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Abstract

Pathogenic germline variants in the FOXL2 gene are associated with Blepharophimo-

sis, Ptosis, and Epicanthus Inversus syndrome (BPES) in humans, an autosomal domi-

nant condition. Two forms of BPES have emerged: (i) type I (BPES-I), characterized by

ocular signs and primary ovarian failure (POI), and (ii) type II (BPES-II) with no sys-

temic associations. This study aimed to compare the distribution of FOXL2 variants in

idiopathic POI/DOR (diminished ovarian reserve) and both types of BPES, and to

determine the involvement of FOXL2 in non-syndromic forms of POI/DOR. We stud-

ied the whole coding region of the FOXL2 gene using next-generation sequencing in

1282 patients with non-syndromic POI/DOR. Each identified FOXL2 variant was

compared to its frequency in the general population, considering ethnicity. Screening

of the entire coding region of the FOXL2 gene allowed us to identify 10 different
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variants, including nine missense variants. Of the patients with POI/DOR, 14 (1%)

carried a FOXL2 variant. Significantly, six out of nine missense variants (67%) were

overrepresented in our POI/DOR cohort compared to the general or specific ethnic

subgroups. Our findings strongly suggest that five rare missense variants, mainly

located in the C-terminal region of FOXL2 are high-risk factors for non-syndromic

POI/DOR, though FOXL2 gene implication accounts for approximately 0.54% of non-

syndromic POI/DOR cases. These results support the implementation of routine

genetic screening for patients with POI/DOR in clinical settings.

K E YWORD S

FOXL2, missense variants, premature ovarian insufficiency

1 | INTRODUCTION

FOXL2 encodes a transcription factor comprising 376 amino acids,

belonging to the forkhead/winged helix family of transcription factors.

This transcription factor is involved in ovarian function and mainte-

nance.1 In 2001, pathogenic germline FOXL2 variants were involved in

an autosomal dominant disorder responsible with blepharophimosis,

ptosis, and epicanthus inversus syndrome (BPES, MIM #110100).2,3

Two forms of BPES have been described: (i) type I (BPES-I), featuring

eyelid and craniofacial malformations, associated with primary ovarian

failure (POI), and (ii) type II (BPES-II) with isolated craniofacial pheno-

type. This FOXL2 gene has also been implicated in adult granulosa cell

tumors, with the p.Cys134Trp variant present in over 90% of cases of

this tumor type.4 The FOXL2 protein includes a poly-glycine region, a

DNA binding protein or forkhead region, two conserved poly-alanine

(poly-Ala) regions, and a poly-proline. Genotype–phenotype correla-

tion studies have suggested that FOXL2 variants resulting in a trun-

cated protein, either lacking or containing the forkhead domain or

before the poly-alanine tract, lead to BPES-I.5 In contrast, no clear-cut

predictions can be made for variants resulting in truncated or

extended protein that contains an intact forkhead and poly-Ala tract,

even within the same family, although variants leading to an expanded

poly-Ala region are mostly associated with BPES-II.5 Following the

identification of several ovarian FOXL2 targets in the adult ovary, the

role of FOXL2 variants in idiopathic non-syndromic POI has been

questioned. Eight studies have reported FOXL2 variants in non-

syndromic POI (Table S1).6–13 Interestingly, all these variants are

located outside of the DNA binding domain, with only a few demon-

strating functional effects in vitro.10,11,13

In this study, we screened the FOXL2 gene in a large cohort of

1282 patients with non-syndromic POI/DOR, identifying 14 variants

of FOXL2, including two novel ones. The aim of the study was to com-

pare the distribution of FOXL2 variants in idiopathic POI/DOR and

the two types of BPES, and to ascertain the involvement of FOXL2 in

non-syndromic forms of POI. These novel insights may contribute in

improving diagnostics, genetic counseling, as well as fertility guidance

in clinical settings.

2 | MATERIALS AND METHODS

2.1 | Patients

Between January 2020 and July 2023, 1282 women under 40 years

of age with idiopathic, sporadic, or familial POI/DOR were recruited.

Each participant signed an informed consent form approved by the

local ethics committee, and the study was conducted in accordance

with the ethical standards of the Declaration of Helsinki. POI/DOR

patients were diagnosed based on the diagnosis criteria defined in

Data S1.

2.2 | Next generation sequencing, in silico analysis
and mutation validation

The detailed methods of next-generation sequencing, Sanger

sequencing, and bioinformatics analyses for detected variants in

FOXL2 are described in Data S1.

2.3 | Statistical analysis

The specific process is outlined in Supplementary Method S1.

3 | RESULTS

Screening of the entire coding region of the FOXL2 gene allowed us

to identify 10 different variants in 14 patients with POI/DOR. Except

for one, all were missense variants (Figure 1; Table 1). These missense

variants were predominantly distributed in two hot spots from the

end of the forkhead region to the C-terminal region: (i) the intermedi-

ate region between the forkhead region and the poly-Ala tract, and

(ii) the C-terminal part of the protein (Table 1). The variant p.(Ala234-

del) was located in the poly-Ala region. Among these variants, two

variants have not been previously reported. None of the variants were
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found in the poly-glycine, the DNA binding forkhead domain, or the

poly-proline region. Bioinformatics predictions using tools such as

SIFT, Polyphen-2, CADD, and REVEL suggested a pathogenic effect

for five missense variants (Table 1). Overall, 1.09% of patients with

non-syndromic POI/DOR in our study carried a rare FOXL2 variant.

We compared the frequency of FOXL2 variants (with MAF <0.03)

between our cohort of patients with POI/DOR and the general popu-

lation (Table 1). Significant differences were observed for seven rare

variants, with Odds ratio (OR) ranging from 8.65 to an infinite value

(Figure S1).

However, the distribution of these FOXL2 variants showed geo-

graphic and ethnic disparities. For instance, variants p.(Arg349Gly)

was more common in East Asia subjects, while variants p.(Pro212Ala),

p.(Ala234del), and p.(Ala303Gly) were more frequently observed in

European subjects (Table 1). Considering these distributional differ-

ences, we performed an analysis of FOXL2 variants with ethnic sub-

grouping. Within these subgroups, no significant differences were

observed for four variants, showing a higher proportion of these vari-

ants in the ethnic general population than in the POI cohort. How-

ever, significant difference remains with the c.634C > G (p.Pro212Ala)

variant (p = 0.025) (Figure S2).

4 | DISCUSSION

Haploinsufficiency of the FOXL2 gene causes BPES.3 To date, over

500 patients have been reported with FOXL2-related BPES. The most

prevalent FOXL2 variants in patients with BPES impact the poly-Ala

region, typically small duplications, and the poly-proline region, often

through frameshift variants. Variants leading to an expanded poly-Ala

region are frequently associated with BPES-II, which does not include

POI. Despite some interfamilial variability, the majority of non-sense

or frameshift variants are reported to be associated with BPES-I, often

resulting in a truncated protein lacking the forkhead domain and poly-

Ala tract or a shorter protein missing the N-terminal region due to

translation re-initiation.5,14 The impact of missense variants depends

on their location, with the gene being highly conserved and certain

regions functionally crucial.3 Up to now, 46 missense variants have

been identified in patients with BPES: 37 in the DNA binding and

forkhead domain, one in the N-terminal region, and seven in the

C-terminal region (Table S2). Previous report showed that mutant

FOXL2 exerts a dominant-negative effect on wild-type FOXL2's activ-

ity as a transcriptional repressor of key genes in ovarian follicle

differentiation.14

In our cohort of 1282 patients with idiopathic non-syndromic

POI/DOR, we identified one in-frame deletion and 13 missense vari-

ants, including two recurrent ones (p.(Pro212Ala) and p.(Arg349Gly)).

None of these variants were previously reported in patients with

BPES. However, two variants, (p.(Gly187Asp) and p.(Arg349Gly)) have

been previously identified in patients with non-syndromic POI.10,13 To

date, all missense variants located in the FOXL2 gene's forkhead

domain have been implicated in BPES. However, no clear-cut predic-

tions are possible for missense variants located in the N-terminal and

C-terminal region of the protein. In our cohort, we did not identify

any missense variants in the N-terminal region, but two different vari-

ants previously identified in this region, were associated with one

patient with BPES and one patient with non-syndromic POI.11 We

identified 13 variants in the C-terminal region, with seven of these

F IGURE 1 Location of the different FOXL2 variants previously reported in POI and identified in the cohort of women with POI in this study.
Variants discussed in this study are shown in green. The Figure was generated using St. Jude PeCan Data Portal. [Colour figure can be viewed at
wileyonlinelibrary.com]
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previously reported in patients with POI. The pathogenicity of

these variants remains questionable. For example, the missense vari-

ant, p.(Gly187Asn), which affected in vitro the transactivation capacity

of FOXL2 in vitro, was also found in a male individual with BPES but

was considered non-pathogenic due to its presence in unaffected

family individuals.10,15 Our epidemiological study, encompassing a

large cohort, indicates that five missense variants (p.(Arg151Thr), p.

(Pro212Ala), p.(Ala243Pro), p.(Ala249Pro), and p.(His363Tyr)) have a

higher frequency in our cohort compared to the general population, as

per the gnomAD database, considering gender and specific ethnic

backgrounds. These findings strongly suggest the pathogenicity of

these variants in non-syndromic POI/DOR. The pathogenicity of p.

(Pro212Ala) remains questionable, because in one patient carrying this

variant, an autoimmune process was suggested since the identification

of anti-GAD and anti-IA2 antibodies (Table 2). Moreover, the rare

FOXL2 variants p.(Ala234del), p.(Ala303Gly), p.(Pro332Ala), and p.

(Arg349Gly), which showed no pathogenic effects in predictive soft-

ware and no over-representation in individuals with POI, could be

considered as variants of uncertain significance. These conclusions

are reinforced by the fact that the POI patients carrying p.(Ala303Gly),

p.(Pro332Ala), and p.(Arg349Gly) variants presented another etiology

of POI (Table 2). The effect of these variants may vary depending on

genetic background and environmental factors.

However, there are several limitations to our study. First, there is

considerable phenotypic heterogeneity among women with fertility

disorders (POI/DOR). Second, the gnomAD database, could include

women with either known or unknown POI, estimated at around 2%

in the 35–40-year age group. Thirdly, we cannot exclude the presence

of another pathogenic variant in distinct genes in favor of a polygenic

or oligogenic origin for POI.16 Whole genome sequencing should be

considered in the future care of these patients, mainly in familial cases

of POI.

Despite these limitations and remaining questions, our analysis

robustly supports the view that some rare FOXL2 variants, particularly

those located in the C-terminal region, are relatively high-risk factors

for POI/DOR (Figure S3). We found that FOXL2 contributes to

�0.54% of non-syndromic POI/DOR cases. While these findings

advocate for the routine genetic screening of patients with POI/DOR

in clinical settings, it is important to note that FOXL2 does not seem

to be a major cause of non-syndromic POI/DOR.
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