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Abstract: The rat model of perinatal stress (PRS), in which exposure of pregnant dams to restraint
stress reduces maternal behavior, is characterized by a metabolic profile that is reminiscent of the
“metabolic syndrome”. We aimed to identify plasma metabolomic signatures linked to long-term
programming induced by PRS in aged male rats. This study was conducted in the plasma and frontal
cortex. We also investigated the reversal effect of postpartum carbetocin (Cbt) on these signatures,
along with its impact on deficits in cognitive, social, and exploratory behavior. We found that
PRS induced long-lasting changes in biomarkers of secondary bile acid metabolism in the plasma
and glutathione metabolism in the frontal cortex. Cbt treatment demonstrated disease-dependent
effects by reversing the metabolite alterations. The metabolomic signatures of PRS were associated
with long-term cognitive and emotional alterations alongside endocrinological disturbances. Our
findings represent the first evidence of how early life stress may alter the metabolomic profile in aged
individuals, thereby increasing vulnerability to CNS disorders. This raises the intriguing prospect
that the pharmacological activation of oxytocin receptors soon after delivery through the mother may
rectify these alterations.

Keywords: early life stress; plasma; prefrontal cortex; oxytocin; secondary bile acid; glutathione;
behavior; corticosterone; glucose

1. Introduction

The Developmental Origins of Adult Health and Disease (DOHaD) theory postulates
that adverse environmental exposures during critical in-utero and early postnatal stages
can permanently alter physiological responses, leading to functional impairments and
adult disorders [1]. Furthermore, it has been suggested that mechanisms involved in fetal
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metabolic programming could lead to the discovery of placental biomarkers at birth that
predict later-life metabolic risk [2]. These factors not only determine the risk for adult-onset
disorders but also influence the aging process and longevity [3–6].

This process, known as developmental programming, has a lifelong impact on stress
response, emotional behavior, metabolism, and cerebral plasticity [7,8]. Crucial factors
influencing this programming process include developmental malnutrition, insufficient
parental care, stressors, and hypoxia [9–11]. In particular, maternal behavior programming,
a complex process where maternal experiences during pregnancy are instrumental in deter-
mining maternal care and influencing offspring’s long-term health, has gained attention in
neuroscience and biology, highlighting the crucial role of maternal care in an individual’s
lifelong well-being and responses to environmental challenges.

The rat model of perinatal stress (PRS), in which exposure of pregnant dams to restraint
stress reduces maternal behavior [12], has face, construct, and pharmacological validity
as an epigenetic model of stress-related disorders [8], where the age-dependent threshold
for neurochemical and behavioral dysfunction is lowered [13]. The PRS rat model exhibits
in the offspring stress-related hallmarks, including a lifelong disruption in the activity
and feedback regulation of the hypothalamic–pituitary–adrenal stress axis [8], disrupted
circadian rhythms and sleep-wake cycle, and a systemic proinflammatory profile in both
adults [8] and aged rats [14]. During aging, PRS rats are also characterized by a display of
hyperglycemia both under fasting conditions and in response to a glucose load, whereas
insulinemia is not affected in adult and old PRS male rats and middle-aged (10-month-old)
PRS females [15].

The identification of specific metabolites in the plasma holds promise as potential
biomarkers for stress-related disorders. Altered levels of specific metabolites may signal
the presence, severity, or progression of these disorders, aiding in diagnosis and prog-
nosis. The metabolome, encompassing all small molecules characterizing a biological
system, undergoes alterations with age, reflecting age-related changes in physiological
function [16–19]. Many psychiatric and somatic diseases disrupt metabolism, leading to
enduring metabolic signatures for a particular disease [20]. Neurodegenerative diseases,
which are more prevalent in older populations, often have links to inflammation and
metabolic dysregulation [21–23]. The impact of circulating metabolites on neurological
development and preservation is particularly relevant to aging. Notably, as individuals age,
there are significant changes in the composition and function of the gut microbiota, com-
monly termed “gut dysbiosis”. Metabolic signatures associated with stress in the plasma
may offer early indicators of health risks in later life and introduce novel candidates for
peripheral biomarker detection with diagnostic value. Additionally, the ability of specific
metabolites to cross the blood-brain barrier highlights their potential impact on cognitive
function and neurological health in aging individuals.

Oxytocin (OT), a neurohypothalamic hormone crucial for maternal bonding and social
attachment, exerts anti-stress effects and positively regulates glucose homeostasis, central
and systemic immune activity, and microbiota composition. The OT system is also involved
in various aspects of social cognition and prosocial behavior. Specifically, OT has been
examined in the context of social memory, emotion recognition, cooperation, trust, empathy,
and bonding. For example, while evidence is somewhat mixed, intranasal OT appears to
benefit aspects of socioemotional functioning [24]. We have shown that reduced maternal
behavior caused by gestational stress was corrected through activation of the OT system,
i.e., post-partum treatment with the OT agonist, carbetocin (Cbt). Targeting the OT system
in the stressed mother has the potential to reverse the PRS phenotype at the behavioral
and molecular levels in both adult and aged offspring [12]. Therefore, the anti-stress action
of the OT system, combined with its effects on glucose and lipid metabolism, makes it
a promising target for the treatment of stress-related disorders. In this study, we aimed
to identify plasma metabolomic signatures linked to long-term programming induced by
perinatal stress in aged animals. We also investigated the reversal effect of postpartum Cbt
on these signatures, along with its impact on deficits in cognitive, social, and exploratory
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behavior associated with aging. Global metabolic profiling was conducted on plasma
obtained from the aged offspring of stressed and unstressed mothers, both treated and
untreated with Cbt, as well as in the prefrontal cortex.

2. Results
2.1. Experimental Design

As illustrated in Figure 1, male offspring aged 17–22 months, born to either stressed
or unstressed control mothers, which were administered either vehicle or carbetocin were
used. The resulting offspring were assigned to four experimental groups for the study:
PRS-Veh, PRS-Cbt, and their respective control counterparts (i.e., unstressed and vehicle-
treated). Behavioral assessments were conducted between 9:00 a.m. and 1:00 p.m. Brain
tissue samples were collected at 22 months of age.
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Figure 1. Experimental timeline. Restraint stress was performed during the last 10 days of gestation.
Dams were treated with carbetocin i.p. during the first seven days of lactation. This experiment
included 4 different experimental groups for the progeny: the PRS group whose mothers were treated
with carbetocin (PRS-Cbt) or vehicle (PRS-Veh) and the corresponding control unstressed groups
(Cont-Cbt or Cont-Veh). Behavioral tests were performed during aging (17–22 mo). Tissues for
endocrinological and metabolomic analyses were collected when animals were 22 months of age.

2.2. Behavioral Analysis

We carried out a behavioral characterization of aged progeny (17 to 22 months) of
stressed and unstressed dams treated with carbetocin and vehicle. The aged offspring
were tested for discrimination and spatial recognition memory, social interaction, spatial
learning, and exploratory activity in the Y-maze, social interaction test, Morris water maze,
and open field, respectively. The time interval between performing the various tests was 1
to 2 months to avoid behavioral test interference.

The exploratory activity was assessed in the open field (Figure 2A). PRS offspring of
vehicle-treated mothers showed an increased time spent in the periphery and corners of
the open field and a reduction in time spent in the center of the apparatus. Administration
of Cbt to lactating mothers reversed the exploratory behavior observed in PRS animals
in each of the three analyzed zones of the open field (periphery: PRS × Cbt treatment
interaction, F(1,41) = 5.48, p < 0.05, n = 10–13 rats/group; corner: PRS × Cbt interaction,
F(1,41) = 13.73, p < 0.01, n = 10–13 rats/group, Neuman–Keuls post hoc test: ** p < 0.01 PRS-
vehicle vs. Cont-Veh and # p < 0.05 PRS-Cbt vs. PRS-vehicle; center: PRS × Cbt interaction,
F(1,41) = 4.44, p < 0.05, n = 10–13 rats/group). In the social interaction test (Figure 2B), at
days 1, 2, and 7, the aged PRS offspring of vehicle-treated mothers showed reduced sniffing
during social interaction toward a juvenile as compared to the respective control animals.
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Postpartum carbetocin treatment to dams abolished the differences between control and
PRS rats in all days of testing (PRS × Cbt interaction, F(1,32) = 16.51, p < 0.001; days main
effect, F(2,64) = 19.365, p < 0.001, n = 9 rats/group/testing day).

The study of spatial recognition memory (Figure 2C) showed that PRS impaired
memory performance in the aged offspring of vehicle-treated mothers, with a significative
reduction of the time spent in the novel arm of Y-maze (below the 33% cut-off chance
level of random exploration) after an inter-trial interval (ITI) of 6 h. Cbt administration
to lactating dams abolished the differences between control and PRS rats (PRS × Cbt
interaction, F(1,39) = 16.03, p < 0.01, n = 9–14 rats/group; Neuman–Keuls post hoc test:
** p < 0.01 PRS-vehicle vs. Cont-vehicle and ## p < 0.01 PRS-Cbt vs. PRS-vehicle). After
an ITI of 24 h, spatial recognition memory fell in every group, with no difference being
observed among groups.

Spatial learning (Figure 2C,D) assessment indicated that PRS impaired learning tasks
in the aged progeny of vehicle-treated mothers, with a significantly increased latency to
find the hidden platform at days 4, 5, and 6 (Figure 2C); conversely, carbetocin to lactating
dams abolished the differences between control and PRS rats in all days of testing (PRS
main effect, F(1,40) = 5.33, p < 0.05; trend for PRS × Cbt effect, F(1,40) = 3.49, p = 0.06,
n = 9–13 rats/group/testing day). The same profile was found for the distance to reach
the platform (Figure 2D: PRS × Cbt interaction, F(1,40) = 5.51, p < 0.05; days main effect,
F(5,200) = 50.26, p < 0.01, n = 9–13 rats/group/testing day).

2.3. Physiological Analysis

Carbetocin reduces body weight gain in the aged offspring and prevents changes in
fasting plasma glucose, corticosterone, and oxytocin levels induced by gestational stress.

The body weight of aged rats (Figure 2F) was not changed by PRS. However, we
observed that aged offspring of stressed and unstressed mothers treated with carbe-
tocin showed a reduction in body weight at 17 months, which persisted until 22 months
(PRS × Cbt interaction F(1,39) = 16.03, p < 0.01, n = 9–14 rats/group).

Glucose and insulin levels were measured after the assessment of spatial recognition
memory in aged rats from stressed and unstressed mothers treated with carbetocin or vehi-
cle (Figure 2G,H). We observed that elderly PRS rats reared from vehicle-treated mothers
showed a significant increase in blood glucose, which was restored to normal levels with
carbetocin treatment (Figure 2G: Cbt main effect, F(1,28) = 11.49, p < 0.01, n = 8 rats/group).
A similar profile was observed for insulin, while we observed a trend for the Cbt effect
(Figure 2H: PRS main effect, F(1,29) = 3.48, p < 0.01; Cbt main effect, F(1,29) = 3.43, p = 0.07,
n = 6–11 rats/group). We measured corticosterone and oxytocin levels in peripheral blood
collected after the last trial in the Morris water maze (a stressful condition) and showed
that the HPA axis was hyper-reactive in aged PRS offspring, as well as a phenotype that
was reversed by administration of carbetocin to lactating mothers (Figure 2I: PRS × Cbt
interaction, F(1,30) = 4.46, p < 0.05, Neuman–Keuls post hoc test: * p < 0.05 PRS-vehicle vs.
Cont-vehicle and ## p < 0.01 PRS-Cbt vs. PRS-vehicle n = 8–10 rats/group). No changes in
plasma oxytocin levels were observed (Figure 2J), while a strong negative correlation was
found between corticosterone and oxytocin levels, which highlights the lifelong impairment
of the stress/anti-stress balance induced by PRS (Figure 2K, r = −0.46, p = 0.01).
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Figure 2. Long-term alterations induced by PRS on behavior and metabolism and reversal by car-
betocin. (A) Exploratory activity in the open field (n = 10–13 rats/group) represented as the time
spent (%) in the corners and the center. (B) Social interaction (n = 9 rats/group) represented by
sniffing activity (sec/5 min trial). (C) Spatial recognition memory in the Y-maze (n = 9–14 rats/group);
the time spent (%) was the parameter analyzed. (D,E) Spatial learning on the Morris water maze
(MWM) (n = 9–13 rats/group); the latency and distance to find the hidden platform, respectively.
(F) Weight of the aged progeny at 17, 20, and 22 months (n = 8 rats/group). (G–J) Plasma levels
of glucose (mg/dL) (n = 7–13 rats/group), insulin (ng/mL) (n = 6–11 rats/group), corticosterone
(ng/mL) (n = 8–10 rats/group), and oxytocin (pg/mL) (n = 7–10 rats/group), respectively. (K) Pear-
son correlation between corticosterone and oxytocin levels (n = 6 rats/group). Values are expressed
as means ± S.E.M. * indicates the PRS effect and # indicates the Cbt effect. Specifically, in the figure,
PRS × Cbt interaction */# p < 0.05; **/## p < 0.01; ***/### p < 0.001. PRS main effect * p < 0.05;
** p < 0.01; *** p < 0.001; Cbt main effect # p < 0.05; ## p < 0.01; ### p < 0.001.
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Maternal behavior and Pearson’s correlations (Figure S1). The analysis of active ma-
ternal behavior (nursing behavior, grooming, licking, carrying pups) was performed in
stressed and unstressed dams receiving either vehicle or carbetocin during the first week
postpartum (Figure S1A). As previously demonstrated [12], gestational stress impaired
maternal behavior, which was calculated as the mean of 3 days. Carbetocin administra-
tion to lactating dams abolished the differences between unstressed and stressed mothers
(PRS × Cbt interaction: F(1,43) = 10.32, p < 0.01, n = 8–15 rats/group; Neuman–Keuls post
hoc test: * p < 0.05 stressed dams-vehicle vs. unstressed dams-vehicle and ### p < 0.001
stressed dams-Cbt vs. stressed dams-vehicle). Partial correlations (Figure S1B–F) were
performed to examine the significant relationship between maternal behavior and the fol-
lowing behavioral and endocrinological parameters: (i) peripheral markers (corticosterone,
glucose, and insulin); (ii) spatial recognition memory (Y-maze) and social interaction tests.
Spatial memory performance in the Y-maze (6-h ITI; Figure S1B) and social interaction (sum
of sniffing activity on test days 1, 2, and 7; Figure S1C) of aged offspring of stressed and
unstressed dams receiving either vehicle or carbetocin were positively correlated with ma-
ternal behavior (r = 0.32 p < 0.05; r = 0.44, p < 0.01, respectively). Conversely, corticosterone
(Figure S1D), glucose (Figure S1E), and insulin (Figure S1F) were negatively correlated with
maternal behavior (r = −0.47 p < 0.01; r = −0.32, p < 0.05; r = −0.43, p < 0.01, respectively).

2.4. Untargeted Metabolomic Analysis

We visualized the changes in metabolite expression by creating Volcano plots to repre-
sent the direction, magnitude, and significance of these alterations (Figure 3). In the plasma,
out of the 603 analyzed metabolites, 156 were significantly increased in vehicle-treated
PRS compared to vehicle-treated Cont. Cbt treatment effectively reduced the expression
of these metabolites in the PRS group, leaving only 35 metabolites that remained signifi-
cantly different in Cbt-treated PRS rats compared to the Veh-treated PRS. When comparing
PRS-Cbt rats with the Cont-vehicle group, among 585 metabolites, only 10 remained sig-
nificantly different, indicating a correction by Cbt of about 98% with respect to the PRS
group. This reduction is visually represented by the halving of the Euclidean distance
between Cbt-treated PRS rats and vehicle-treated control unstressed rats, in comparison to
the distance between PRS and control vehicle-treated groups or vehicle- and Cbt-treated
PRS rats. In contrast, the Volcano plot representation for the brain showed that 30 out of
424 metabolites were differentially expressed between vehicle-treated PRS and unstressed
rats. Cbt in the PRS group differentiated a total of 105 metabolites out of the 426 measured.
When comparing Cbt-treated PRS rats with the unstressed group treated with vehicle,
85 metabolites remained different out of the 428 considered, indicating a correction by
Cbt of about 80% between the two groups. The Euclidean distance indicated an opposite
profile in the brain vs. plasma. The distance between vehicle-treated PRS and unstressed
groups or vehicle- and Cbt-treated PRS groups remained significantly higher compared to
the distance between PRS and control rats of the vehicle-treated groups.

Metabolomics and sub-pathway analysis. Several sub-pathways were identified as
being modified by PRS, Cbt, or both.

In the plasma, the statistical summary analysis of data (Metabolon Inc., Germany, Head
Quarters Morrisville, NC, USA) revealed the most significant inter-group metabolomic
difference between groups. We observed a noticeable effect of PRS on bile acid (BA)
metabolism (Figure 4). Specifically, among vehicle-treated PRS rats compared to vehicle-
treated unstressed controls, all primary BAs and precursors were increased, with cholesterol,
7-Hoca, and the primary BA beta-muricholate and alpha-muricholate reaching trending or
significant cutoffs. Treatment with Cbt decreased these compounds, particularly 7-Hoca,
and their levels did not differ among Cbt-treated PRS rats and vehicle-treated unstressed
rats. Furthermore, several secondary BAs, including the muricholate product, hyocholate
(a.k.a., gamma-muricholate), behaved similarly, i.e., increasing with PRS and decreasing to
control levels with Cbt treatment. As muricholate is a major BA in rodents, these results
suggest that PRS programs a life-long increase in BA synthesis.
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Figure 4. Long-term impact of PRS and carbetocin on bile acid metabolism in plasma. PRS elevated
metabolites of bile acids’ specifically secondary acid pathways, and Carbetocin restored it to control
unstressed levels. This table illustrates two-way ANOVA and ANOVA ratio contrasts for intergroup
comparisons. Fold change values between groups are shown. In the two-way ANOVA, blue cells
indicate a significant ANOVA effect p < 0.05, and the light blue indicates that p narrowly missed
the statistical cutoff for ANOVA significance, 0.05 < p < 0.10. In the ANOVA ratio contrast, red cells
indicate a significant difference (p < 0.05) between groups, with a metabolite ratio > 1.00 (upregulation),
while green cells indicate a significant difference for metabolite ratios < 1.00 (downregulation). Box
plots display the median value, upper quartile limit, and lower quartile limit. The solid bar across
the box represents the median value of those measured, while + represents the mean. The following
metabolites are included: 7-Hoca, beta-muricholate, and hyocholate (n = 6 rat/group).
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In the brain, the statistical summary analysis of data (Metabolon Inc., Germany, Head
Quarters USA) revealed that PRS only had a marginal effect on the brain metabolome.
PRS and Cbt caused alterations in brain glutathione metabolism (Figure 5), with Cbt
inducing more pronounced effects. Cysteine and γ-glutamylcysteine synthase (GCS) are
the rate-limiting substrate and enzyme, respectively, in glutathione synthesis. Cbt treatment
caused a trend of an increase in brain cysteine levels in unstressed rats, and it had a
significant increase in PRS rats, although it failed to induce changes in the cysteine precursor
cystathionine. A similar pattern emerged in biochemical markers of glutathione turnover,
such as 5-oxoproline and a subset of gamma-glutamyl amino acids, which showed a trend
to an increase in response to Cbt in unstressed rats and were significantly increased by Cbt
in PRS rats.

Shared metabolomic pathways between plasma and brain metabolome. We identified
three major sub-pathways with PRS and Cbt effects being shared between plasma and brain
(Figures 6–8) such as microbially derived metabolism, histidine, and urea cycle. Indeed,
microbially derived compounds such as the metabolites of phenylalanine, tryptophane, and
benzoate were enhanced by PRS in plasma (Figure 6). In particular, we observed an increase
in the phenylalanine derivative, phenyl-lactate (PLA), the indole metabolites of tryptophan,
indoleacrylate, and indoleacetylglycine, and the benzoate metabolites, hippurate, 3-(3-
hydroxyphenyl) propionate, and 3-(3-hydroxyphenyl) propionate sulfate. In unstressed
rats, Cbt treatment caused a trend to an increase in these metabolites, whereas in PRS rats
Cbt treatment reduced these compounds, particularly the indol derivatives, approximately
to the same levels observed in vehicle-treated unstressed rats. In the brain, Cbt treatment
significantly reduced the increased 3-(4-hydroxyphenyl) lactate levels in the PRS group,
and levels did not differ between Cbt-treated PRS rats and vehicle-treated unstressed rats.

Histidine metabolism was also altered by PRS (Figure 7) in the plasma and brain, with
PRS significantly decreasing histidine levels compared to vehicle-treated unstressed rats
and Cbt reversing these changes. Specifically, PRS significantly reduced histidine levels
compared to unstressed controls, and Cbt treatment reversed changes in histidine levels
caused by PRS. PRS also caused increases in plasma 3-methylhistidine levels, which, in
this case, were further increased by Cbt treatment. Imidazole propionate is a bacterially
derived catabolite of trans-urocanate, and PRS increased its levels in the plasma, indi-
rectly suggesting that PRS causes long-lasting changes in the metabolic activity of the
microbiome. Cbt increased levels of microbially produced metabolites in unstressed rats
but decreased their levels in PRS rats. While plasma histamine levels were not signifi-
cantly different among the experimental groups, several of its catabolic products, such as
1-methyl-5-imidazoleacetate, 1-ribosyl-imidazoleacetate, 1-methyl-4-imidazoleacetate, and
4-imidazoleacetate, were significantly elevated in the plasma of vehicle-treated PRS rats
compared to vehicle-treated unstressed rats, which is indicative of stimulated histamine
turnover. Cbt treatment further increased these levels in the plasma of unstressed rats, with
the exception of 1-methylhistamine, which showed a trend to increase in PRS rats treated
with Cbt.

Finally, PRS caused major changes in ureal cycle metabolites (Figure 8). In vehicle-
treated rats, the PRS group showed trending and significant reductions in plasma ho-
moarginine levels, as well as significant elevations in plasma homocitrulline levels. PRS
also increased the levels of ornithine and citrulline, which is indicative of a dysfunctional
urea cycle. Cbt treatment had a marginal effect on plasma arginine metabolites, although it
reversed the effect of PRS on homoarginine, ornithine, and citrulline. Cbt treatment had
a pronounced effect on brain arginine metabolites in PRS rats by significantly increasing
homoarginine and reducing homocitrulline to the same levels observed in vehicle-treated
unstressed rats.
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gamma-glutamylthreonine 1.06 1.09 1.08 1.11 1.02 1.18

gamma-glutamylvaline 0.92 1.13 0.97 1.19 1.05 1.1

methionine 0.94 1.02 1.11 1.19 1.17 1.13
N-acetylmethionine 0.89 1.5 2.06 3.46 2.31 3.08
N-formylmethionine 0.93 1.18 1.26 1.6 1.36 1.49
methionine sulfoxide 0.99 0.84 1.16 0.98 1.17 0.97
S-adenosylhomocysteine 
(SAH) 0.99 1.06 1.15 1.24 1.17 1.22

cystathionine 0.95 1.15 0.97 1.18 1.02 1.12

cysteine 0.84 1.31 1.35 2.1 1.6 1.77
S-methylcysteine 1.06 1.04 1.1 1.08 1.04 1.15

cystine 0.56 2.24 1.31 5.25 2.34 2.94
hypotaurine 0.85 0.93 1.14 1.25 1.34 1.06

taurine 1.01 0.99 1.07 1.05 1.06 1.06
N-acetyltaurine 1.33 0.72 1.07 0.58 0.81 0.77
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Figure 5. Long-term impact of PRS and carbetocin on glutathione metabolism in the brain prefrontal
cortex. This table illustrates two-way ANOVA and ANOVA ratio contrasts for intergroup compar-
isons. Fold change values between groups are shown. In the two-way ANOVA, blue cells indicate a
significant ANOVA effect p < 0.05, and the light blue indicates that p narrowly missed the statistical
cutoff for ANOVA significance, 0.05 < p < 0.10. In the ANOVA ratio contrast, red cells indicate a
significant difference (p < 0.05) between groups, with a metabolite ratio > 1.00 (upregulation), while
green cells indicate a significant difference for metabolite ratios < 1.00 (downregulation). Box plots
display the median value, upper quartile limit, and lower quartile limit. The solid bar across the
box represents the median value of those measured, while + represents the mean. The following
metabolites are included: cystine, cysteine-glutathione disulfide, and 5-oxoproline (n = 6 rat/group).
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Metabolism phenylalanine 1.03 0.98 1.2 1.14 1.16 1.18

Tyrosine 
Metabolism 3-(4-hydroxyphenyl)lactate 1.09 0.77 1.04 0.74 0.96 0.81

tryptophan 1.09 1.04 1.13 1.08 1.04 1.17

serotonin 1.08 1.04 0.77 0.75 0.72 0.81

Benzoate 
Metabolism hippurate 1.7 0.81 1.59 0.76 0.94 1.29
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Figure 6. Long-term impact of PRS and carbetocin on microbially derived sub-pathways in plasma
and brain prefrontal cortex. This table illustrates two-way ANOVA and ANOVA ratio contrasts for
intergroup comparisons. Fold change values between groups are shown. In the two-way ANOVA,
blue cells indicate a significant ANOVA effect p < 0.05, and the light blue indicates that p narrowly
missed the statistical cutoff for ANOVA significance, 0.05 < p < 0.10. In the ANOVA ratio contrast, red
cells indicate a significant difference (p < 0.05) between groups, with a metabolite ratio > 1.00 (upregu-
lation), while green cells indicate a significant difference for metabolite ratios < 1.00 (downregulation).
Box plots display the median value, upper quartile limit, and lower quartile limit. The solid bar
across the box represents the median value of those measured, while + represents the mean. The
following metabolites are included: 3-(4-hydroxyphenyl)lactate, Hippurate, and indoleacetylglycine
(n = 6 rat/group).
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Figure 7. Long-term impact of PRS and carbetocin on histidine (inflammation) derived sub-pathways
in plasma and brain prefrontal cortex. This table illustrates two-way ANOVA and ANOVA ratio
contrasts for intergroup comparisons. Fold change values between groups are shown. In the two-way
ANOVA, blue cells indicate a significant ANOVA effect p < 0.05, and the light blue indicates that p
narrowly missed the statistical cutoff for ANOVA significance, 0.05 < p < 0.10. In the ANOVA ratio con-
trast, red cells indicate a significant difference (p < 0.05) between groups, with a metabolite ratio > 1.00
(upregulation), while green cells indicate a significant difference for metabolite ratios < 1.00 (down-
regulation). Box plots display the median value, upper quartile limit, and lower quartile limit. The
solid bar across the box represents the median value of those measured, while + represents the mean.
The following metabolites are included: histidine, 1-methyl4-imidazoleacetate, 3-methyl-histidine,
and imidazole propionate (n = 6 rat/group).
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urea 1.38 1.52 1.11 1.22 0.8 1.68
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citrulline 1.39 1.02 1.3 0.95 0.93 1.32
homoarginine 0.71 0.98 0.97 1.33 1.36 0.95
homocitrulline 1.94 1.5 1.28 0.99 0.66 1.92
guanidinoacetate 1.16 0.71 1.43 0.88 1.23 1.01
creatinine 1.2 1.43 1.11 1.32 0.93 1.58
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Creatine 
Metabolism

Urea cycle

Glycine, 
Aspartate and 

Lysine 
Metabolism 

Fold of Change
ANOVA Contrasts

PRS
Cont

Cbt
Veh Cont 

Cbt
PRS Veh

PRS Cbt
ContVeh

Stress 
Main 
Effect

Cbt
Main 

Effect

Stress:
Cbt

Interaction

PLASMA Two-Way ANOVA

Sub Pathway Biochemical Name

Figure 8. Long-term impact of PRS and carbetocin on a urea cycle sub-pathway in the plasma and
brain prefrontal cortex. This table illustrates two-way ANOVA and ANOVA ratio contrasts for
intergroup comparisons. Fold change values between groups are shown. In the two-way ANOVA,
blue cells indicate a significant ANOVA effect p < 0.05, and the light blue indicates that p narrowly
missed the statistical cutoff for ANOVA significance, 0.05 < p < 0.10. In the ANOVA ratio contrast,
red cells indicate a significant difference (p < 0.05) between groups, with a metabolite ratio > 1.00
(upregulation), while green cells indicate a significant difference for metabolite ratios < 1.00 (down-
regulation). Box plots display the median value, upper quartile limit, and lower quartile limit. The
solid bar across the box represents the median value of those measured, while + represents the mean.
The following metabolites are included: homoarginine and homocitrulline (n = 6 rat/group).
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2.5. Enrichment Analysis of Functional Pathways in Plasma and Brain

We conducted an enrichment analysis to identify functional classes in both plasma and
brain metabolomes (Figure 9). In plasma, we observed overexpression of pathways related
to phosphatidylethanolamine and phosphatidylcholine biosynthesis, glycerophospholipid
metabolism, arginine, and ornithine metabolism, as well as uremia and anorexia nervosa
pathways in response to PRS. Remarkably, Cbt retreatment fully corrected the overexpres-
sion of these pathways. As for the brain, PRS led to alterations in pathways associated
with apoptosis, ethanol degradation, adrenoleukodystrophy, sex hormone metabolism,
fatty acids obesity, and antalgic pathways such as tramadol metabolism. Once again, Cbt
corrected these alterations.
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Figure 9. Enrichment analysis in plasma and brain metabolome. Top-ranking HMDB ontology
categories enriched for metabolites altered by PRS in the plasma and brain prefrontal cortex, as well
as their reversal by Cbt.
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3. Discussion

The objective of this study was to identify metabolomic signatures associated with
stress-related disorders during aging and explore the potential reversal of these signatures
through oxytocinergic enhancement of maternal care. Additionally, this study investigated
hormonal and behavioral correlates that were long-life impaired by perinatal stress and
corrected by postpartum carbetocin. This is in agreement with our previous study, except for
the cognitive dysfunctions observed in aged PRS rats [12]. Indeed, we observed that aged
PRS rats exhibited impaired spatial learning, recognition memory, and social interaction.
Postpartum carbetocin corrected these behavioral alterations and the related hormonal
dysfunctions by mitigating the reduced maternal care induced by restraint stress during
pregnancy. Furthermore, we observed that maternal care is predictive of the behavioral
and hormonal profile in aged rats.

Our findings represent the first evidence of how early life stress may alter the metabolomics
profile in aged individuals, thereby increasing vulnerability to CNS disorders, and raise the
intriguing possibility that pharmacological activation of the oxytocin system soon after
delivery through the mother may rectify these alterations by boosting early maternal care.
More specifically, we have found that early life stress and oxytocin receptor activation by
maternal Cbt cause changes in biochemical markers of distinct metabolic pathways in both
plasma and brain. Notably, PRS induced long-lasting changes in biomarkers of secondary
bile acid metabolism in the plasma and biomarkers of glutathione metabolism in brain
samples. Additionally, we identified shared metabolic changes in both plasma and brain
samples related to phenylalanine, tryptophan, benzoate, histidine, and arginine metabolism.
Maternal Cbt treatment demonstrated disease-dependent effects by reversing the metabolite
alterations induced by early life stress. Furthermore, the metabolomic signatures of early
life stress are associated with long-term cognitive and emotional alterations, alongside
metabolic and endocrinological disturbances in stress/antistress balance.

PRS resulted in elevated bile acid levels during aging; a phenomenon normalized by
carbetocin treatment. Specifically, primary bile acids and precursors were heightened in
vehicle-treated PRS rats compared to controls, suggesting altered bile acid synthesis rather
than secretion/reabsorption. Bile acids (BAs) play a vital role in lipid emulsification and
absorption; they are synthesized from cholesterol via the intermediate 7-alpha-hydroxy-3-
oxo-4-cholestenoate (7-Hoca) in the liver and released into the small intestine [25]. Most
bile acids undergo enterohepatic circulation and microbial biotransformation in the gut [26].
Most primary BAs are reabsorbed in the terminal ileum and transported back to the liver,
while a subset of primary BAs is metabolized by the gut microbiota into secondary BAs,
many of which are also reabsorbed. Recent studies have highlighted the role of BAs in
the gut–brain axis [27], as the gut microbiota is actively involved in BA metabolism, and
BAs may interact with specific receptors present in neurons and influence brain function in
physiology and pathology [28]. This suggests a potential pathway through which early life
stress-induced alterations in BAs may influence brain function and behavior. Of note, a
specific increase in secondary BAs has been reported in other chronic stress models [29].
Cbt reversed changes in BAs induced by PRS, including the PRS-induced increase in
muricholate, a major secondary BA in rodents. Interestingly, alterations in BA metabolism
have been associated with cognitive impairment in both Alzheimer’s and Parkinson’s
disease [30–35].

We hypothesize that early life stress augments susceptibility to cognitive dysfunction
in later life by modifying BA metabolism, alongside other mechanisms that were miti-
gated by maternal carbetocin. Metabolites originating from the gut microbiota, such as
phenylalanine, tryptophan, and benzoate metabolites were also affected by PRS and Cbt.
These and other metabolites generated by the gut microbiota have an established role in the
gut–brain axis and may be considered potential biomarkers for health and longevity during
aging [36]. Imbalances in the gut microbiota and disruptions in metabolite production may
contribute to age-related conditions, impacting an individual’s ability to age healthily.
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We also found changes in histidine and arginine metabolism induced by PRS and/or
Cbt. Plasma levels of histidine, a precursor of various bioactive compounds like histamine
and 3-methylhistidine, were reduced by PRS and restored by Cbt treatment. Among the
various histidine metabolites, PRS enhanced both plasma and brain levels of imidazole
propionate, which is specifically generated by the gut microbiota. Increased levels of imi-
dazole propionate are produced by subjects with low bacterial gene richness and are also
associated with type-2 diabetes mellitus [37], which, in turn, is an established risk factor
for CNS disorders, including depression and Alzheimer’s disease. Thus, the enhancing
effect of PRS on imidazole propionate levels strengthens the hypothesis that early life stress
enhances the vulnerability to CNS disorders later in life and provides further evidence
that the gut–brain axis contributes to the neurological and psychiatric outcome of early life
stress. Again, an early maternal activation of oxytocin receptors may provide a new strategy
to limit the consequences of early life stress. While plasma histamine levels did not differ
among our experimental groups, several histamine catabolic products were significantly
different by PRS, which may suggest a stimulated histamine turnover. Abnormalities in
histaminergic neurotransmission have been reported in several animal models of CNS
disorders and are associated with Tourette’s Syndrome and narcolepsy [38–40]. Changes
in histamine turnover rate, which are suggested by our data on histamine catabolites,
provide an additional putative link between early life stress and vulnerability to CNS
disorders. PRS also reduced plasma and brain levels of homoarginine and increased levels
of homocitrulline. Homoarginine, synthesized ornithine trans-carbamoylase (OTC) or
arginine:glycine amidinotransferase (AGAT), is a biomarker of cardiovascular health [41].
In addition, there is evidence of neurotoxicity resulting from homoarginine deficiency [42].
Moreover, PRS induced significant elevation of several plasma urea cycle metabolites,
including ornithine and citrulline, suggesting a dysfunctional urea cycle programmed by
early life stress. This dysfunction can lead to toxic ammonia accumulation, contributing to neu-
rological dysfunction [43–45]. Early Cbt treatment was also able to correct these abnormalities.

The aged brains of PRS rats showed substantial changes in the metabolism of glu-
tathione, which plays a key role in antioxidant defense in neurons and other cell types.
Glutathione is a tripeptide composed of glutamate, cysteine, and glycine, and it exists
in both reduced (GSH) and oxidized (GSSG) forms. Cysteine and γ-glutamylcysteine
synthase (GCS) are the rate-limiting substrate and enzyme for glutathione synthesis, re-
spectively. Cbt increased cysteine levels in the brain of PRS rats without affecting the
levels of the cysteine precursor, cystathionine. The cysteine increased in response to ma-
ternal Cbt may originate from other precursors, such as methionine or cystine, which is
taken up by brain cells through the glycine/glutamate antiporter. The dysregulation of
glutathione metabolism caused by PRS and the rescue induced by maternal Cbt treatment
are relevant from a translational standpoint because oxidative stress is common to most
neurodegenerative disorders, and it also contributes to the pathogenesis of autism and
other neurodevelopmental disorders [46]. Of note, it is essential to highlight that evidence
suggests a connection between the epigenome and metabolome [47]. The PRS rat model
serves as an epigenetic animal model [48] wherein epigenetic mechanisms are partially
induced by reduced maternal behavior [12]. Therefore, it is plausible to speculate that
metabolomic changes induced by early life stress may also be associated with alterations in
the epigenome.

In conclusion, our findings have disclosed novel components of the abnormal devel-
opmental programming induced by early life stress, which likely involves the interplay
between gut microbiota and brain function. The evidence that Cbt rescued nearly all
metabolic alterations caused by PRS by presumably enhancing maternal care in stressed
dams lends credit to the hypothesis that mother–child relationships soon after birth are
critical for the developmental trajectory of the CNS and also for the metabolic phenotype
of the offspring. The evidence that changes caused by early life stress persist during aging
strongly suggests the involvement of epigenetic mechanisms. Avoiding chronic stress dur-
ing pregnancy, and/or improving maternal care soon after birth, may be a valuable strategy
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to normalize stress response in the adult and aged life, and it may increase resilience to
genetic or environmental hits that otherwise cause CNS disorders. An obvious question
arises: which mothers should be treated with oxytocin to improve maternal health and
alleviate postpartum blues? Brexanolone, a novel FDA-approved treatment for moderate
to severe postpartum depression, has shown success. Perhaps measurements of oxytocin
levels in the mother after delivery and/or the evaluation of postpartum blues—i.e., the
transient and self-limited mild depressive symptoms that may reduce maternal care soon
after delivery—may serve as valuable indicators for the selection of mothers who can be
treated with oxytocin/carbetocin to prevent abnormal developmental programming of
the child.

4. Materials and Methods
4.1. Animals

Nulliparous female Sprague-Dawley rats (250–260 g, Charles River, Les Oncins, France)
were individually housed with a sexually experienced male for mating. A vaginal smear
was performed in order to determine the beginning of the gestation. Presence of spermato-
zoa defined day 0 of gestation. The animal study protocol was approved by the Comité
d’Ethique CEEA-75 (Comité d’Ethique en Expérimentation Animale Nord-Pas de Calais).
This project was approved by the MESRI (Ministère de l’Enseignement supérieur, de la
Recherche et de l’Innovation) under the APAFIS number #33654.

4.2. Perinatal Stress Procedure and Maternal Behavior

Stressed dams were subjected to repeated episodes of restraint stress in a transparent
cylinder (7.5 cm diameter, 19 cm long) under a bright light for 45 min three times daily from
day 11 of pregnancy until delivery [8]. Control dams were left undisturbed throughout
gestation. Maternal behavior was monitored and analyzed as previously described [12].
Control and stressed mothers were placed in standard transparent cages on a rack equipped
with cameras. The video recording system included 28 small infrared cameras (CMTH
with 1/4 Sony CCD, objective of 3.6 mm) attached to a metal structure and placed about
12 cm distance from the cage wall allowing the whole floor area detection (1 video camera
per cage). A constant recording (24 h/24 h) was performed by two infrared LEDs pointed
towards the ceiling to provide diffuse IR illumination in the room. Video signals were
acquired on two 16 channels DVR encoding H.264 format (Avtech, AVC798ZA, Lille,
France). The digital video signal was sent by IP to a computer for storage on a hard disk.
Video Viewer Application® (version 0.1.8.4) drove the video recording and replay. From
day 1 to day 3 after parturition, for the 2 h following carbetocin or saline injection, the
behavior of each mother was scored offline (Noldus, The Observer, Wageningen, The
Netherlands) every min for the following active maternal behaviors: arched back nursing,
licking, carrying pups. The data obtained correspond to the active presence of the mother on
the nest expressed in percent respect to the total number of observations (60 observations/h
with 2 h of observation per 3 days, i.e., 121 observations/mother/day).

4.3. Carbetocin Treatment

Carbetocin (1 mg/kg, SP080756, Polypeptide group, Strasbourg, France) or vehicle
(saline) was administered i.p. to lactating dams from postnatal day (PND) 1 to PND7.
The dose and route of administration of carbetocin were selected on the basis of previous
reports [12].

4.4. Experimental Design

As illustrated in Figure 1, male offspring aged 1–22 months, born to either stressed
or unstressed control mothers, which were administered either vehicle or carbetocin were
used. The resulting offspring were assigned to four experimental groups for the study:
PRS-Veh, PRS-Cbt, and their respective control counterparts (i.e., unstressed and vehicle-
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treated). Behavioral assessments were conducted between 9:00 a.m. and 1:00 p.m. Brain
tissue samples were collected at 22 months of age.

4.5. Behavioral Analysis

Spatial recognition: 17-month-old control and PRS rats whose mothers were treated
with vehicle or carbetocin were tested using a 2-trial memory task in a Y-maze as previously
described [14,49]. The Y-maze (Imetronic, Pessac, France) consisted of 3 identical arms
illuminated by a dim light (35 lux) and enclosed by 36 cm high side walls. Each arm was
equipped with infrared beams, and the Y-maze was linked to a computer. Numerous
visual cues were placed on the wall of the testing room and were kept constant throughout
behavioral testing. The floor of the maze was covered with dirty sawdust from the home
cages of several animals and was mixed between each passing to eliminate olfactory cues.
The task consisted of 2 trials separated by a 6 or 24 h inter-trial interval (ITI). During the first
trial (acquisition phase), 1 arm of the Y-maze was closed and animals were placed in the
center and allowed to explore the two other arms for 10 min. During the ITI (6 or 24 h), rats
were housed in their home cages in a room different from the test room. During the second
trial (test phase), the animals had free access to all 3 arms. The parameter evaluated was
the time spent in the novel arm (the one closed during the first trial) during the first 3 min
of the test phase. This parameter was expressed in percentages and was compared with
the percentage of random chance exploration of the 3 arms (i.e., 33% for each arm). The
animals were determined to have discriminated between the novel arm and the 2 familiar
arms if the percentage of time spent in this arm was significantly superior to 33%. Memory
performance was tested using 2 ITI (6 and 24 h) separated by an interval of 1 week.

Social interaction: Control or PRS rats whose mothers were treated with vehicle or
carbetocin were tested at 18 months old. The juvenile recognition ability was assessed using
a procedure adapted from [50]. Rats were individually placed in transparent cages for 5 min
for habituation. The challenged rat was first exposed to a male juvenile (2-month-old) for
5 min. Rats were exposed to a different juvenile 24 h and one week later (three different ju-
veniles were used to avoid habituation between sessions). Sessions were video-recorded, and
the time spent in interaction (sniffing, grooming, anogenital, and play behavior) was measured
by a trained observer using the Observer 20 (Noldus, Wageningen, The Netherlands).

Open field: Control and PRS rats whose mothers were treated with vehicle or carbe-
tocin were tested at 19 months old. Exploratory behavior [15] was evaluated by placing
a rat into a corner of an open-field arena (100 cm × 100 cm × 50 cm), allowing the rat to
explore the field for 10 min freely. Lightning was approximately 60 lx inside the arena.

Activity and trajectory length in the open field were recorded and quantified by Video
Track® (Viewpoint, Lyon, France). The time spent in the periphery, corners, and center of
the apparatus were recorded.

Spatial learning: 20-month-old control and PRS rats whose mothers were treated with
vehicle or carbetocin were assessed in the Morris water maze test [51]. A plastic tank (2 m
in diameter, 0.6 m in height) was filled with water (22 ± 2 ◦C) up to 35 cm. Spatial cues
were placed in the room and remained fixed throughout the experiment. Before the test,
animals were submitted to a two-day habituation phase, during which they were left for
1 min to explore the pool. During the test, animals were required to find a hidden platform
(20 cm diameter) placed 3 cm below the water surface. The walls of the tank and the
platform were black and indirect lightning was used in the room, enabling the platform to
be hidden from the animals’ sight. All rats were submitted to 3 trials per day for 6 days,
and the starting positions changed over the trials. Each trial began with the animal in the
pool facing walls and ended either after 90 s of swimming or when the animal found the
platform. In either case, the rat was left on the platform for 20 s. Latency and distance to
reach the platform were recorded using an automated system (Viewpoint, Lyon, France).
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4.6. Physiological Analysis

Body weight gain: The body weights of the progeny were assessed at 17, 20, and
22 months of age. Data were expressed as absolute weight (g).

Peripheral markers: Glucose (mg/dL), insulin (ng/mL), corticosterone (ng/mL), and
oxytocin (pg/mL) measurements were performed in aged control and PRS progeny of
dams treated with either saline or carbetocin during the postpartum period. To assess
blood glucose regulation, we conducted measurements of glucose and insulin secretion
after carrying out the study of spatial recognition memory in the Y-maze test. Glycaemia
was measured with a glucometer (Accu-check® Aviva; Roche Diagnostics, Indianapolis,
IN, USA), following a small incision of the tail vein. Insulin measurement was performed
in plasma obtained from blood samples collected from the tail vein as well. After the
behavioral testing in the Morris water maze, blood was collected for measurements of
corticosterone and oxytocin levels. Blood (approximately 200 µL each) was carefully
collected in tubes containing EDTA (2 mg/mL). Following centrifugation at 1500× g
for 15 min at 4 ◦C, the plasma was separated and subsequently frozen at −20 ◦C until
further analysis. Insulin, corticosterone, and oxytocin were quantified using an enzyme
immunoassay mentioned in Table 1. All enzyme-linked immunosorbent assay (ELISA) kits
were used according to the manufacturer’s protocol. All standards, blood samples, and
controls were analyzed concurrently in duplicate. The optical density of the samples was
determined at 450 nm using a microplate reader (BioTek Instruments, Winooski, VT, USA).

Table 1. Description of used ELISA kits.

ELISA Kit Manufacture Sensitivity Intra CV (%) Inter CV (%)

Insulin-rat Demeditec (DEV 8811)
Kiel, Germany 0.1 ng/mL <6% <9.5%

Corticosterone rat/mouse Demeditec (DEV 9922),
Kiel, Germany 6.1 ng/mL <9% <8.5

Oxytocin rat CUSABIO (CSB-E14197r),
Houston, TX, USA 9.4 pg/mL <15% <15%

4.7. Metabolome Analysis

Plasma and brain metabolic profiles were measured using the untargeted metabolomics
platform from Metabolon Inc. (Morrisville, NC, USA). The plasma and frontal cortex were
collected at the end of the experimental design and maintained at −80 ◦C. Samples were
prepared using the automated MicroLab STAR® system from Hamilton Company (Reno,
NV, USA). Several recovery standards were added before the first step in the extraction
process for QC purposes. To remove protein, dissociate small molecules bound to protein
or trapped in the precipitated protein matrix, and recover chemically diverse metabolites,
proteins were precipitated with methanol under vigorous shaking for 2 min (Glen Mills
GenoGrinder 2000, Clifton, NJ, USA) followed by centrifugation. The resulting extract was
divided into five fractions: two for analysis by two separate reverse phases (RP)/UPLC-
MS/MS methods with positive ion mode electrospray ionization (ESI), one for analysis by
RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS
with negative ion mode ESI, and one sample was reserved for backup. Samples were placed
briefly on a TurboVap® (Zymark, Hopkinton, MA, USA) to remove the organic solvent.
The sample extracts were stored overnight under nitrogen before preparation for QA/QC
analysis. Several types of controls were analyzed in concert with the experimental samples:
a pooled matrix sample generated by taking a small volume of each experimental sample
served as a technical replicate throughout the dataset; extracted water samples served
as process blanks; and a cocktail of QC standards carefully chosen not to interfere with
the measurement of endogenous compounds were spiked into every analyzed sample,
allowing instrument performance monitoring and aiding chromatographic alignment. In-
strument variability was determined by calculating the median relative standard deviation



Int. J. Mol. Sci. 2024, 25, 3014 20 of 23

(RSD) for the standards that were added to each sample before the injection into the mass
spectrometers. Overall process variability was determined by calculating the median RSD
for all endogenous metabolites (i.e., non-instrument standards) present in 100% of the
pooled matrix samples. Experimental samples were randomized across the platform run
with QC samples spaced evenly among the injections.

4.8. Statistical Analysis

Behavioral and physiological data were analyzed by two-way ANOVA or ANOVA for
repeated measures as indicated. The Neuman–Keuls post hoc test was used to isolate the
differences. Correlations were analyzed using Pearson’s correlation analysis. Significance
was set to p-value < 0.05.

In the metabolomics analysis, following log transformation and imputation of missing
values, if any, with the minimum observed value for each compound, a two-way ANOVA
was used to identify biochemicals that differed significantly between experimental groups.
The false discovery rates were calculated on a per-test basis using Story’s q-value. For
differential metabolite concentration analysis in the Volcano plots, Welch’s t-tests were
used. False discovery rates were calculated by Benjamini–Hochberg. Outliers were first
determined by the “outer fence” criteria (3rd quartile + IQR) and were replaced by the
next highest value. The significance of Euclidian distances between groups was calculated
by PERMANOVA. For pathway enrichment analysis, the labeling of metabolites into
metabolite sets was taken from the Human Metabolome Database (HMDB). We used a
“mean rank” test, testing whether the mean rank of metabolites in a set significantly differs
from what is expected by random. To do this, all measured metabolites were ranked by
their group-comparison p-values, and the ranks were then normalized to the range (0, 1).
Under the null hypothesis, the mean of the ranks can be approximated as 0.5 with standard
deviation sqrt (1/12 n); the true mean rank was compared with the null with a z-test. Data
were expressed as −log10(P).
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