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Biological modeling of mucus to modulate mucus barriers
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Abstract

A recent study using a transgenic mouse, whose intestinal mucus contains a molecule made of 12 
copies of a domain found in many gelling mucins, demonstrates that it is possible to strengthen mucus 
properties in situ, leading to promising new treatment strategies in diseases where the mucosal barrier 
is impaired.
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Infections  are  a  major  cause  of  morbidity  and
mortality  worldwide,  particularly  in  children,  the
elderly and people with specific risk factors. Epithelial
cells are the main portal of entry for many pathogens.
However,  before  entering  epithelial  cells  or  passing
between the cells into tissues, pathogens often have to
cross  a  mucus hydrogel  lying on the apical  side of
epithelial cells. This is particularly true in the vagina,
respiratory and digestive tracts.

Mucus  is  a  thick,  slimy  secretion,  which  is
essential  for  many  biological  functions  including
lubrication, hydration and protection of the underlying
epithelia  (3,  22).  Mucus  is  composed  of  water
(~95%), salts, lipids and proteins, but its viscous and
gel-like  properties  are  largely  governed  by  O-
glycoproteins named gel-forming/gelling mucins. The
intestinal  mucosa  contains  billions  of  commensal
bacteria, which represent a permanent challenge to the
integrity  of  the  epithelial  surface  (36).  However,
commensal bacteria compete for nutrients and sites of
epithelial  adherence  with  unwanted  bacteria,
protecting the underlying epithelium from penetration
by  pathogenic  bacteria  (17).  Modifications  to  the
mucus  properties  can  greatly  affect  mucus  layer
functioning.  For  example,  an intestinal  mucus layer
that  is  too  thin,  as  found  in  inflammatory  bowel
diseases  (IBDs),  will  facilitate  bacteria  reaching the
epithelial  cells  which  may  trigger  inflammation
because of the dysregulated immune response to host
intestinal  microbiota.  This  has  been  demonstrated
using several mouse models with a defective mucus
layer which leads to direct contact between bacteria
and the epithelium associated with a severe intestinal
inflammation (15, 19). Conversely, thick mucus in the
lungs  makes  it  difficult  to  expel  leading  to  lung
obstruction  as  found  in  cystic  fibrosis  (CF)  and
chronic  obstructive  pulmonary  disease  (COPD).
Thickened  secretions  are  also  features  in  the
gastrointestinal  system in CF (for review, see Kelly
and  Buxbaum  (18).  Meconium  ileus  and  distal
intestinal  obstruction  syndrome  develop  when  thick
mucous secretions occlude the hollow gastrointestinal
lumen. In the pancreas and bile ducts of CF patients,
thickened secretions may cause obstruction and acute
and  chronic  inflammation.  Strategies  aimed  at
modulating  mucus  properties  in  vivo  are  limited,
partly  due  to  the  complexity  of  mucin
macromolecules.

The  main  characteristics  of  gelling  mucins

result from their large, heavily O-glycosylated region,
where carbohydrates retain water, and from disulfide
bonds between mucin monomers. Gel-forming mucins
crosslink  via  their  amino-  and  carboxy-terminal
regions  which  are  enriched  in  cysteine  residues  to
form  either  long  polymers  (28) or  more  complex
structures  responsible  for  net-like  structures  (16).
Non-crosslinking  interactions  between  mucin
macromolecules  seem  also  fundamental  to  mucus
gelling (2, 3). Among the reversible cross-links within
mucin  polymers,  intermolecular  hydrophobic
interactions are today the best characterized (7, 8, 10).
However,  few  studies  have  investigated  the  mucus
barrier or have attempted to modify mucin gelling in
vivo.  Several  reports  have  suggested  that  a  non-O-
glycosylated  domain  interspersed  within  the  O-
glycosylated region participates in the mucin network
(3, 14). This domain, named the CYS domain because
it is enriched in cysteine residues, is ~110 amino acids
long and is highly hydrophobic. The CYS domain has
been found in two copies in human and mouse mucin
MUC2, the major gelling mucin of the intestine, and
in 7 and 9 copies, respectively, in the two respiratory
mucins,  MUC5B  and  MUC5AC  (13).  The  CYS
domain is not present in the two other gelling mucins,
MUC6 which is expressed mainly in the stomach but
also in deep glands of duodenum and ileum (34) and
MUC19 which is expressed in submandibular glands
and in trachea (11).  In comparison to other  domain
sequences  of  gelling  mucins,  the  CYS  domain  is
highly conserved, with a strong selective pressure on
many amino acid residues,  supporting a key role of
the  domain  (13).  The  CYS  domain  is  highly
hydrophobic and  ex-vivo experiments suggested that
CYS domains are able to interact with each other in a
reversible  manner  (3,  8).  Consequences  of  an
increased number  of  reversible  interactions  between
mucins on mucus properties  in vivo have never been
evaluated.

A  transgenic  mouse  that  secretes  a
recombinant  molecule  consisting  of  12  consecutive
identical copies of one CYS domain borrowed from
human  mucin  MUC5B  has  been  created  (14).  As
expected,  the gut  mucus blanket  is  modified by the
recombinant  molecule.  The  mucus  appears  more
robust and less permeable to inert particles (Fig. 1). In
challenged  mice,  the  transgene  is  associated  with
reduced  susceptibility  to  chemically-induced  colitis,
faster  clearance  of  the  pathogen  Citrobacter
rodentium administered by gavage, and better 
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protection against bacterial translocation (14).

Fig.  1:  Distribution  of  fluorescent  microspheres  (diam.  ~1µm)
loaded at the surface of colonic mucus and analyzed by confocal
microscopy.  After  45  min  incubation,  there  is  slower
sedimentation when the mucus gel is enriched by the delivery of a
molecule  comprised  of  12  consecutive  mucin  CYS  domains
(transgenic mouse).

A  compromised  gut  barrier  function  may
facilitate the onset of many diseases where increased
bacterial translocation and/or microbial products are a
key feature  such as  cachexia,  chronic  liver  diseases
(31),  gut  infection,  IBD  (4),  intestinal  obstruction
(30), chemotherapy-induced mucositis (32), and acute
pancreatitis  (12).  Bacterial  translocation  may  also
occur after epithelial cell hypoxic injury due to trauma
or as a result  of  bacterial  overgrowth after  surgery,
injury (30) or antibiotic use (21). Detergent action of
bile  acids  throughout  the  gastrointestinal  tract  has
been suggested as a natural luminal aggressor. Many
experimental  data  support  that  bile  acids,  and more
especially  deoxycholic  acid,  are  cytotoxic  the
epithelial  cells  (9,  32).  However,  bile  acids  induce
also mucus secretion and expression of MUC2, two
mechanisms  by  which  the  intestinal  epithelium
protects itself  (20, 23). To date, no disease has been
described where bile acids are the primary initiators of
the epithelium damage (26) but we cannot rule out the
exacerbation  of  epithelial  damages  by  bile  acids  in
several  disease states where the mucus layer is  less
protective.  The  transgenic  model  shows  that  it  is
possible  to  reinforce  the  intestinal  barrier  by
delivering a molecule made up of domains belonging
to  gelling  mucins.  This  opens  up  new strategies  to
treat,  limit  or  prevent  unwanted  bacterial
translocation, especially from the gut.

The  recent  report  showed  that  delivery  of
poly-CYS  molecules  affects  mucin  O-glycosylation
(14).  This  modification  has  been  suggested  to  be
linked to the higher load of beneficial  Lactobacillus

spp. found in the gut of transgenic mice (2.5 log/g of
tissue). It is known that bacteria in the gut drive mucin
maturation and use sugars from mucins as their energy
source.  Lactobacilli  act  as  a  primordial  barrier  to
infection  by  competing  for  adhesion  sites  with
pathogens,  by  producing  lactic  acid,  bacteriocins,
nonbacteriocin  compounds  and  nonproteinaceous
molecules  that  exercise  a  direct  bactericidal  effect
(24) and stimulating the production of anti-microbial
molecules by the host. Consequently, the unexpected
increase in Lactobacillus spp. in transgenic mice may
strengthen the intestinal barrier. Similarly, delivering
poly-CYS molecules  into  the  vagina  could  increase
the abundance of  lactobacilli,  thereby preventing or
limiting infections such as bacterial vaginosis,  yeast
vaginitis,  urinary  tract  infection  and  sexually
transmitted  diseases  (6).  Delivering  poly-CYS
molecules into the cervical mucus may also represent
a new method of contraception. In the cervical mucus,
the  poly-CYS  molecule  should  favor  reversible
crosslinks  between  mucin  macromolecules  which
would change the mesh size of the mucin network and
decrease its permeability to sperm (8).

At  least  two strategies  can  be  envisaged to
enrich  a  mucus  gel  with  molecules  made  of  CYS
domains.  The  first  one  consists  in  delivering  the
recombinant  molecule using food-grade living lactic
acid bacteria (5) or non-pathogenic yeast strains, like
Yarrowia  lipolytica (25).  Delivery  would  be  more
efficient in mucus gels housing the greatest abundance
of  micro-organisms,  i.e.  colon,  distal  ileum  and
vagina.  The  second strategy uses  the  CRISPR/Cas9
system, a genomic technology which is in its infancy
(29). CISPR/Cas9 gene editing tool should enable to
trans-activate  in  the  gut  the  expression  of  the
respiratory genes MUC5B and MUC5AC, which have
the particularity to encode gelling mucins with 7 and 9
copies of the CYS domain, respectively.

There  are  many  potential  applications  of
mucus-enrichment  with  poly-CYS  molecules.
However, a high concentration of the domain in some
mucus may be deleterious. For example, mucus makes
it  difficult  for  some  compounds  to  reach  the
underlying  epithelial  cells  limiting  the  efficacy  of
drugs  administered  orally  or  as  aerosols.  In  CF,
abnormal  dehydrated  mucus  tempered  hopes  for
correcting the mutated-CFTR gene, responsible for the
disease.  Perez-Villar  and Boucher  hypothesized that
the increased mucus concentration in CF may result
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from  the  formation  of  abnormal  irreversible  inter-
chain  bonds  in  airway  mucins  (27).  Here,  the
increased production of respiratory mucins with 7 or 9
copies  of  the  CYS  domain  may  greatly  favor
interactions between CYS domains of gelling mucins,
dangerously  increasing  mucus  viscosity  and  stasis
leading  to  obstruction  of  the  airways.  A  better
understanding  of  the  interactions  between  CYS
domains  and  amino  acids  engaged  in  these
interactions  would  help  identify  new  strategies  to
fluidify abnormal  mucus in  CF and COPD.  Further
studies of CYS domain properties will depend on the
availability of recombinant molecules made of one or
several copies of the domain, which seem particularly
difficult to produce (1).
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