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Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how

recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific

biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities

of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cis-

tromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory mod-

ules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical

combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole land-

scape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differen-

tially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-

specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one

comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs tran-

scend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence,

hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory in-

puts defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways.

Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs.

[Supplemental material is available for this article.]

Regulation of gene transcription allows for the definition and
maintenance of multiple cell and tissue phenotypes in higher eu-
karyotes as well as their ability to respond and adapt to changing
environmental conditions. While active TP53-recruiting cis-regu-
latory modules (CRMs) were shown to harbor an unsophisticated
organization and very low complexity (Verfaillie et al. 2016), other
studies have demonstrated that active CRMs corecruit numerous
transcriptional regulators (TRs) (Kittler et al. 2013; Liu et al.
2014; Siersbæk et al. 2014). This has led to envisioningCRMs as ge-
nomic nexus sites where the activities of a large set of TRs are inte-
grated into transcriptional regulatory output signals. However,
how recruitment of amyriad of TRs is orchestrated at CRMs and ac-
counts for regulation of selective biological pathways is only par-
tially understood.

In this context, we have used modulation of hepatic gene ex-
pression by the nuclear receptor (NR) family member NR1H4,

commonly known as FXR (farnesoid X receptor), as ourmodel sys-
tem to decipher the transcriptional regulatory logic operating at
CRMs. Indeed, the liver has instrumental roles inmultiple homeo-
static processes involving tight control of its transcriptome.
Moreover, NR1H4, a nuclear receptor for bile acids (BAs), is highly
expressed in the liver where it exerts broad regulatory activities. In
addition to being a central node coordinating livermetabolic func-
tions (cholesterol, BAs, lipid, and glucose homeostasis) (Lefebvre
et al. 2009), NR1H4 also exerts hepatoprotective activities (Wang
et al. 2008). For instance, NR1H4 promotes liver regeneration after
partial hepatectomy (Huang et al. 2006) linked to its ability to pro-
mote hepatocyte survival and proliferation (Huang et al. 2006;
Meng et al. 2010). Moreover, mutations in the NR1H4 gene in hu-
mans are linked to neonatal cholestasis with rapid progression to
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end-stage liver disease, and to vitamin K-
independent coagulopathy (Gomez-
Ospina et al. 2016).

NR1H4 binds DNA as a heterodimer
with the retinoid X receptor (RXR) and
modulates transcription through interac-
tion with cofactors (Mazuy et al. 2015).
Transcriptional regulators that may core-
gulate NR1H4 target genes have often
been investigated at the level of single
genes and CRMs (i.e., promoters or
enhancers). Only a few TRs individually
collaborating with NR1H4 on a genomic
scale have been described, including
NR5A2 (LRH1; liver receptor homolog)
(Chong et al. 2012) and HNF4A (Thomas
et al. 2013).

In this context, wehave implement-
ed integrative functional genomic analy-
ses which allowed us to characterize how
TR recruitment is organized at hepatic
CRMs and to decipher the logical con-
nection to regulation of specific biologi-
cal pathways/functions.

Results

A large set of TRs share their

recruitment sites with NR1H4 in the

mouse liver genome, defining distinct

classes of CRMs

In order to define TRs interconnected
with NR1H4, we used our chromatin im-
munoprecipitation-high throughput se-
quencing (ChIP-seq) data from Lien
et al. (2014) to define the NR1H4 cis-
trome in the mouse liver and compared
it with that of 47 other TRs (Supplemen-
tal Table S1). We found that TRs exhibit-
ed varying levels of cistromeoverlapwith
NR1H4 (Fig. 1A). Remarkably, all but one
TR showed greater overlap with the
NR1H4 cistrome than the unrelated con-
trol REST (Fig. 1A), a transcriptional
repressor of neuronal genes in nonneuro-
nal cells (Supplemental Fig. S1; Chen
et al. 1998). Therefore, 45 out of the 47
analyzed TRs may combine with
NR1H4 at CRMs. In order to define how
these TRs are organized at NR1H4-bound
CRMs, we performed integrative cistro-
mic analyses using self-organizing maps
(SOMs) (Fig. 1B; Xie et al. 2013). The
map resulting from these analyses shows
individual nodes grouping together
NR1H4-bound CRMs with similar TR
binding patterns (Supplemental Fig.
S2A). These CRMs were mostly shorter
than 2 kilobases (kb) (Supplemental Fig.
S2B) and recruited two to 45 TRs (Supple-
mental Fig. S2C). In order to better define

Figure 1. Integrative cistromics identifies the active subset of NR1H4-bound CRMs which consists of
distinct classes of TRs recruiting CRMs. (A) Individual comparison of the NR1H4 cistrome in mouse liver
with that of the 47 indicated TRs. (B) NR1H4-bound CRMs from the mouse liver genome were classified
using a self-organizing map (SOM) based on their pattern of TR recruitment. Hierarchical clustering was
subsequently used to identify seven main classes of CRMs which are indicated on the planar view of the
toroidal map using different colors and denoted A to G. (C–F) Themap issued from Bwas used to indicate
the average number of binding TRs (C), the average DHS (D), H3K9ac (E), or H3K27ac (F) levels at CRMs
contained in each node. Bold black lines indicate the borders of the clusters. (G) Percentage of CRMs
from classes A–G potentially involved in gene transcriptional regulation. (H) Relative number of CRM
from classes A–G found within 25 kilobases (kb) of the transcriptional start site (TSS) of genes whose ex-
pression is dysregulated in the liver of liver-specific Nr1h4 KO mice. This window allows the capture of a
large fraction of distal sites able to influence gene expression (Akhtar et al. 2013). Fisher’s exact test with
Benjamini–Hochberg correction was used to define statistically significant differences between classes;
(∗∗∗) P < 0.001.
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the general features of the main subsets of NR1H4-bound CRMs,
we further grouped the nodes issued from the SOM into seven clas-
ses (labeled from A to G) using hierarchical clustering based on the
representative TR combination of each node (Fig. 1B; Supplemen-
tal Fig. S2D). We checked that the obtained CRM classification did
not result from the clustering of TRs analyzed within the same
study and therefore that preferential colocalization of TRs from
the same data set can be ruled out as a major confounding effect
(Supplemental Fig. S3). We then plotted the average number of
TRs recruited to these CRMs (Fig. 1C) togetherwith the average lev-
els of DNase I hypersensitivity (DHS) (Fig. 1D) and histone H3 ly-
sine 9 and 27 acetylation (H3K9ac and H3K27ac) used as
chromatin markers of active CRMs (Fig. 1E,F). We observed that
CRMs from classes E and G, and to a lesser extent those from clas-
ses D and F, showed hallmarks of active CRMs bound by multiple
TRs, i.e., strong DHS and histone acethylation levels (Fig. 1C–F). In
line with this, most of the CRMs from classes D to G were success-
fully ascribed target genes using a model correlating cross-tissue
CRM activities based on histone acetylation to the transcriptional
expression of surrounding genes (Fig. 1G; O’Connor and Bailey
2014). Moreover and in line with these data, CRMs from classes
D to Gwere significantly enriched in the vicinity of genes dysregu-
lated in the liver of Nr1h4 liver-specific knock-out (KO) mice (Fig.
1H). Hence, we focused further analyses on CRMs defining fully
active transcriptional regulatory elements from classes D to G
(see Supplemental Results 1; Supplemental Figs. S4, S5 for addi-
tional details).

NR1H4-bound CRMs with distinct TR compositions are associated

with regulation of cellular housekeeping and liver-specific

functions

The TR recruitment pattern characterizing each CRM class (D toG)
was defined bymultidimensional scaling (MDS) analyses based on
the frequency of co-occurrence of all TRs relative to NR1H4 and to
one another. This approach clearly indicated that a subset of TRs
preferentially co-occurred with NR1H4 for each CRM class
(Supplemental Figs. S6–S9). Therefore, we focused our analyses
on TRs which were the most strongly interconnected with
NR1H4 (Tanimoto index >0.7) (Fig. 2A–D). Classes D and F accom-
modated fewer TRs (Fig. 2A–D), which were all found in classes E
and G, respectively (Fig. 2E). Together with data from Figure 1
and Supplemental Results 2 (Supplemental Fig. S10), this indicates
thatCRMs fromclasses E andG are variants of CRMs from classesD
and F, respectively, characterized by stronger activity and addition-
al TR binding complexity. Hence, CRMs from classes D and E
(hereafter called CRMsD-E), on the one hand, and from classes F
andG (hereafter called CRMsF-G), on the other hand, were grouped
together for subsequent analyses. Comparing TRs recruited at
CRMsD-E with those recruited atCRMsF-G revealed a set of common
factors (Fig. 2E,F) (TRs depicted in black and hereafter called
TRsshared) comprising NRs including HNF4A, PPARA, NR1D2
(also known as REV-ERB beta), and the NR1H4 dimerization part-
ner RXR, as well as PKNOX1 (also known as PREP1), CEBPB, and
GATA4. TRsshared also include RNA polymerase II, cofactors such
as CREBBP (also known as CBP) and EP300 (also known as
P300), and members of the cohesin complex, all known to be
broadly associated with active CRMs (Fig. 2E,F). TRs preferentially
found at CRMsD-E or CRMsF-G also emerged from these data (TRs
depicted in blue or violet and hereafter called TRsD-E and TRsF-G, re-
spectively). This included NR family members [NR5A2 and RARA
for TRsD-E and NR3C1 (also known as GR), NR1D1 (also known

as REV-ERBalpha), and RORA for TRsF-G] as well as E2F and ETS
family members (E2F4 and GABPA) for TRsD-E and the corepressor
NCOR1, the FOXA family members FOXA1 and FOXA2, the PAR-
bZIP factor NFIL3 (also known as E4BP4), and the homeobox
HNF1A for TRsF-G (Fig. 2E,F; Supplemental Fig. S11). Several of
these TRs identified as the main factors interconnected with
NR1H4 through our integrative cistromic approachwere recovered
fromanalysis ofNR1H4-bound complexes in themouse liver using
rapid immunoprecipitation mass spectrometry of endogenous
proteins (RIME) (Fig. 2G; Supplemental Table S2; Mohammed
et al. 2016), indicating that at least a fraction of the TRs highlight-
ed by our analyses directly coregulates transcription with NR1H4.

Wenext sought to definewhether differential TR recruitment
toCRMsD-E andCRMsF-G could contribute to regulationof different
biological pathways in the liver.With this aim,we first interrogated
whether genes encodingTRsD-E or TRsF-Gwere genetically linked to
distinct mouse phenotypes (MPs) using the mammalian pheno-
type ontology database (Smith et al. 2005).While bothwere linked
to MPs related to liver morphology/functions, TRsF-G were more
specifically linked to altered metabolic homeostasis, while TRsD-E

were more specifically associated with developmental defects
(Fig. 2H). In line with this, striking differences between CRMsD-E

and CRMsF-G were also found when genes assigned to those
CRMs as described previously (Fig. 1G) were used to perform gene
ontology (GO) enrichment analyses. Indeed, genes linked to
CRMsD-E were enriched for cellular housekeeping/maintenance
functions, while those linked to CRMsF-G were mainly identified
as involved in energymetabolism, detoxification, and coagulation
(Fig. 2I; Supplemental Fig. S12; see Supplemental Results 3 and
Supplemental Fig. S13 for specific gene examples).Moreover,while
genes linked toCRMsD-E were similarly expressed over awide range
of mouse tissues, those linked to CRMsF-G exhibited preferential
expression in the liver (Fig. 2J; Supplemental Fig. S12). This was
also linked to greater changes in expression of genes linked to
CRMsF-G in the liver of Nr1h4 KO mice (Supplemental Fig. S14).

CRMsD-E and CRMsF-G show coordinated differences in their

pattern of activities across tissues and genomic organization

Expression profiles of genes linked to CRMsD-E and CRMsF-G (Fig.
2J) led us to investigate whether these CRMs exhibited differential
activation status across tissues using DHS. In line with expression
data fromFigure 2J, we found that CRMsD-E were identified as ubiq-
uitous DHS, while CRMsF-G were all identified as DHS only in the
liver (Fig. 3A). Analysis of H3K4 methylation levels showed that
CRMsD-E exhibited preferential enrichment for H3K4me3 over
H3K4me1 (Fig. 3B,C), an epigenetic pattern associated with
promoters (Heintzman et al. 2007; Lupien et al. 2008). Indeed, a
comparison with GENCODE transcriptional start sites (TSSs)
indicated that CRMsD-E almost exclusively (89%) correspond to
promoter-proximal CRMs (hereafter called CRMsD-E promoters)
(Fig. 3D). Conversely, preferential enrichment for H3K4me1 over
H3K4me3 was consistent with CRMsF-G mostly comprising en-
hancers (70%) (Fig. 3B–D). Moreover, CRMsF-G form clusters along
the genome since they were significantly associated with blocks of
regulation defined as genomic regions comprising active CRMs
marked with H3K27ac within 12.5 kb of one another (Fig. 3E;
Whyte et al. 2013). Among those regulatory blocks, 22%comprised
NR1H4-boundCRMs both at gene promoters and enhancers, as ex-
emplified by theNr0b2 or Fmo3 genes (Supplemental Fig. S13G,H).

Transcriptional regulation is spatially constrained within to-
pologically associating domains (TADs), whose borders are mostly
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Figure 2. NR1H4-bound CRMs comprise two main classes which relate to the regulation of different gene sets and biological functions. (A–D)
Multidimensional scaling (MDS) was performed as described in the Methods section using CRM from classes D, E, F, or G as indicated. These panels
show TRs which are the most strongly interconnected with NR1H4 in each class (Tanimoto index > 0.7). NR1H4 is depicted in red while TRsD-E and
TRsF-G specifically found in CRMsD-E or CRMsF-G are depicted in blue or violet, respectively. TRsshared are depicted in black and were found both in
CRMsD-E and CRMsF-G. (E) Venn diagram summarizing the overlaps between TRs found at CRMs from classes D to G in panels A–D. (F ) Overview of TRs
comprising the TRshared, TRD-E, and TRF-G subsets. TRs were grouped according to their function or affiliation to larger families, which are indicated in
bold. (G) TRs highlighted in Figure 2F, which could be identified in complexes with NR1H4 in RIME experiments, are indicated. As expected, NR1H4
was retrieved from these analyses but is not reported. (H) The main TRs found at CRMsD-E or CRMsF-G from panels A–Dwere used in ToppCluster to identify
associated mouse phenotypes (Kaimal et al. 2010). Bonferroni-corrected P-values (−log10) are shown. (I) Gene ontology (GO) enrichment analyses were
performed using DAVID (Huang et al. 2009) and genes associated with CRMsD-E or CRMsF-G. Bonferroni-corrected P-values (−log10) are shown. (J) Average
normalized mRNA expression levels of genes associated with CRMsD-E or CRMsF-G across indicated mouse tissues were obtained using BioGPS data (Wu
et al. 2009). Results are means ± S.E.M.
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invariant across cell types (Dixon et al. 2012). More than one third
of active mouse TADs defined in Zhao et al. (2013) showed greater
than twofold differences in enrichment for CRMsD-E relative to
CRMsF-G (Fig. 3F). Moreover, the presence of CRMsF-G was signifi-
cantly enriched within TADs specifically active in the liver (Fig.
3G), and NR1H4 binding to these CRMs was less conserved across

tissues as revealed by comparison with NR1H4 binding sites from
the mouse intestine (Fig. 3H). This points to a genomic compart-
ment level organization segregating CRMsD-E from CRMsF-G.
Nevertheless, this compartmentalization is not strict, and we
found that a limited subset of genes were associated with both
CRMsD-E and CRMsF-G (almost exclusively CRMD-E promoters

Figure 3. CRM from classes D-E and F-G differ in their identity, activity across tissues, and genomic distribution. (A) CRMsD-E or CRMsF-G were intersected
with DHS sites identified in the indicatedmouse tissues by the ENCODE Consortium (Vierstra et al. 2014). (B–D) Themap issued from Figure 1B was used to
indicate the H3K4me1 (B) or H3K4me3 (C) ChIP-seq levels as well as the percentage of CRMs localized within 2.5 kb of a GENCODE TSS (D) in each node.
Bold black lines indicate the borders of the clusters. The bar graph in D summarizes the percentage of CRMsD-E and CRMsF-G labeled as promoters or en-
hancers. (E) Active CRMs were defined as enriched for H3K27ac in themouse liver genome using data from Yue et al. (2014) and were grouped into blocks
when separated by less than 12.5 kb. The bar graph shows the number of CRMs found into clusters, i.e., comprised within the aforementioned blocks,
relative to those found outside clusters, i.e., single regions. Fisher’s exact test was used to define statistically significant differences between CRMsD-E

and CRMsF-G; (∗∗∗) P < 0.001. (F) CRMsD-E and CRMsF-G found in active mouse TADs identified in Zhao et al. (2013) were counted and normalized to
the respective total number of CRMs. The bar plot shows the frequency distribution of TADs with a different ratio of CRMsD-E relative to CRMsF-G. (G) A
similar analysis was performed using TADs specifically active in the mouse liver (Zhao et al. 2013), and results were plotted as a bar graph. Fisher’s exact
test was used to define statistically significant differences between CRMsD-E and CRMsF-G; (∗∗∗) P < 0.001. (H) CRMsD-E and CRMsF-G also identified as
NR1H4 binding sites in the mouse liver in Thomas et al. (2010) were compared to intestine NR1H4 binding sites from the same study. Fisher’s exact
test was used to define statistically significant differences between CRMsD-E and CRMsF-G; (∗∗∗) P < 0.001. (I) Percentage of genes uniquely associated
with CRMsD-E (CRMsD-E only) or CRMsF-G (CRMsF-G only) or associated with both (CRMsD-E + CRMsF-G). (J) Average-normalized mRNA expression levels
of genes uniquely associated with CRMsD-E (CRMsD-E only) or CRMsF-G (CRMsF-G only) or associated with both (CRMsD-E + CRMsF-G) in the mouse liver
was obtained using BioGPS data (Wu et al. 2009). Results are means ± S.E.M. One-way ANOVA with Bonferroni’s multiple comparison test was used to
define statistically significant differences; (∗∗∗) P < 0.001.
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together with CRMF-G enhancers) (Fig. 3I; Supplemental Table S3).
Interestingly, this subset of genes comprise housekeeping genes
with higher expression levels in themouse liver compared to genes
uniquely associated with CRMsD-E (Fig. 3J; Supplemental Fig. S15).

Altered transcriptome in the liver of TR knock-out mice relates to

their involvement in distinct combinatorial trans-regulatory
modules at NR1H4-bound promoters and enhancers

Since CRMsF-G comprised both enhancers and promoters, we con-
sidered the possibility that part of the complexity of co-occurring
TRswasmasked in our previous analyses. Therefore, we plotted the
occurrence of each individual TR at promoters versus enhancers
from CRMsF-G. We observed that TRsshared and TRsF-G were the
most frequently found factors both at promoters and enhancers
(Fig. 4A). Hence,wedefined TRshared as a core trans-regulatorymod-
ule (TRM) (shared between CRMD-E and both CRMF-G promoters
and enhancers) and TRF-G as a liver-specific functions control
TRM (obligatorymodule specific to CRMsF-G). Additionally, a large
fraction of the NR1H4-bound CRMF-G promoters were also charac-
terized by the presence of TRD-E which was found to characterize
CRMD-E in Figure 2 (Fig. 4A,B; Supplemental Fig. S16; also cf.
E2F4, GABPA, NR5A2, and RARA profiles in Supplemental Fig.
S11 and Fig. 3B–D). Preferential recruitment to promoters of the
TRD-E E2F4 and GABPAwas linked to a greater enrichment of their
bindingmotifs compared to enhancers, in sharp contrast withmo-
tifs recognized by the TRF-G FOXA1-2, NFIL3, andHNF1A (Fig. 4C).
A direct connection between motif enrichment and recruitment
was not evidenced for other factors including NR (Fig. 4C;
Supplemental Fig. S17A). Altogether, these results indicate that
TRD-E actually represents a specific TRM operating at NR1H4-
bound promoters.

To functionally validate these findings, we interrogated the
liver transcriptome from TR knock-out mice (Supplemental Table
S1). In line with the predictionsmade from the cistromic analyses,
dysregulated genes in the liver ofNcor1 andHnf1a KOmice prefer-
entially belonged to the subset of NR1H4-regulated genes associat-
ed with CRMsF-G (Fig. 4D; Supplemental Fig. S18). Conversely,
dysregulated genes in the liver of Ppara andNr5a2KOmice similar-
ly fell within the subsets of NR1H4-regulated genes linked to
CRMsD-E and CRMsF-G (Fig. 4D; Supplemental Fig. S18).
Altogether, these data verify that TRs from different TRMs are dif-
ferentially involved in the regulation of genes linked to CRMsD-E

and CRMsF-G and therefore provide functional support for the dif-
ferent TRMs identified by our cistromic analyses.

Hierarchical combinations of obligatory and facultative TRMs

further specify activities of different subsets of NR1H4-bound

CRMs

CRMs from class G (CRMsG) are the most densely bound sites (Fig.
1C). Therefore, we focused on this class of CRMs to test the hy-
pothesis that additional TRMsmay characterize and specify the ac-
tivities of a limited subset of CRMs.With this aim, we analyzed the
co-occurrence of each pair of TRs at CRMsG and subsequently orga-
nized the TRs based on hierarchical clustering (Fig. 5A). Further
supporting our previous findings, this analysis was able to retrieve
a main cluster largely composed of TRsshared/core TRMs and
TRsF-G/liver-specific functions control TRMs as well as a cluster cor-
responding to TRD-E/promoter TRMs (Fig. 5A). Interestingly, an
additional cluster comprised of the core circadian TRs [ARNTL
(also known as BMAL1), CLOCK, PER1, PER2, CRY1, CRY2, and

NPAS2] (Zhang and Kay 2010) was evidenced as binding to a sub-
stantial fraction of both CRMG promoters and enhancers (Fig. 5A).
In addition to a lack of co-occurrence of TRsF-G, clustering of these
circadian TRs was not as obvious at CRMs from class E
(Supplemental Fig. S19).

To better define how the newly discovered circadian TRMs
distribute at CRMsG relative to other TRs, we next monitored the
occurrence of TRs in CRMsG after they were divided into CRMs
devoid of (bound by 0–2 circadian TRs; hereafter denoted as
CRMG -circadian TRMs) or bound by the circadian TRMs (bound
by all seven core circadian TRs; hereafter denoted as CRMG + circa-
dian TRMs). The latter showed relative enrichment for E-box mo-
tifs (BMAL1_MOUSE.H10MO.C; Bonferroni-corrected P-value =
3.36 × 10−72), which mediate core circadian transcription factor
(ARNTL, CLOCK, and NPAS2) recruitment (Supplemental Fig.
S20). Promoters and enhancers were separately considered in these
analyses since module combinations differ at these CRMs. These
analyses revealed no large differences in TR occurrence at promot-
ers and enhancers with or without the circadian TRM (Fig. 5B,C).
Therefore, the circadian TRM does not represent an alternative
module at a subset of CRMs but rather a facultative module which
adds to the obligatory core and liver-specific functions control TRM
as well as the promoter TRM at selective enhancers and promoters.

In line with these observations, we found that a greater frac-
tion of genes linked to CRMG + circadian TRMs was dysregulated
in the liver of Per2 KO mice (Fig. 5D). We hypothesized that these
CRMswould also show greater associationwith circadian gene reg-
ulation. Indeed, we found that genes linked to CRMG + circadian
TRMs had a significantly greater chance to display circadian tran-
scription in themouse liver (Fig. 5E). In line with this, CRMG + cir-
cadian TRMs labeled as enhancers had a significantly greater
chance to display circadian eRNA transcription and therefore circa-
dian activity (Fig. 5F; Fang et al. 2014). Altogether, these data indi-
cate that the presence of the circadian TRM allows reinforcing
circadian regulation of a specific subset of NR1H4 target genes.

Finally, in order to lend independent support to our conclu-
sions, we used intra-genomic replicate (IGR) analyses to monitor
how changes in chromatin recruitment are coordinated among
TRs in the mouse liver. The IGR tool predicts the impact of single
nucleotide variants (SNVs) on TR chromatin binding (Cowper-
Sal·lari et al. 2012; Bailey et al. 2016). IGR analyses were performed
to define the effect of SNVs localized within CRMsG on binding of
all TRs, and results were subsequentlymined using either principal
component analyses (PCA) or hierarchical clustering (Fig. 5G;
Supplemental Fig. S21, respectively). We found that TRs could be
arranged into the same three main groups described in Figure 5A
(Fig. 5G; Supplemental Fig. S21). A subcluster containing most
TRsF-G was also evidenced by these analyses (Supplemental Fig.
S21). To rule out a confounding effect of TRs preferential cobind-
ing on these results, IGR data were further analyzed by using pair-
wise comparisons to define how frequently a given SNV impacts
on the binding of two TRs by strictly focusing on CRMs where
these two TRs are corecruited. Importantly, hierarchical clustering
of these data produced similar results (Fig. 5H). Altogether, these
analyses therefore indicate that TRMs previously identified are in-
dependently evidenced by selective and coordinated modulation
of TR chromatin recruitment.

Discussion

Our study, leveraging combinations of integrative cistromic, epige-
nomic, transcriptomic, and interactomic analyses, allowed the
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revelation of the transcriptional regulatory logic underlying
NR1H4 activities in the liver. A central finding of our study is
that TRs co-occurring at NR1H4-bound CRMs are organized into
obligatory and facultative TRMs which work in a combinatorial
manner to define distinct subsets of CRMs and target genes (Fig.
6). Importantly, transcriptomic data of liver from TR KOmice val-

idated the TRM organization identified by the cistromic analyses
and point to additive transcriptional regulatory inputs by the dif-
ferent TRMs. This organization intomodules that are differentially
and hierarchically found at CRMs transcends both (1) the defini-
tion of liver-identity TRs based on privileged labeling of their en-
coding gene with broad H3K4me3 in the liver (Supplemental

Figure 4. Main TRMs occurring at NR1H4-bound CRMs and functional validation of their role using dysregulated expression in the liver of mice KO for
representative TRs. (A) Plot showing the occurrence of each TR at promoters versus enhancers from CRMsF-G. TRsshared, TRsD-E, and TRsF-G are depicted in
black, blue, and violet according to Figure 2. Other TRs were displayed in gray. TRsshared and TRsF-G defining the core and liver-specific functions control
TRMs on one hand and TRsD-E defining the promoter TRMs on the other hand are highlighted into dashed boxes. (B) Three-dimensional plot showing the
occurrence of each TR at CRMD-E and CRMF-G promoters as well as CRMF-G enhancers. TRsshared, TRsD-E and TRsF-G are depicted in black, blue, and violet
according to Figure 2. (C) DNA binding motifs enriched in CRMD-E and CRMF-G promoters and in CRMF-G enhancers (defined using regions from class A as
controls) are indicated using the name of the recognizing transcription factor. Moreover, < and > were used to indicate significant differential enrichment
within distinct sets of CRMs. (D) Fraction of NR1H4 target genes dysregulated in the liver of mice KO for the indicated TR. Genes exclusively associated with
CRMsD-E or CRMsF-G and whose expression is modified in the liver of Nr1h4 KO mice were used for these analyses. Genes which are not linked to NR1H4-
bound CRMs and whose expression is not altered in the liver of Nr1h4 KO mice (NR1H4 nontarget genes) served as the reference (arbitrarily set to 1).
Fisher’s exact test with Benjamini–Hochberg correction was used to define statistically significant differences with NR1H4 nontarget genes ([∗] P < 0.05,
[∗∗] P < 0.01, and [∗∗∗] P < 0.001) or between NR1H4-regulated genes linked to CRMsD-E and CRMsF-G ([##] P < 0.01, [###] P < 0.001, [N.S.] not significant).

Logical architecture of liver regulatory modules
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Figure 5. Identification and functional validation of hierarchical combinations of TRMs at NR1H4-bound CRMs. (A) Heatmap showing TR co-occurrence
at CRMsG defined using a Tanimoto index. TRs were organized based on hierarchical clustering, andmain clusters were framed. The hierarchical clustering
tree is shown on the left. (B,C ) Plots showing the occurrence of each TR at CRMG promoters (B) or enhancers (C) characterized by the presence of 0–2 (−
circadian TRMs) or all seven core circadian TRs (+ circadian TRMs). (D) Analyses were performed as in Figure 4D using transcriptomic data from the liver of
Per2 KOmice. (E) The fraction of genes exclusively associatedwith CRMG−/+ circadian TRMs displaying circadian expression in themouse liver was defined
using genes with circadian transcription identified using global run-on sequencing (GRO-seq) (Fang et al. 2014). Fisher’s exact test was used to define
statistically significant differences between CRMG −/+ circadian TRMs; (∗∗∗) P < 0.001. (F) The fraction of CRMG enhancers −/+ circadian TRMs displaying
circadian eRNA transcription in the mouse liver was defined using data from Fang et al. (2014). Fisher’s exact test was used to define statistically significant
differences between CRMG enhancers −/+ circadian TRMs; (∗∗∗) P < 0.001. (G) The IGR tool was used to predict the impact of 63,968 SNVs on binding to
CRMsG of the indicated TRs, and data were then mined using PCA. Fold change was set to 0 when the modulatory effect of a SNV did not reach statistical
significance (Benjamini–Hochberg corrected P-value > 0.05) or when it relates to weak TR binding (i.e., binding not called by MACS2 in our previous anal-
yses). (H) The IGR tool was used to predict the impact of SNVs localizedwithin CRMsG on chromatin binding of the indicated TRs, and pairwise comparisons
were subsequently performed. Only SNVs localized within CRMsG corecruiting the two TRs and significantly modulating the binding of one of these two
TRs (Benjamini–Hochberg corrected P-value < 0.05) were considered. The frequency of comodulation by individual SNPs was calculated using a Tanimoto
index. The hierarchical clustering tree is shown on the left.
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Fig. S22), a recently discovered feature of cell-identity genes
(Benayoun et al. 2014; Chen et al. 2015), and (2) the previously
documented hierarchical activities of selective TRs including pio-
neer factors (CEBP, FOXA, GATA4) (Magnani et al. 2011; Zaret
and Carroll 2011), since TR from these groups are present in the
different TRMs. Hence, our results reveal novel principles of con-
certed transcriptional regulation by multiple TRs at CRMs.

Our study points to intrinsic differences in transcriptional
regulation of housekeeping and liver-specific genes by NR1H4,
the former being mainly promoter-based while the latter involves
recruitment to both promoters and distal enhancers (Fig. 6). This is
in line with conclusions from studies conducted in other biologi-
cal systems (Ernst et al. 2011; Tong et al. 2016) and is further
supported by the observation that CRMD-E promoters are half as
connected to distal enhancers when compared to CRMF-G promot-
ers (Fisher’s exact test P = 1.7 × 10−68). Nevertheless, a subset of
housekeeping genes displaying stronger expression levels in the
liver was linked to regulation by distal CRMF-G enhancers. This is
reminiscent of our previous findings, which indicated that the
cell-type–specific regulator PPARG uses distal enhancers to modu-
late housekeeping gene expression during adipocyte differentia-
tion (Oger et al. 2014). Moreover, our data are also consistent
with a recent study showing that, in addition to being critical for

transcription of cell-type–specific genes, tissue-specific distal en-
hancers also play an additive role regarding expression of a subset
of housekeeping genes (Beck et al. 2014). Overall, our findings are
consistent with the described hepatic functions of several TRs and
suggest that selected TRs, including NR1H4, may coordinately
serve as a nexus for concerted regulation of housekeeping/cellular
maintenance genes and liver-specific metabolic functions (see
Supplemental Discussion for details).

Recent studies indicate that promoters and enhancers actual-
ly share similar genomic architectures and unifying functionalities
(Kim and Shiekhattar 2015; Nguyen et al. 2016). In this context,
promoter-proximal CRMs could behave as TSS-proximal enhanc-
ers, allowing for autonomous transcription of housekeeping genes
(Arnold et al. 2016). Alternatively, these CRMs could bear both en-
hancer and promoter activities thanks to the specific presence of
selective TRs conferring strong promoter activities to CRMs
(Nguyen et al. 2016). This is consistent with our findings that pro-
moters and enhancers share similar TRMs, except for the addition-
al presence of a specific set of TRs (E2F4, GABPA, NR5A2, and
RARA) at the former ones.

At least a fraction of the TRs we have identified pertains to
chromatin-boundNR1H4 complexes in the liver, and IGR data fur-
ther indicate that TRMs represent functional units with

Figure 6. Hierarchical and combinatorial TRM recruitment discriminate NR1H4-bound promoters and enhancers involved in control of cellular mainte-
nance and liver-specific functions. The transcriptional regulatory logic defined in this study is summarized. The size of the TR and TRM above the chromatin
and of the boxes below the chromatin correlates with the occurrence of binding and DNA motif at the distinct classes of CRM, respectively. Refer to
Discussion for details.

Logical architecture of liver regulatory modules
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coordinated recruitment to chromatin. This may rely on several
mechanisms involving sharing of DNA motifs within a family,
such as NRs or hierarchical or reciprocally facilitated chromatin re-
cruitment (Magnani et al. 2011; Zaret and Carroll 2011; Madsen
et al. 2014), as well as formation of protein complexes which are
important drivers of TR genomic colocalization (Xie et al. 2013;
Liu et al. 2014). In this context, the core TRM comprises general
cofactors indirectly recruited by CRM-bound transcription factors
(Fig. 6), most probably including TRD-E and TRF-G (Fig. 5A,G,H;
Supplemental Figs. S19, S21). TR tethering may also mediate re-
cruitment of NR1H4 and several TRsshared, such as CEBPB,
HNF4A, and PPARA to CRMD-E promoters since these CRMs lack
enrichment for their DNA recognitionmotifs. This is concomitant
with a lower binding intensity of these TRs at CRMD-E promoters
(Supplemental Fig. S17B). Alternatively, binding through yet
uncharacterized recognition motifs cannot entirely be ruled out
(Neph et al. 2012; Jolma et al. 2015). Interestingly, CRMD-E promot-
ers show a greater coverage by CpG islands (CGI) (Supplemental
Fig. S17C), which has been described as a distinctive feature of pro-
moters harboring transcriptionally permissive chromatin states
and which could provide specific regulatorymechanisms to house-
keeping genes (Deaton and Bird 2011; Beck et al. 2014).

While our study has allowed us to draw general transcription-
al regulatory principles using genomic-level analyses, many subtle
variations of co-occuring TRs exist at NR1H4-bound CRMs, and
whether and how these more subtle variations impact target
gene regulation by the identified TRMs remains to be defined.
This focused level of analysis may, however, be more impacted
by heterogeneity of the original data sets including differences
in mouse feeding and handling as well as ChIP efficiency and
potential confounding effects due to usage of independent data
sets. Additionally, further studies are required to define the precise
functional outputs of the connection between TRs of the different
TRMs and NR1H4 (see Supplemental Results 4; Supplemental Fig.
S23 for additional details).

While focusing on NR1H4-bound CRMs allowed us to lever-
age its known functions and target genes in the mouse liver to val-
idate and interpret our findings, we have further shown that the
identified hierarchical combinations of TRMs extend to a broader
CRM landscape (Supplemental Results 5; Supplemental Fig. S24).
This indicates that this level of organization revealed by our study
is most probably a general principle operating at CRMs.

Methods

Public functional genomics data recovery and TR ChIP-seq data

processing

Public functional genomics data used in this studywere download-
ed from public databases and are listed in Supplemental Table
S1. All raw data were processed similarly including FastQC
analysis (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc), read mapping to mm10 using Bowtie (version 1.0.0)
(Langmead et al. 2009), peak calling using model-based analysis
of ChIP-seq version 2 (MACS2) (Zhang et al. 2008), and visual
inspection of called peaks using the Integrated Genome Browser
(IGB) (Nicol et al. 2009). Replicates were managed using the irre-
producibility discovery rate (IDR) (Li et al. 2011), and false positive
calls repeatedly identified in inputs and IgG ChIP-seq were re-
moved from all data sets. CRMs used for the SOM analysis were
identified as genomic regions with co-occurring recruitment of
at least two different TRs. Details and parameters which were
used are provided in the Supplemental Material.

Self-organizing maps analyses

The self-organizingmaps (SOMs) were generated using the R pack-
age “kohonen2” (Wehrens and Buydens 2007). The input vectors
fromCRMs, optimal number of nodes, and parameters to train the
SOMs were defined according to Xie et al. (2013) and are detailed
in the Supplemental Material. Nodes were further grouped into
classes based on hierarchical clustering performed using the hclust
function of the R package “Stats” (R Core Team 2015). A planar
projection of the toroidal map was used for data visualization.

Multidimensional scaling and hierarchical clustering analyses of

TR co-occurrence

TR co-occurence at CRMs from classes D, E, F, or G was used to
calculate Tanimoto distance matrices, which were used for
MDS and hierarchical clustering using the R packages “Stats”
(R Core Team 2015) and “gplots” (https://cran.r-project.org/web/
packages/gplots/), respectively. Details are provided in the
Supplemental Material.

Gene ontology, mouse phenotype, and gene set enrichment

analyses

GO enrichment analyses were performed using the Database for
Annotation, Visualization and Integrated Discovery (DAVID 6.7)
(Huang et al. 2009). ToppCluster was used to link TRs to MPs
(Kaimal et al. 2010). Gene set enrichment analysis (GSEA) was per-
formed using the GSEA software developed at the Broad Institute
(Subramanian et al. 2005). Details for used parameters are provided
in the Supplemental Material.

CRM target gene assignment and transcriptomic data analyses

CRM localized within 2.5 kb of a GENCODE gene TSS were as-
signed to this gene. Target gene assignment for distal CRMs was
performed using a model correlating cross-tissue CRM activities
based on histone acetylation to gene transcriptional expression
(O’Connor and Bailey 2014).

Raw transcriptomic data from Affymetrix microarrays were
normalized using the Partek Genomics Suite or the R package
“oligo” (Carvalho and Irizarry 2010). The average normalized ex-
pression of genes (averaged by Gene Symbol) were then used to
perform the differential expression analyses using limma (Smyth
2004; Ritchie et al. 2015). For the Nr1h4 KO data, a meta-analysis
was performed using the metaMA package (Marot et al. 2009).
Details are provided in the Supplemental Material.

Intragenomic replicates

The functional impact of SNV on TR binding within mouse liver
DHS was predicted using the IGR tool as previously described
(Cowper-Sal·lari et al. 2012). Details are provided in the
Supplemental Material. PCA and hierarchical clustering were per-
formed using the R packages “FactoMineR” (Le et al. 2008) and
“Stats” (R Core Team 2015), respectively.

Transcription factor recognition motif enrichment analyses

NR1H4 binding motif enrichments were determined using
CENTDIST (Zhang et al. 2011). Differential transcription factor
motif enrichment and motif scanning were performed using the
MEME suite (McLeay and Bailey 2010) as detailed in the
Supplemental Material.
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Animals and liver gene expression analyses

Nr1h4 and Ppara KO mice have been described previously (Porez
et al. 2013; Berrabah et al. 2014; Pawlak et al. 2015). Animal studies
were performed in compliance with European Community speci-
fications regarding the use of laboratory animals and approved
by the Nord-Pas de Calais Ethical Committee for animal use.

RNA extraction, reverse transcription (RT), and real-time
quantitative PCR (qPCR) were performed as previously described
(Dubois-Chevalier et al. 2014). MoGene-2_0-st Affymetrix arrays
were used for transcriptomic analyses. Details are provided in the
Supplemental Material.

Rapid immunoprecipitation mass spectrometry of endogenous

proteins

Livers fromwild-typemicewere processed for double cross-linking
as described in the Supplemental Material and then used for RIME
as described in Mohammed et al. (2016). Mass spectrometry was
performed by the proteomic core facility at Cancer Research UK.
TRs detected in IgG samples were discarded.

Statistical analyses

Statistical analyses were performed using the Prism software
(GraphPad) and R (R Core Team 2015). The specific tests and cor-
rections for multiple testing that were used are indicated in the fig-
ure legends.

Data access

Raw and processed data sets from this study have been submitted
to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.
nlm.nih.gov/geo/) under accession numbers GSE87566 and
GSE87567.
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