of reliability for each individual study (RoB tier 1: low RoB; RoB tier
2: moderate RoB; RoB tier 3: high RoB).

bExpertjudgement was translated into a rating scale for each question to be answered as follows: (++): definitely low RoB; (+): probably low RoB; (NR): not reported; (-):
probably high RoB; (— -): definitively high RoB.

B.1.2. | Observational studies
Reference Outcome Tier® Risk of bias domains®
= — 2
£ £x o o v5
o X [T~ £ = £ T =
v v = £ c O [T
o c o € 9 2 = g c £z
£ (O v e S =, ° = ®
c s T a T °% o8 a = = C
= Y] &= o = e = 25 = g £
g : - £ 5§ BEs & £
Reference () (<) = 93 U o v X <So < o £
Cohort studies
Dion et al. (2018) PC 1Q 1 + + + + - +
Miyake et al. (2022) PC Behaviour 1 + + + + - +
Rahman et al. (2017) PC 1Q 1 + + + + +
PC Behaviour 1 + + + + o
Schullehner PC  ADHD 1 + + + + +
et al. (2020)
Rodrigues PC Neurodevelopment 2 + + - + - +
etal. (2016)
Cross-sectional studies
Bouchard et al. (2011) CcS 1Q 1 + + + + +
Bouchard et al. (2018)  CS 1Q 1 + + + e g
Khan et al. (2011) (@ Behaviour 1 + + + + + +
Oulhote et al. (2014) CcS Memory 1 + + + + + +
CS  Attention 1 + + + + + +
CS  Motor 1 + + + + + +
(&) Hyperactivity 1 + + + + + +
Dion et al. (2016) s MRI 2 + - - - " +
Wasserman (&) 1Q 1 + + + + 4L +
etal. (2004)
Wasserman (&) 1Q 1 + + + + it +
etal. (2006)
Wasserman (&) 1Q 1 + + + 4L +
etal. (2011)
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Reference Outcome Tier® Risk of bias domains®
= o >
c > c > o) 5 e
T ¥ ‘o & £ 8c ® =
v = v = o c O o ©
o c o € o e = 8 = £ 2
c E o= 3£ 5 8= ., s £%
) =) ° o - = = C
2 ¥ & o = 9 e =25 = @ =
a = = € o € = S ) -] £ 9
v = = o x o 3 R~ 25 = £ = &
Reference (=) o = U o U o (¥) (= < o O < © &
Khan et al. (2012) (& Academic 2 + + - + + +
achievement
Kondakis et al. (1989) CcS Neurological 2 - + - + + +
symptoms
Nascimento cs Cogpnitive function 2 + + =€ + + +
et al. (2016)
Parvez et al. (2011) CcS Motor function 2 + + + +
Vieregge et al. (1995) (@) Neurological 2 + + - +
symptoms
Nascimento (@) 1Q 3 + NR - + +
et al. (2015)

Abbreviations: ADHD, attention-deficit hyperactivity disorder; CS, cross-sectional; IQ, intelligence quotient; PC, prospective cohort.
?The individual rating for each question was combined by an algorithm and translated to an overall tier of reliability for each individual study (RoB tier 1: low RoB; RoB tier
2: moderate RoB; RoB tier 3: high RoB).
b Expert judgement was translated into a rating scale for each question to be answered as follows: (++): definitely low RoB; (+): probably low RoB; (NR): not reported; (-):
probably high RoB; (— -): definitively high RoB.

¢ Different from the preparatory work, the Panel identified cause for concern regarding the risk for confounding.

9 For pregnancy and children studies, the following factors were considered as key confounders: offspring age, offspring sex, maternal (or parental) socioeconomic status
and/or education, prematurity (conditional), maternal smoking (conditional), maternal alcohol consumption (conditional), parity/number of siblings (conditional), other
contaminants (conditional), birth weight (conditional); for pregnancy and children studies, the following factors were considered as key confounders: age at outcome

assessment, sex, socioeconomic status and/or education, smoking, ethnicity (conditional), other contaminants (conditional).

B.2 |

Reference

Studies in rats

Sprowles et al. (2018)

Avila et al. (2010)

Avila et al. (2008)
Beaudin et al. (2013)

Beaudin, Strupp, Uribe,
etal. (2017)

Brenneman et al. (1999)
Conley et al. (2020)
Dorman et al. (2000)

Risk of bias (RoB) appraisal of animal studies

Doses (how many) and outcome(s)

No. Doses

_

Outcome(s)

Elevated zero mazeLight—dark
testOpen-fieldPPI of
acoustic startleCincinnati
water mazeMorris water
mazelatent inhibition

Open-fieldRotarod test

Open-field
Staircase test

Focused Attention
TasksSelective Attention
Task with Olfactory
Distracters

Motor function
Open-field

Motor functionPassive
Avoidance Acoustic startle

Tier

Tier

Risk of bias domains?

Randomisation

+

NR
NR
NR

NR
NR

Allocation concealment

NR

NR
NR
NR

NR

NR

w
c
.2
=
T
£
)
v
®
-
c
(7]
£
‘=
]
%
X
(]
®
i
S
c
]
=

Blinding

Attrition

Confidence in exposure

+

NR
NR

++
NR

Confidence in outcome
Other biases (litter effects)

+

NR

NR

NR

(Continues)
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(Continued)

Kern et al. (2010)
Ohishi et al. (2012)

Oshiro et al. (2022)

Pappas et al. (1997)

Reichel et al. (2006)

Sentiirk and
Oner (1996)

Torrente et al. (2005)

Tran, Chowanadisai,
Lénnerdal,
et al. (2002)

Tran, Chowanadisai,
Crinella, et al. (2002)

Vezér et al. (2005, 2007)

Amos-Kroohs
et al. (2015)

Amos-Kroohs
etal. (2017)

Andrade et al. (2017)
Bailey et al. (2019)

Beaudin et al. (2015)

Beaudin, Strupp, Uribe,
etal. (2017)

Betharia and
Maher (2012)

Betharia and
Maher (2012)

Fordahl et al. (2012)

Kwiecinski and
Nowak (2009)

Elevated plus maze

Functional examination in F1
Grip strength in F1 T-maze
testin F1

Novel object recognition Morris
water maze Two-choice
reaction time

Elevated plus maze on PND90
Spontaneous motor activity
on PND17 Morris water maze
on PND 25-20 Radial arm
maze on PND90

Developmental landmarks
(PND 1 to 21) Sensory and
motor function (PND 9 to 13)
Negative geotaxis (PND 8 to
12) Locomotor activity and

T-maze

Open-field Water maze task
Passive avoidance

Burrowing detour test Passive
avoidance test

Righting test on PND 6 Homing
test on PDN 10 Passive
avoidance test

8 arm maze Open-field

Locomotor activity Sucrose
preference Elevated zero
maze

Cincinnati water maze Morris
water maze

Motor function

Cincinnati water maze Morris
water maze Conditioned
freezing Open-field test

Skilled forelimb performance
Staircase test

Baseline attention task Selective
attention task

Morris water maze Open-field

Surface righting reflex on PND1
to 10

Home Cage

Elevated plus maze Vogel
conflict drinking test
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(Continued)

Leung et al. (1982)
McDougall et al. (2008)

Molina et al. (2011)

Muthaiah et al. (2016)

Nachtman et al. (1986)

Nkpaa, Amadi, Wegwu,
and Farombi (2019)

Nkpaa et al. (2019)
Nkpaa et al. (2022)
Nowak et al. (2011)

Oner and
Sentlirk (1995)

Su et al. (2017)
Sun et al. (2020)
Takacs et al. (2012)
Wang et al. (2020)
Zhang et al. (2021)

Kern and Smith (2011)
Kern et al. (2010)
Bonilla (1984)

Studies in mice
Foster et al. (2018)
Moreno et al. (2009)
Ohgami et al. (2016)
Yang et al. (2021)

Biswas et al. (2019)
Biswas et al. (2019)
Chepukosi et al. (2021)

Freeman et al. (2020)
Freeman et al. (2020)

w N NN

—_

Open-field test non-injected

Rotarod test Fixed and
progressive ratio tests

Elevate Pluz
maze

Distortion product
otoacoustic emissions
(DPOE) Compound action
potential (CAP) Auditory
brainstem response (ABR)
Cochleogram

Locomotor activity at 5 weeks
Locomotor activity with
d-amphetamine at 14 and
65weeks

Open-field test Forelimb grip
test Negative Geotaxis

Morris water maze
Locomotive activities

Oral activity Yawning behaviour
Stereotyped behaviour

T-maze

Morris Water Maze Test
Morris water maze
Open-field ECoG
Locomotive activities

Sunflower seed-eating test
Beam walking test

Open arena
Open arena 8-arm radial maze

Behavioural testing - Motor
function

Motor function
Open-field
Hearing measurements (ABR)

Rotarod test Morris water maze
test

Elevated plus maze
Morris water maze

Rapid murine comma and
behaviour scale

Beam traversal test Cylinder test

Rotarod test

N N W W N

w

NONNN

N

(Continues)
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(Continued)

Hill et al. (2015)

Kim et al. (2017)
Krishna et al. (2014)

Wilcox et al. (2022)

Wilcox et al. (2022)
Anjum et al. (2019)

Chandra et al. (1979)

Komura and
Sakamoto (1991)

Komura and
Sakamoto (1992)

Peneder et al. (2011)

Streifel et al. (2012)
Studies in primates

Golub et al. (2005)

Tube test Marble burying

3-chambered box Nest
building

Open-field

Open-field Grip strength Forced
swim test Pole test

Elevated zero maze Locomotor
activity Grip strength
Rotarod

Y-maze Nest building

Elevated plus maze Morris water
maze

Locomotor activity

Motor function

Motor function

Motor function

Open-field Elevated plus maze

Motor function (1-14 weeks)
Automated activity
monitoring (4 and 8 months)
Dyadic social interactions (1
to 5.5 months)

? Expert judgement was translated into a rating scale for each question to be answered as follows: (++): definitely low RoB; (+): probably low RoB; (NR): not reported; (-):

probably high RoB; (— —): definitively high RoB.
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