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Univ. Lille, Arts et Metiers Paris Tech, Centrale Lille, Junia, Lille, France

This paper aims to propose an Improved Starting Point (ISP-) Newton method applied to vector potential A formulation for
circuit coupled magnetostatic problems. These problems usually are known to vary greatly during the time. This impacts the quality
of the initial guess of the Newton method and thus increases significantly the computational cost. The Newton method with vector
potential formulation A has been analyzed. Numerical examples show the performance of our proposed ISP-Newton method.
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I. INTRODUCTION

Nonlinear magnetostatic problems are widely encountered
in electrical engineering. The computation of the magnetic
fields requires the resolution of nonlinear problems due to the
saturation of ferromagnetic materials. With the finite element
method (FEM), these nonlinear problems are widely solved
by two techniques, namely the fixed point method and the
Newton method. The fixed point method consists in splitting
the nonlinear term into two parts, respectively the linear term
and the nonlinear residual term. The convergence can only be
achieved under the condition that the linear term is uniformly
continuous and strongly monotone [1]. And, unfortunately,
its convergence rate can be very slow, as reported in [2].
Thus, the fixed point method may introduce an unacceptable
computational time.

The Newton method is based on a 1st order Taylor expansion
of the nonlinear term. It converges locally at a quadratic rate
[3]. Moreover, the stiffness and Jacobian matrix should be
evaluated at each Newton iteration. In the case of strong non-
linearity, the Newton method may fail to converge. That’s
why line search techniques are widely applied to make the
convergence process more stable [4]. However, with the re-
laxation, the convergence speed could not be fast, since the
determination of the optimum value is too expensive in CPU
time [5]. Some other authors developed the line search tech-
niques in order to predict the Newton step. For example, in [6],
the Newton step is approximated by a linear interpolation
using two points of the derivative of the energy functional. It
should be mentioned that the obtained step size is not an exact
solution. Other approaches reported in [7], an exact functional
minimization is considered for improving the nonlinear con-
vergence behaviour. Unfortunately, this may introduce more
computational burden. e In [8], a coupling way of the fixed
point and the Newton method has been introduced. The idea is
to use the fixed point method to provide a starting value, to be
used in the Newton scheme later. This can reduce the number
of iterations and improve the robustness only in the case with
high saturation.

Because of this only local convergence property, starting
with a good initial solution can improve the robustness and the
speed of the method. Finding a priori information of the exact
solution becomes useful. Recently, [9] reported a well-posed
condition and proposed an effective particular initial function

for 2D p-Laplace problem. Following this idea, in this work,
we propose an improved initial point for the Newton method
applied to magnetostatic problems with the vector potential
A formulation when variations are important. The paper is
organized as follows: in Section 2, the context of the problem
is presented with the different methods. Section 3 constitutes
the main numerical part of this work, in order to evaluate the
performance of the proposed ISP-Newton method. Finally, a
conclusion is given in Section 4.

II. NUMERICAL MODELLING OF NON-LINEAR
MAGNETOSTATIC PROBLEMS

Let us consider an open, connected domain Ω ⊂ R3 with a
Lipschitz boundary Γ = ∂Ω. Given a divergence-free applied
source current density Js, the magnetic flux density B and the
magnetic field H verify the following equation

div B = 0 and curl H = Js. (1)

The nonlinear relationship of magnetic materials reads:

H = ν(B)B, (2)

where ν(B) presents the reluctivity. By introducing the mag-
netic vector potential A which satisfies B = curl A, we
obtain the following vector potential formulation:

curl (ν curl A) = Js. (3)

To impose the voltage, we consider the coupling with the
external circuit [10]. Thus, the following equation is added
to the system (3):

U = RI +
dϕ

dt
with ϕ =

∫
D

A.Ndv. (4)

Solving these with a FEM solver involves updating the current
solution An with the so-called Newton step:

An+1 = An − λDF (An)
−1F (An), (5)

where F (A) is the function computed with FEM, DF its
derivative and λ ∈ [0, 1] is a step reduction factor computed
with a line search algorithm to ensure convergence of the
Newton algorithm.

When solving this equation for a time dependent problem,
we have a natural initial guess A0 to start the algorithm.
Unfortunately, when variations are high as it is very common



in coupled circuits problems, this starting point may not be
close enough and the line-search is mandatory to ensure the
convergence and the computations might be slowed down
with many step reductions. We propose to refine it with two
successive linearisations which could be seen as two steps of
a fixed-point solver:

curl (νA0
curl A1) = Js and curl (νA1

curl A2) = Js.
(6)

These two additional steps are inspired by the ISP-Newton
algorithm [11]. As states in [9], one linearisation is not enough
and iterations after the second linearisation are less efficient
than a usual Newton step, as we can see in the numerical
results in the next section.

III. INDUSTRIAL EXAMPLE OF A THREE-PHASE
TRANSFORMER

Newton ISP-Newton Fixed Point
Step A0 A1 A2 A3 A∞

1 4 6 2 3 17
2 7 11 2 3 21
3 9 13(1) 2 3 23
4 13(1) 15(2) 6 9 27
5 15(7) 18(9) 9(2) 11(2) 33
6 12(4) 16(5) 8(4) 9(2) 34
7 12(6) 15(5) 7(2) 9(1) 36
8 12(5) 14(7) 8(1) 9(1) 34
9 12(4) 14(5) 7(1) 8(1) 30
10 14(4) 16(2) 8(2) 9(1) 33

Iterations 110(31) 138(36) 59(11) 73(8) 292
CPU 7m26s 9m11s 4m53s 5m47s 13m21s

TABLE I
COMPUTATIONAL RESULTS FOR THE THREE-PHASE TRANSFORMER.

To validate our method on industrial case, we propose to
deal with a strongly nonlinear problem coupled with electrical
circuits. This involves powering up a three-phase transformer
at no load. Due to symmetric consideration, only one quarter of
the structure is modelled. The used mesh holds 29855 elements
and 6406 nodes as shown in Fig. 1(a).

(a) Structure (b) Currents

Fig. 1. Mesh for the quarter of the three-phase transformer and primary
currents in the three phases.

Three primary currents and three-phase sinusoidal voltages
have been computed by each method to compare the efficiency
of our approach. The frequency has been taken as f0 = 50Hz.
The problem is solved with the 3D Code Carmel1 on 2 period
T = 1ms and we consider a uniformly time discretization
which has 40 steps for each time step. A classical large rush
currents due to the high saturation of the magnetic core are
obtained as shown in Fig. 1(b).

This problem has been evaluated with different schemes, the
Newton method, the ISP-Newton method and the fixed point

1See https://code-carmel.univ-lille.fr

starting from different points as detailed in Tab. I. The number
of Newton iterations as well as the number of corrections in
the line search method are giving for different schemes starting
from the previous solution of the classical Newton point A0,
the first step of our ISP-algorithm named A1, the proposed
starting point A2, the starting point A3 that it can be found
after two linearisations, or with A∞ after doing an infinity of
linearisations. In the last two lines, the total number of the
nonlinear iterations, the corrections in the line search method
(the value between brackets) and the computational cost are
given.

As theoretically expected, the fixed point requires the higher
cost in term of number of iterations and computational time.
However, with our ISP-Newton method, it appears that rather
important computational savings in terms of Newton iterations,
as well as corrections during the line search are achieved for
the whole simulation. Moreover, a speed-up from 1.20 to 2.01
can be obtained comparing with the other starting points.

IV. CONCLUSION

In this paper, an ISP-Newton method is proposed for the
vector potential formulation in 3D nonlinear coupled circuit
problems. The implementation of our proposed method is
relatively easy, since only two linear systems have to be
constructed and solved. The validation was performed on a
three phases transformer and the numerical results show an
improvement of the robustness and the convergence rate for
different solvers. Moreover, the number of Newton iterations,
as well as the computational time, are both reduced.
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