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ABSTRACT: Interest in the human microbiome is growing and has been, for the
past decade, leading to new insights into disease etiology and general human
biology. Stimulated by these advances and in a parallel trend, new DNA sequencing
platforms have been developed, radically expanding the possibilities in microbiome
research. While DNA sequencing plays a pivotal role in this field, there are some
technological hurdles that are yet to be overcome. Targeting of the 16S rRNA gene
with amplicon sequencing, for instance, is frequently used for sample composition
profiling due to its short sample-to-result time and low cost, which counterbalance
its low resolution (genus to species level). On the other hand, more comprehensive
methods, namely, whole-genome sequencing (WGS) and shallow shotgun
sequencing, are capable of yielding single-gene- and functional-level resolution at
a higher cost and much higher sample processing time. It goes without saying that
the existing gap between these two types of approaches still calls for the
development of a fast, robust, and low-cost analytical platform. In search of the latter, we investigated the taxonomic resolution of
methyltransferase-mediated DNA optical mapping and found that strain-level identification can be achieved with both global and
whole-genome analyses as well as using a unique identifier (UI) database. In addition, we demonstrated that UI selection in DNA
optical mapping, unlike variable region selection in 16S amplicon sequencing, is not limited to any genomic location, explaining the
increase in resolution. This latter aspect was highlighted by SCCmec typing in methicillin-resistant Staphylococcus aureus (MRSA)
using a simulated data set. In conclusion, we propose DNA optical mapping as a method that has the potential to be highly
complementary to current sequencing platforms.

■ INTRODUCTION

The relationship between the human microbiota and its host
has been extensively studied in the past decade due to its
strong association with human health and diseases.1−6 This
interest has recently promoted a fundamental paradigm shift in
the way our biological complexity is investigated and explained.
As an example, the healthy genomic ensemble of the gut
microbiota is now considered to be complementary to that of
the host, and research has been able to shed light on otherwise
inaccessible routes for carbohydrate metabolism, vitamin
synthesis, and even regulation of the immune system.7,8 The
presence of forthcoming metabolic products and signaling
molecules in distant organs is evident of the enormous
influence the gut microbiota can have on human health.
Nevertheless, the exact nature and functioning of the interplay
between these microbial communities and the host organism
are still buried beneath their overwhelmingly large genomic
landscape.9,10

In this regard, DNA sequencing technologies (also driven by
rapid advances in both hardware and data analysis strategies)
have played a pivotal role in shaping our current understanding

of the human microbiome. When no functional information at
the gene level is required, targeting of the 16S rRNA gene with
amplicon sequencing has been a mainstay for sample
composition profiling due to its short sample-to-result time
and low cost compared to that of the far more expensive
whole-genome sequencing (WGS).11 However, there is a very
large resolution gap between amplicon sequencing (genus to
species level) and WGS (single-gene and functional levels),
and the need to close this gap is evident from ongoing
technological advances in the sequencing field. More recent
third-generation sequencing platforms allow for sequencing of
the full 16S gene due to the long read lengths achieved,
pushing the resolution toward the strain level.12,13 Unfortu-
nately, the base-calling error rates of such platforms are still
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higher than desired, reducing the accuracy of strain
identification.14−16 On the WGS side of the sequencing
spectrum, recent efforts have narrowed the resolution gap with
shallow shotgun sequencing.17 Taken together, these efforts
indicate the need for a robust and low-cost platform for
longitudinal taxonomic studies.
DNA optical mapping has recently been proposed as an

inexpensive and rapid complementary approach to existing
sequencing modalities. Fundamentally, the approach relies on
site-specific fluorescent labeling of genomic material, generat-
ing long (>20 kbp) barcodes or maps that are visualized using
fluorescence microscopy. Previous works have already
demonstrated the promising potential of DNA optical mapping
for phage genome identification as well as its flexibility for
alternative labeling and color schemes.18−20 However, while
recent work showed the bacterial identification potential of
enzyme-free optical mapping using long (>100 kbp) maps,21

there is still a lack of a thorough assessment of the taxonomic
resolution for a methyltransferase-mediated approach. In this
work, such an assessment is carried out for map sizes averaging
at only 30−35 kbp using a simple yet well-documented
genomic database. The results indicate that DNA optical
mapping is capable of revealing genetic differences at the strain
level in this database, therefore, spotting the unique genomic
locations along bacterial DNA. These regions are referred to as
unique identifiers (UIs), and their use as a standalone database
for DNA optical mapping is additionally evaluated here.
Furthermore, with a simulated data set, we demonstrated that
the UI principle could also be applied in typing gene clusters,
such as the SCCmec cassette in the methicillin-resistant
Staphylococcus aureus (MRSA) genome. Together, these
outcomes indicate that the UIs of DNA optical mapping are
not limited to a single target within the organism’s genome, as
is the case for 16S sequencing, where only the variable regions
within the 16S gene cluster serve as UIs.
In summary, given the potential of DNA optical mapping to

neatly complement current sequencing platforms at the
taxonomic resolution scale, this paper aims to position this
low-cost analytical platform in the current state of the art
through a comprehensive validation of its performance in
identification.

■ MATERIALS AND METHODS

Experimental Data. DNA Extraction. An Escherichia coli
K12 (MG1655) culture was grown overnight at 37 °C on an
agar plate. Next, a single colony was inoculated in 5 mL of
autoclaved LB medium (Invitrogen) with a sterile pipette and
grown overnight at 37 °C with continuous shaking. DNA
extraction was performed using the Qiagen Puregene Yeast/
Bact Kit B according to the manufacturer’s protocol. The
concentration and purity of the DNA extracts were measured
using a Biodrop μlite UV−vis spectrophotometer.

DNA Labeling and Combing. Fluorescent labeling of DNA
extracts was performed at a final DNA concentration of 50 ng/
μL using 45 μM rhodamine B-functionalized AdoMet analogue
(referred to as compound 5a in earlier work20) and 0.18 mg/
mL M.TaqI methyltransferase enzyme. CutSmart buffer (NEB)
was added to the reaction mixture, which was then incubated
at 60 °C for 1 h with gentle shaking. To quench the enzymatic
reaction, 2 μL of proteinase k (800 units/mL, NEB) was added
to the mixture and allowed to react for 1 h at 50 °C with gentle
shaking. For purification, the sample was embedded in a 2%
agarose plug. This was done by briefly melting UltraPure Low
Melting Point Agarose (Thermo Fisher) in 1× tris-acetate-
EDTA (TAE) buffer at 70 °C, adding it to the sample and
allowing the agarose to set at 4 °C at the bottom of an
Eppendorf tube. Next, this plug was washed every 30 min with
500 μL of 1× TAE buffer at room temperature. Washing
consists of removing the buffer present and adding a new
volume, pipetting in a manner that causes the plug to come
loose from the bottom of the Eppendorf tube and float freely in
solution, enabling maximum contact with the surrounding
wash solution. After four washing steps, the agarose plug was
washed on ice twice with 2 V of 1× β-Agarase I Buffer (NEB)
for 30 min. Next, the plug was melted at 65 °C for 10 min and
treated with β-agarase (NEB) at 42 °C for 1 h with gentle
shaking. Purified labeled DNA was obtained after twofold
dialysis for 45 min using 0.1-μm-diameter Millipore dialysis
membranes (MF-Millipore membrane, Merck) floating on 1×
TAE buffer. Finally, the labeled DNA was combed on Zeonex-
coated coverslips following the standardized protocol that was
reported previously.18,22

Imaging. A Zeiss structured illumination microscopy (SIM)
Elyra microscope with a Zeiss Plan-APOCHROMAT 63× oil

Figure 1. Schematic representation of the methyltransferase-mediated DNA optical mapping workflow. A characteristic SIM image (together with a
representative zoom-in inset) extracted from the experimental E. coli data set is shown on the right side of the figure.
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immersion objective (numerical aperture 1.4) and an electron-
multiplying charge-coupled device (EMCCD) camera (ex-
posure time 300 ms/frame, EM gain setting 35) was used for
imaging. An additional 1.6× image magnification was applied.
The field of view per image was 75 × 75 μm2. The camera pixel
size projected in the sample was 80 nm/pixel. A power of ∼3
mW over the field of view was provided by a 561 nm excitation
laser. The emission was filtered using a 570−620 nm bandpass
filter. For each field of view, 25 frames were recorded for five
SIM modulation angles and five phases/angle. The illumina-
tion patterns for SIM were created by a grating with a period of
34 μm. A drop of Milli-Q water was placed on top of the
sample before imaging. SIM reconstruction was performed
using the Zeiss Zen software package. DNA fragments were
segmented manually on the SIM images using ImageJ.23 The
general workflow for DNA optical mapping is schematically
depicted in Figure 1.
Data Analysis. To assign optical maps to the set of database

genomes (or UIs), a custom MATLAB-based analysis code
was used. Briefly, after image segmentation, an intensity trace
was extracted for each DNA molecule. Cross correlation was
then used to estimate the similarity of these experimental
intensity traces with theoretical traces derived from the
genome sequences of several target microbial species
(barcodes, i.e., logical series of zeros and ones codifying the
sites at which the full genomes should produce a fluorescence
signal based on the specific enzymatic reaction performed
during the experimental stage). For each species and each
trace, the matching score obtained (i.e., the maximum of the
resulting cross-correlation function) was contrasted against a
null model. The latter was generated by (i) permuting the
corresponding theoretical barcode, (ii) computing the cross-
correlation function between the original experimental trace
and the reshuffled barcode, (iii) retaining the maximum value
of this new cross-correlation function, and (iv) repeating this
procedure a sufficiently high number of times. An empirical p-
value (p1) could therefore be calculated for every pair of
measured trace/target species: a match was deemed statisti-
cally significant if the p-value was found to be smaller than the
preset threshold.
In the second step, if a single experimental trace was

assigned to several species, the corresponding matching scores
were compared to reduce potential identification ambiguities
due to imperfect labeling. Here, an approach inspired by
bootstrapping was adopted. The subregion of the theoretical
barcode corresponding to the position of best significant
matching (which returned the largest matching score at the
global database level) was resampled by artificially removing
two randomly selected fluorescent sites, and its correlation
with the measured intensity trace was then estimated again.
This procedure was repeated a sufficiently high number of
times (i.e., the number of resampling steps as specified in the
Results section) to define a null distribution that was used to
test all of the other significant matching scores through a
second p-value metric (p2). In this case, if p2 was found to be
lower than the preset threshold, the multiple matches with the
corresponding species were discarded, and the experimental
trace was assigned to only the species featuring the largest
significant matching score at the global database level (whose
barcode was resampled). For a more detailed reading of the full
analysis procedure, we refer to earlier work.18

For all UI analyses (experimental and simulated), 1000
permutation and 1000 resampling steps were performed, and

for both steps, a significance threshold of 0.001 was imposed.
For all other analyses (experimental and simulated), 300
permutation and 300 resampling steps were performed, and a
threshold of 0.01 was set for both.

Simulated Data. A custom simulation toolbox, described
previously,18 was used to generate the simulated SIM data sets.
For all E. coli-related analyses, 1000 MG1655 molecules with
an average size of 35 kbp were simulated. For the MRSA-
related simulation, 10 000 maps of 35 kbp were simulated. For
the long-map analysis, 500 maps of 65 kbp were generated. All
simulated maps exhibit an average overstretch factor of 1.73
(based on earlier work18).

■ RESULTS AND DISCUSSION
Assigning K12 MG1655 Maps to a Complete Data-

base. In this section, the objective was to obtain a general
indication of the taxonomic resolution of enzyme-mediated
DNA optical mapping by matching all 443 experimental and
1000 simulated DNA maps, obtained from the K12 MG1655
(NC_000913) ground truth genome, to the full genome of the
ground truth genome and seven additional E. coli genomes:
K12 W3110 (NC_007779), K12 DH10B (NC_010473),
BW2952 (NC_012759), BL21(DE3) (NC_012971),
REL606 (NC_012967), HS (NC_009800), and ATCC8739
(NC_010468). The completely unrelated genome of Limosi-
lactobacillus reuteri DSM 20016 (NC_009513) was used as a
negative control. Whole-genome information was retrieved
from NCBI.24 While ideally each DNA map would only be
significantly assigned to the single ground truth genome, one
can naturally expect a single map to be assigned to multiple
database entries when there is a high degree of genomic
similarity (with the extremities being genomic regions that are
conserved within multiple database entries). As demonstrated
in previous works, in such cases, a comparison between all
significant matching scores for a single DNA map is effectively
accounted for by the resampling step of the analysis.18 As such,
the specificity of map assignments is maximized. This situation,
regarding genomic similarity, is highly applicable for the
database that was selected for this matching analysis, as can be
observed from the phylogenetic tree. While few differences in
the matching sensitivity are apparent for genomes within E. coli
strain A (the first four genomes, which include the ground
truth genome K12 MG1655) due to the high degree of
sequence conservation within this clade of substrains, such a
strain is clearly distinguishable from the genomes belonging to
strain B (BL21(DE3) and REL6060) and strain C (HS and
ATCC873). Indeed, the simulated data are clearly indicative of
strain-level resolution (Figure 2A), and this claim is confirmed
in the experimental data set (Figure 2B). No matches were
found for L. reuteri after resampling. A p-value threshold of
0.01 was imposed for both p1 and p2.
Remarkably, while the genomic differences between, for

example, K12 MG1655 and BL21(DE3) accounted for only
approximately 7−10% of the total MG1655 genome, the
difference in the number of assigned maps was more
pronounced (373 MG1655 maps versus 145 BL21(DE3)
maps after resampling in Figure 2B). The reason can be found
in the unique genomic regions being scattered within the
genome (see also next paragraph) and the long-range nature of
the experimental DNA maps (30 kbp on average). With unique
regions scattered along the genome coordinate, there is a
higher probability for any map to contain such unique features,
thus leading to an assignment that is unique to the ground
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truth strain. This also implies that the difference in assigned
maps between two strains would be amplified even more if the
DNA map size is increased since the chance of capturing only
conserved sequences in such a map (and consequentially
ending up with a conserved assignment after resampling) is
decreased. In other words, while the map assignment
sensitivity already reached 100% at 35 kbp, the taxonomic
resolving power for each map (specificity) increased upon
increasing the map size. This was confirmed using a simulated
data set consisting of 500 maps of 65 kbp (Figure 3). The same
matching parameters were applied as indicated previously.
Projecting Significant Maps Reveals Unique Regions

and Structural Variations. When comparing the ground
truth MG1655 genome to any other database entry, the
differences in matching sensitivity observed are expected to
arise from genomic differences between the two. In other
words, isolating unique maps (i.e., maps uniquely assigned to
the ground truth species and not to a comparison species)
should reveal those sequence regions unique to the ground
truth. Conversely, DNA maps assigned to both genomes
should be located in genomic regions conserved to both
entries. To reveal the locations of such unique and conserved
matches, strain BL21(DE3) was selected from the database
and compared to the ground truth strain K12 MG1655. The
unique regions are depicted as red vertical lines, with widths
corresponding to their actual size as obtained by GView
interactive Genome Viewer.25 The blue area shows the

matched map density (map coverage) at each location in the
genome and is plotted to superimpose the red lines in the case
of position overlap (Figure 4). Indeed, for the blue coverage
plot related to the conserved matches (maps with p2 > 0.01 for
both strains), almost no overlap with the red unique regions
was found in either simulated or experimental data sets (Figure
4A,B, respectively). This was also quantified by calculating the
average coverage of unique regions as the base pair content of
experimental maps overlapping with unique regions divided by
the total unique base pair content, yielding 0.07 and 0.04 for
the simulated and experimental data sets, respectively. In
contrast, the blue coverage plot related to the unique maps (p1
< 0.01 for K12 MG1655 and p1 > 0.01 for BL21(DE3))
displays almost complete overlap with the red regions, as also
evidenced by the average coverage of unique regions being
6.22 and 1.57 for the simulated and experimental data sets,
respectively (Figure 4C,D, respectively). Together, these
results corroborate the strain-level resolution.
In addition to revealing unique genomic regions, a sequence

inversion was found by comparing the ground truth strain K12
MG1655 with substrain K12 W3110. The location of this
inversion was predicted by BLAST (NCBI) and is shown as a
negative slope in the dot matrix representation.26 Such an
inversion can also be translated into map assignments. Indeed,
a sequence inversion should give rise to map assignments that
are conserved for the two genomes (p2 > 0.01 for both
substrains) but have opposite map matching directionality
(forward or reverse) for both genomes. Matching directionality
is a parameter that is registered during analysis and can easily
be called for every map. When plotting only the assigned maps
that fulfill these two requirements, the resulting coverage plots,
depicted in blue for simulated and red for experimental data,
perfectly coincide with the theoretical location of the sequence
inversion (Figure 5).

Unique Identifier Analysis. As evident from the previous
results, maps obtained from DNA optical mapping carry
enough information to target strain-level genomic differences.
As a result, to resolve the various strains present in a sample,
clusters of adjacent UIs (instead of full genomes) could

Figure 2. Global map assignments. (A) 1000 simulated experimental
E. coli K12 MG1655 maps of 35 kbp and (B) 443 experimental E. coli
K12 MG1655 maps (30 kbp average). For both data sets, black bars
represent the results after the matching significance test (p1 < 0.01 for
significance, 300 permutations) and blue bars represent the results
after resampling (p2 > 0.01 for significance, 300 resampling steps).
The red horizontal line indicates the total molecule number.

Figure 3. Effect of increased map size on global map assignments. (A)
1000 simulated E. coli K12 MG1655 maps of 35 kbp and (B) 500
simulated E. coli K12 MG1655 maps of 65 kbp. For both data sets,
black bars represent the results after the matching significance test (p1
< 0.01 for significance, 300 permutations) and blue bars represent the
results after resampling (p2 > 0.01 for significance, 300 resampling
steps).
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potentially be used as a reference database. To test this
hypothesis, the 443 experimental maps and 1000 simulated
maps from E. coli K12 MG1655 presented above were
rematched to a database containing the largest UI cluster for

MG1655 compared to BL21(DE3) with a size of 41 kbp
(bases 1995000 to 2036000) (Figure 6A) and the largest UI
cluster for BL21(DE3) compared to MG1655 with a size of
41.5 kbp (bases 750000 to 791500) (Figure 6B). UI clusters

Figure 4. Plotting unique and conserved maps for the ground truth strain K12 MG1655 and comparison strain BL21(DE3). In all panels, vertical
red lines represent unique regions in K12 MG1655 compared to BL21(DE3). Average (avg.) coverage of unique regions was calculated as the base
pair content of experimental maps overlapping with unique regions divided by the total unique base pair content. (A) From the simulated data set,
only the conserved maps (maps with p2 > 0.01 for both strains, 300 resampling steps) were plotted and represented as a (blue) coverage map along
the genome coordinate. (B) Same plot for the experimental data set. (C) From the simulated data set, only the unique maps (maps with p1 < 0.01
for K12 MG1655, 300 permutations and p1 > 0.01 for BL21(DE3), 300 permutations) were plotted and represented as a (blue) coverage map
along the genome coordinate. (D) Same plot for the experimental data set.

Figure 5. Plotting genome inversions with sequencing and mapping data. The dot matrix plot (in gray) was obtained with Nucleotide BLAST
(NCBI) for the genomes of K12 MG1655 and K12 W3110. The negative slope represents an inversion location as obtained directly from
sequencing data. For both simulated and experimental data sets, conserved maps (maps with p2 > 0.01 for both substrains, 300 resampling steps)
and opposite matching directionality (forward or reversed) were plotted along the genome coordinate representing the inversion location as
obtained by mapping data.
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are defined as clusters of unique sequences with a total size
that is similar to the average map size. Gaps consisting of
conserved sequences are allowed if these gaps are significantly
smaller than the average map (max gap size in this case was set
at 5 kbp). Maps were considered significant when p2 > 0.001,
which was a lower threshold to account for the smaller target
sequence compared to all previously shown whole-genome-
scale analyses. The results clearly indicate that the sole strain
present in this sample is MG1655 (Figure 6C), with ten
significant maps for the simulated data set and seven for the
experimental data set. Note that such a low number of assigned
maps is perfectly consistent with expectations since the
database consists of less than 1% of each species’ full genome.
In addition, the single false-positive assignment out of the 443
experimental maps is consistent with the potential false
positives at a confidence level of 0.1%. In conclusion, this UI
approach not only allows for the estimation of relative
abundances but also can increase the analysis speed due to
the reduced database size, despite the increased number of
permutation steps. In addition, the resampling step can ideally
be skipped since the database itself is changed from being
highly similar in the global analysis (for which the effect of
resampling is very clearly demonstrated in Figures 2 and 3) to
completely unrelated in UI analysis.
Application of Unique Identifier Analysis. Similarly,

one clinical example in which DNA optical mapping analysis
based on UIs could be employed is the case of MRSA. Here,
the UI, compared to methicillin-sensitive S. aureus (MSSA), is
a gene cluster carrying antibiotic resistance and is known as the
staphylococcal cassette chromosome mec (SCCmec). This
cassette is classified into 11 different types, varying in size
between 21 and 67 kbp, with types I to III being the most
common ones in healthcare-acquired MRSA (HA-MRSA).27,28

A simulated data set of 10 000 maps for two MRSA strains
(strain N315, accession NC_002745 carrying a type II cassette
and strain T0131, accession CP002643 carrying a type III
cassette) was used to show that the correct type of SCCmec
gene cluster could be identified for both species (Figure 7).
Analogous to the previous UI analysis, this time, the database
consists of type I-III SCCmec cassettes, while the simulated

DNA optical maps are drawn from the whole genome of the
selected MRSA strain. Maps were considered significant when
p2 was > 0.001.

■ CONCLUSIONS
In this article, a thorough assessment of the taxonomic
resolution of DNA optical mapping was carried out. This
assessment clearly indicates that, although DNA optical
mapping does not provide base-by-base reads as those typically
resulting from DNA sequencing approaches, sequence
variations at the strain level can be detected without being
restricted to a single locus in the genome. Nonetheless, it
should be noticed that, in the case of complex (highly mixed)
samples, sufficient coverage of the genomes of all of the
microbial species under study is required to perform UI
analysis. Luckily, the throughput of DNA optical mapping is
easily scalable toward such scenarios: in fact, rather than
acquiring individual scattered images across very extended
fields of view, entire specimens can nowadays be scanned
through novel strategies for modular SIM microscopy.29 This
combined with the universal detection capability of DNA
optical mapping and its fast and low-cost nature, can constitute
the key point behind its possible extension to more challenging
real-world case studies, ideally in the biomedical and clinical

Figure 6. Unique identifier analysis. UI clusters are defined as clusters of unique sequences with a total size that is similar to the average map size.
Gaps consisting of conserved sequences are allowed if these gaps are significantly smaller than the average map (max gap size in this case was set at
5 kbp). (A) Largest UI cluster found in the MG1655 genome (41 kbp). (B) Largest UI cluster for BL21(DE3) (41.5 kbp). (C) Matching results
for all MG1655 maps (443 for the experimental data set and 1000 for the simulated data set) compared to a database consisting of both UI clusters
(p1 < 0.001, 1000 permutations and p2 > 0.001, 1000 resampling steps).

Figure 7. Unique identifier analysis applied to the MRSA genome.
Matching results for 10 000 simulated maps drawn from the full
genomes of two MRSA strains and compared to a database containing
three types of SCCmec gene clusters (p1 < 0.001, 1000 permutations
and p2 > 0.001, 1000 resampling steps).
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fields. In addition, DNA optical mapping shows the potential
to bridge the aforementioned taxonomic resolution gap and, as
such, complement the current state-of-the-art sequencing
platforms.
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