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Abstract

The multiscale, heterogeneous and functional attributes of biochemical networks raise great
challenges for mathematical modeling approaches, related for instance to problems of identifia-
bility, tractability or reducibility which are quite specific to biology. However, many fundamental
cellular functions, such as proliferation, death, differentiation, clock or signaling, are prone to
rely on the common — multistable and oscillatory — behaviors, which offers gateways to deci-
pher complex biological processes with low-dimensional dynamical models. An objective of my
research over the last decade has been to explore the dynamical and structural features of pro-
tein networks which regulate the decisions of cells made during their division and differentiation
processes.

Whereas the simplest bistable decision switch can be implemented by a strong enough posi-
tive feedback in protein networks, we found that, in general, cellular decision making is prone to
involve much more sophisticated regulatory architecture and nonlinear dynamics, which can be
summarized in three main results. First, the well-designed combinations of several positive feed-
back, negative feedback and feedforward loops enable to produce transition trajectories featured
with tunable speed and reversibility as well as robust sequentiality, as observed for diverse cel-
lular decisions. Second, intracellular oscillatory dynamics can be exploited by creating tunable
windows of opportunities for customized cell decision making among many fate alternatives.
Importantly also, high-codimension bifurcations provide the possibility to unfold well-distinct
cellular decision properties to fit with a specific environmental or social context.

Overall, these results support the notion that the low-dimensional topological and dynamical

features of regulatory networks can already endow cell with a vast repertoire of adaptive skills.



Chapter 1

Cell decision making: An overview

“Living systems are cognitive
systems, and living as a process
is a process of cognition. This
statement is valid for all
organisms, with and without a
nervous system”

H. Maturana and F. Varela

1.1 The biological basis of decision making

Understanding the biological and psychological mechanisms that guide human decisions has al-
ways been a key topic in neurosciences [Schall01,|Gold07] and social sciences |Tversky81]. By
conventional definition, decision making is the cognitive process of choosing between
alternative courses of action, based on informations and uncertainties, beliefs and
goals, values and risks. This broad definition applies not only to humans, but more generally
to any living organisms equipped with some cognitive capacity, including prokariotic and eukari-
otic cells [Perkins08|[Balazsill,BenJacob14]. This first section introduces the biological basis for
decision making as a specific and fundamental mode of interaction between a living organism
and its environment.

1.1.1 Decision making as an adaptive strategy

In order to understand the biological roots of decision making, it is helpful to envision the living
process as arising from the interplay between metabolic and adaptive processes defining two
embedded levels of living system organization (Fig. |1.1)):

e From metabolism to adaptation

From a thermodynamic viewpoint, living systems are open and non-equilibrium systems
that maintain their internal organization by importing and dissipating free energy from their
surrounding area and by producing and exporting high-entropy energy into it [Schrodinger44].
Accordingly, their internal organization fundamentally consists in a metabolic/catalytic net-
work of (bio)chemical reactions that consume energy-rich molecules and photons to main-
tain or regenerate such organization in face to various endogenous and exogenous sources of
disorganization (thermal fluctuations or radiative/chemical /mechanical perturbations). Another
critical feature of such a network is its encapsulation and circular relationship within a physical



boundary: the metabolic network produces and regenerates the semi-permeable lipidic membrane
that, in turn, encloses an internal space and filters the fluxes that are required to perpetuate
the metabolic network and process [Varela74,|Adamalal3].
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Figure 1.1: Life’s interplay between metabolic and adaptive processes. Living
organisms are traversed by flows of energy and of information. Blue: the metabolic
process consists in importing and exploiting free energy (i.e., food) from the environ-
ment and in minimizing and exporting entropy production (i.e., stress), in order to
sustain the living low-entropy organizational state. Red: the adaptive process consists
in tracking and interpreting various extracellular and intracellular signals from the en-
vironment in order for the organism to best adapt its whole organizational state to
spatiotemporal fluctuations of this environment.

However, non-equilibrium dissipative structures, even when compartmentalized, remain
strongly dependent on specific boundary conditions and are therefore vulnerable to their tempo-
ral variations that commonly occur on the highly dynamic earth environment. In other words,
the perpetuation of dependent and vulnerable living dissipative structures over billions years
and their expansion all over the earth have been made possible by developing powerful “adap-
tive capacity to keep pace with environmental conditions that change over short and long peri-
ods” |Brooks11|. The adaptive strategy of living systems would thus be based on their capacity
to develop a spatiotemporal mode of interactions with their surroundings. Shortly, two main
adaptive mechanisms can be distinguished [Kussell05, Bleuven16):

(1) Variation/selection mechanisms operate at the level of populations and involve the in-
terplay between stochastic diversification processes and selective amplification processes
(through differential survival and proliferation rates). The diversification processes can
be more or less heritable and reversible depending on it acts at genetic level (adaptive
evolution) or epigenetic/phenotypic levels (bet-hedging).

(74) Signaling/regulatory mechanisms consist in the interplay between sensing, memory and
response processes, which enables a living organism to adjust its organizational state to
best adapt to environmental changes. This strategy is likely to confer cognitive abilities in
exploiting the stream of past and ongoing environmental perturbations to infer the best
adaptive internal responses, but also to infer the most probable environmental states in
future time and in other places in order to predict and anticipate.




Whether one or another strategy prevails depends on the characteristics of environmental
changes and the respective metabolic cost of sensing and proliferating [Kussell05]. However,
these two strategies are also somehow mixed as the stochastic diversification process can be reg-
ulated [Maxwell17] and the regulatory process is stochastic to some extent [Maheshri07, Raj08]
and can diversify [Voordeckersl5|. As we shall see next, the decision-making process is a partic-
ular mode of regulatory adaptive mechanisms.

e Adaptive decisions in rugged fitness landscapes

“Cells and organisms sense, compute and make decisions [...] to invest their limited
resources to their mazimal benefit.” — [Tkacik16]

A fundamental mode of biological adaptive response to changeable environment is to pro-
duce discrete outputs in response to gradual changes of internal or external milieu, which is
referred to as a decision-making process. The requirement for such a discrete response process
presumably stems from the nonlinear nature of the adaptive problems to which living systems
are confronted. According to the framework of optimality theory, living organisms cope with
adaptive problems by looking for an optimal trade-off between various costs, constraints, crite-
ria and objectives, thus trying to maximize their fitness [Parker90]. Multi-criteria/combinatorial
optimization problems are likely to display multiple local optima, drawing a rugged fitness land-
scape [Kauffman87|Visser14], but a single global optimum. Changing the setting of the problem
would usually shift both the coordinates and the fitness values of the local optima, which can
eventually lead to a discrete change of the global optimum solution (Fig. .
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Figure 1.2: Decision making as an adaptive strategy. Discrete cell-state switch-
ing toward a fitter local optimum of a rTugged fitness landscape, upon environmental
changes.

The decision-making process may thus be viewed as an attempt to track such discrete change
of the global optimum, or, at least, to switch to a neighboring better-fitted valley. For instance,
a living organism threatened by a predator can elicit several possible adapted behaviors, such
as as to fight, to escape, to hide or to request help, while mixed response such as hide-and-fight
are generally suboptimal. Which decision is the most appropriate and, then, should be selected
among many others, depends on multiple environmental factors as well as on the previous history
and actual condition of the organism. In brief, the decision process relies on the detection
and interpretation of diverse external and internal signals, and discreteness is a
constitutive feature of decision making.



1.1.2 Cellular decisions regulated by protein networks

e A broad spectrum of cellular decisions

All aspects of the life of an organism potentially involve decision-making steps, hence giving
rise to a great diversity of cellular decision-making behaviors (Fig. [L.3A):

(1) Reproduction decisions contribute to proliferation and diversification processes. Examples:
DNA replication, mitosis, meiosis, fusion, fission, polyploidization, DNA uptake |[Mor-
gan07].

(7i) Metabolic decisions participate to the adaptation to temporal fluctuations of resources
and stress. Examples: metabolic transitions toward the utilization of alternative resources
(diauxic shift, glucose/galactose switch) or to a low activity state of dormancy (or quies-
cence) [Stanley15| Rittershaus16].

(7i7) Motility decisions are involved in the adaptation of spatial fluctuations of resources and
stress in order to explore more favorable environment. Examples: phototaxis, chemotaxis,
aerotaxis, swimming, swarming, gliding, floating, walking |Jarrell0§].

(iv) Social decisions are associated to the division of labor in a population of communicating
cells. For instance, distinct pools of cells in colony or multicellular organisms may special-
ize in diverse and complementary tasks such as stress protection, nutrient incorporation,
spatial patterning or repopulation |Celikerl3}|West16].
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Figure 1.3: A broad spectrum of cellular decisions. (4) Variety of signal-induced
decisions. (B) A diversity of developmental cycles involving sequential, cyclic, reversible
or rreversible decision making.

Upon spatiotemporal fluctuations of their environment, especially when resources are run-
ning out or when stress factors are accumulating, unicellular organisms can deploy complex
patterns of decisions selected among a vast repertoire, giving rise to elaborate developmen-
tal cycles (Fig. [L.3B), for instance in Cyanobacteria [Meeks02], Caulobacter [Kirkpatrick12],
Bacillus |[Kuchinall], Saccharomyces [Herskowitz88| and Dictyostelium |[Lill]. In the course of
evolution, some unicellular eukaryotes have undergone a transition into truly multicellular or-
ganisms [Miller10]. Since then, multicellular eukaryotic organisms have evolved an impressive
degree of morphological innovation involving a huge number of cells and diversity of cell types
(i.e., 100 — 1000 in animals) spatially organized into tissues and organs. The developmental
cycle of multicellular organisms usually involves a spatially- and temporally-regulated develop-
mental process during which a single zygotic cell - originating from sporic or gametic meiosis



- undergoes innumerable rounds of division and differentiation decisions before giving rise to a
mature multicellular organism. Proliferation and differentiation events continue to play a crucial
role in fully developed tissues in replenishing wounded area or replacing cells that are routinely
eliminated due to aging [Pellettieri07, Visvader16|. In short, cellular decisions such as rest-
ing, dividing, differentiating or dying must be carefully controlled, both spatially
and temporally, to support the development and homeostasis of viable multicellular
organisms. Inappropriate decisions may lead, notably, to developmental defects, tumorigenesis
or premature aging.

e Protein regulatory networks

In animals, the sensorimotor and cognitive behaviors are orchestrated by a specific organ —
the brain — and by a specific type of cells — the neurons —. The complexity of the organization and
operations of neural circuits in the brain provides huge potentialities for integrating a multiplicity
of cues from the external world, the internal body and long-term/working memories as well as
for elaborating a diversity of routine or creative decision responses.

In unicellular organisms, decision-making processes are implemented at the level of so-called
protein regulatory networks (Fig. [1.4A). Proteins are biological macromolecules consisting
of amino acid chains. The life cycle of a protein essentially involves its synthesis (DNA —
mRNA — P), some reversible or irreversible modifications (P — P*) and its degradation
(P*) — @). Within a protein network, two proteins can interact, directly or indirectly, in
various ways depending on which step of the protein cycle is regulated:

(1) Transcriptional /posttranscriptional regulation of protein synthesis is respectively medi-
ated (i) by transcription factors that control the rate of transcription by promoting (as
activator), or preventing (as repressor) the recruitment of RNA polymerase to specific
genes and (ii) by mRNA-binding proteins that control the rates of mRNA degradation
and translation.

(i) Posttranslational regulation of protein activity is typically mediated by the enzymes that
may induce diverse post-translational modifications (PTM) of protein structure/state: the
most common PTM is phosphorylation which involves addition (resp., removal) of a
functional phosphate group linked to a particular protein residue by protein kinases (resp.,
phosphatases); multimerization with other proteins is another ubiquitous mechanism
used to modulate the state and activity of a protein. Such modifications can directly alter
not only the functional activity of a protein, but also its localization by promoting its
translocation into different subcellular structures.

(7i7) Posttranslational regulation of protein stability /degradation is mediated through the in-
terplay between PTMs, for instance when some phosphorylation events promote the ubig-
uitination level of a protein that, later on, will be degraded by the ubiquitin proteasome
system.

The fact that a given protein species can both regulate and be regulated by many protein species
and through many modes of regulation gives rise to large and intricate protein networks.
However, the specificity of these regulations with respect to their mechanisms, targets and
effects give also rise to organized and heterogeneous protein networks. One great challenge
of modeling investigations of these large and organized protein networks is to find suitable levels
of description and analysis as we will discuss in the next section.



1.2 Dynamical modeling of cellular decisions

1.2.1 Differential equation models

o General formalism

In eukaryotic cells, the protein number for a given species (defined by a specific amino acid
sequence and encoded by a specific gene promoter) is highly variable depending on its function
and the context. On average, there is typically ~ 10%=6 copies of a protein species translated
from a pool of ~ 102~* copies of mRNA and one or two copy of gene [Milo16]. Despite the low
number of gene copy, the high rate of binding and unbinding events (~ 103s~!) on the promoter
compared with the mRNA transcription and degradation rates (< s~!) enables a temporal av-
eraging of promoter occupancy and activation. These quantitative considerations justify the
use of rate equations to describe the dynamics of protein concentration over slow
enough timescales. Each step of the protein life cycle consists in fact several complex biochem-
ical reaction steps involving for instance multiple cofactors, multiple binding sites, polymeriza-
tion, multimerization, DNA conformation, protein folding etc... It is therefore convenient
to describe protein network models using effective reactions to describe the synthesis,
degradation or post-translational modification processes using implicitely linearization, aver-
aging or timescale arguments. In any case, effective reaction rates are typically monotonous,
linear or nonlinear, functions of substrates and regulator concentrations, involving for instance
cooperative or saturation mechanisms. Although modeling studies take into account such
nonlinearities in diverse manners (Michaelis-Menten for degradation rates, sigmoidal or steep
Hill functions for transcripton rates), a general scheme with mass-action kinetics is the following:

Tr(zg)  filzy)

zj frrﬂz) 2 frﬂt) x; (1.2)

can be translated into the following differential equation for the time evolution of the species 1,
at a concentration x;:
d:L’Z'
dt

= fu(@r, Pr) — filz, P1) T + fin (T, Pm) Tj — fr(@n, Pn) T (1.3)

where f(x,p) generally consists in linear, quadratic polynomial or Hill functions. Furthermore,
some extracellular or intracellular concentration species (damage, nutrient, intercellular com-
munications) may reflect the state of the external environment to which the cell should adapt,
and must therefore be treated as signaling inputs (s(t)) to which the protein regulatory net-
work should respond. Such distinctions between signal inputs, intracellular variables, kinetic
parameters and reaction rates lead to the following smooth nonlinear ODE system:

d

dit‘ = F(x(t),p,s(t)) x e R" | p e R"? 5 ¢ R™ (1.4)
whose behavior can be studied and classified in various spaces: the state space, the parameter
space, the signal space, and diverse mapping between those spaces (Fig. [1.4B).

e Design and reduction of regulatory network models

In textbooks, the modeling of protein networks typically follows a stepwise task sequence with
(i) the identification of proteins and their interactions, (ii) the formalization of the corresponding
ODE system Eq[l.4] (iii) the estimation of parameter constants, (iv) the dynamical analysis
of the model. It is however worth to highlight now the main difficulty encountered in this
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Figure 1.4: Topology and dynamics of protein networks. (4) A set of multimodal
interactions between diverse biomolecular species produces a complex and dense pro-
tein network characterized by (B) nonlinear dynamical properties (e.g., in state space,
parameter space and signal space) and (C) topological properties (e.g., graphs, loops).
Upper panel extracted from [Srivastavall)].

modeling process. The above mentioned large-scale and multi-scale features of protein regulatory
networks can lead to dynamical systems Eq[I.4] characterized with high-dimensional state
space and parameter space. First, the nonlinear nature of these multiscale networks make
their theoretical and computational analysis challenging. But more importantly, experimental
studies do not bring enough informations regarding the regulatory scheme, the values of kinetic
parameters or the dynamics of variables, to reliably determine the detailed structure and accurate
parametrization of such high-dimensional models. In other words, such incomplete biochemical
and biological knowledge may typically lead to problems of non-identifiability, for which the same
set of data can be equally explained by several model structure or parametrizations. To solve
these problems, many implicit or explicit methods must be used to reduce the dimensionality of
the model [Radulescul2,Snowdenl7], so as to match with the dimension of experimental
data and to facilitate its analysis:

(i) Network design: Network design is an essential, difficult and controversial part of the mod-
eling work, which can be discussed along three main considerations. Because the tasks
realized by cells are usually segregated in time and space, the regulatory network typ-
ically shows a modular structure [Hartwell99,|Papin04]. Furthermore, a broad class of
functional behaviors such as transitions, oscillations, perfect adaptation, signal processing
can be performed by small circuits [Tyson03,|Alon07, Brandman08|. Accordingly, a first
step to design a network model of reasonable dimensionality is to isolate a
task-specific subnetwork or module, keeping in mind that such subnetwork must be
somehow coupled to others to ensure coordination between diverse tasks. Because task-
specific network can remain large, a second step consists in restricting to a core
set of species whose significant role is supported by experimental studies (knockdown,
overexpression) and by their position within the network (hub, feedback), which amounts
to delete the irrelevant parts of a network. Another related network design step con-
sists in gathering/lumping several species or regulations together, for instance by
describing a family or class of species (e.g., CKI, Rb, DIl) as a single effective species or by
describing a signaling cascade (e.g., MAPK, PI3K) as a single effective regulation. These
simplification steps are generally performed on the basis of prior experimental knowledge
and working hypothesis about which species/regulations are important or not for the data




or phenomena of interest. However, these could in principle be derived from diverse —
inference, decomposition, truncation, projection, pruning, lumping or coarse-graining —
techniques (reviewed in [Radulescul2,Snowdenl7]) when applied to a well-defined and
parameterized network.

(7i) Timescale separation: The dynamical systems above (Eq. typically displays a broad
range of timescales associated with the different regulatory mechanisms (of the order of
seconds for phosphorylation cycles, of minutes to hours for protein turnover rate and
of hours to days for epigenetic changes of chromatin), but also related to the nonlinear
dynamics of the system (oscillatory periods, fast/slow modes). Timescale separation is
the most common argument to reduce the dimensionality of the system, where for in-
stance the slowest variables can be assumed to be constant while the fastest variables can
be assumed to quickly equilibrate. In fact, diverse methods are available ranging from
the common quasi-steady state approximation or averaging techniques to more elaborate
manifold-based techniques (e.g., computation of and projection onto slow invariant mani-
folds) |Radulescul2).

(741) Nondimensionalisation: Nondimensionalization of concentration and time is a simple pro-
cedure to reduce the number of variables and of parameters. Because concentrations are
positive but bounded (due to crowding effect), such rescaling can enable to define and
restrict the relevant state-space as an hypercube.

(iv) Parametric analysis: Regardless whether models are more or less reduced, many parameters
are either effective, difficult to estimate experimentally or highly dependent on the context
or cell type, meaning that a critical part of model setting is to estimate the biologically- and
functionally-relevant domains of parameters. This difficulty of parametric incompleteness
can be circumvented using diverse methods of parametric analysis such as optimization
methods (e.g., local or global, heuristic or iterative), sensitivity analysis (e.g., identification
of stiff versus sloppy parameters) or parameter space exploration (e.g., bifurcation and
phase diagrams).

(v) Discreteness and randomness: Modeling frameworks other than ODE can be more appro-
priate to account for the influence of the discrete and stochastic nature of certain regulatory
events on intracellular dynamics and cell behaviours. For instance, the sigmoid binary-like
response of transcriptional rate as a function of promoter occupancy has inspired logic-
based boolean models, which are suited for discrete-state analysis of large gene regulatory
networks [Albert14,Dunnl4]. As well, the overall effects of various sources of stochasticity
(molecular noise, low copy number, chromatin switching, transcriptional bursting etc...)
must be treated with statistical physic tools, such as the chemical master/Fokker-Planck
equations or stochastic simulations [Maheshri07,/Gillespiel3,|Tsimring14], though it can be
still possible to keep using the ODE framework by introducing Langevin noise terms |[Ma-
heshri07],Gillespiel3].

In the models defined and analyzed in this thesis, both rather detailed (n1,n2 > 10) and
coarse-grained /reduced (n1,n2 < 10) network models have been studied, depending on whether
the model aims to study specific biological process and regulatory mechanisms or to extract some
network design principles involved for a class of biological behavior. In any case, the elaboration
of network models was carefully based on literature and experimental evidences, and exploited

in diverse manner and rigorness the techniques presented above (see for instance |[Pfeuty18] and
its Fig. S8).



1.2.2 Network topology

Like many other networks (neuronal, social, ecological, communication), a protein regulatory
network can be viewed as a network of nodes connected by directed edges and characterized by
a specific topology (Fig. ) The topology of a large network can be analyzed with respect to
the statistical features of their edge distribution (degree distribution, clustering coefficient, as-
sortativity, hierarchy, reciprocity...) and, then, be shown to belong or relate to a particular class
or subclass of network topology (random, scale-free, small world, democratic, bow-tie...). These
large-scale topological features of protein networks |[BarabasiO4, Friedlander15, Mengistul6] pro-
vide key insights on evolutionary forces and constraints that shape the network structure.
However, the adaptive dynamics of protein regulatory networks tends to rather
depend on the operations and combination of small-scale topological features called
motifs, each of which can already underlie sophisticated dynamics and functional tasks
[Tyson03}, Prill05, Alon07]. A primary classification of these functional motifs can be first made
by depicting a protein regulatory network as a graph with directed and signed edges charac-

terized with a particular Jacobian J;; = S ([gf; (X)D Feedforward loops (FFL) are defined

by two or more paths that connect the same source and target nodes, and they can be coher-
ent (CFFL) or incoherent (IFFL) depending on whether the overall effect along these paths
have same or opposite signs. Motifs with feedforward loops only can already trigger diverse
complex dynamical behaviors such as signal filtering, non-monotonic transient dynamics and
non-monotonic steady-state outputs [Kaplan08,/Goentoro09,Ma09]. Feedback loops are defined
by a cycle path that connect the same source/target node, and they can be positive (PFL) or
negative (NFL) depending on the sign of the overall effect along this path. In contrast with
FFL only, feedback loops have a critical impact on the Jacobian determinant, and thus on the
fixed point stability. For instance, a NFL is a necessary condition for an Hopf bifurcation giving
rise to oscillations while PFL is a necessary conditions for multistationarity [Thomas81|. From
a biological viewpoint, feedbacks play critical roles in the adaptive and developmental abilities
of living organisms [Lewis08]:

“Positive feedback can give a system a flip/flop choice between alternative steady
states; it can endow a system with enduring memory of its exposure to past signals;
it can generate inhomogeneity in a system that starts out spatially uniform. Nega-
tive feedback can smooth out irregularities; it can enable a system to respond to a
stgnal more rapidly; operating with a delay, it can give rise to temporal oscillations.
These behaviors are not immediately obvious intuitively, but mathematics allows us
to predict and compute them.”

In fact, protein networks often comprise a large number of such loops intermeshed in vari-
ous ways. Such interplay between a multiplicity of feedback loops is likely to give rise to a
broad repertoire of sophisticated dynamical behaviors, while a given dynamical behavior can
be implemented by a diversity of loop topologies. This combinatorial potential have motivated
the investigation of the design principles of protein metworks |Liml3| involved for in-
stance in signaling cascades |[KholodenkoO6], oscillatory circuits |[Novak08, Jolley12|, adapta-
tive responses |Ma09, |Ferrelll6|, fold-change detection |[Adlerl7] and, of course, switching be-
haviours [Brandman05, Kim07,|Guantes08|,Shah11, Kim12,|Oyarzunl5, Cardellil7].

1.2.3 Nonlinear dynamics

The main proposal of our dynamical modeling approach is that important properties of
cellular decision making can be primarily explained at the level of the monlinear
dynamics of the protein regulatory networks, which can be investigated through compu-
tational analysis of Eq. Decision making can be viewed as a dynamical process that converts

10



a continuous stream of signal inputs into discrete behavioral outputs. From a dynamical system
perspective, this process is often described as a discrete transition from a destabilized pre-
decision attractor state toward a well-distinct post-decision attractor states, eventually among
several possible attractor states. This kind of behavior is likely to occur in the presence of a
bifurcation or structural instability corresponding to changes in the qualitative (or topolog-
ical) structure of the phase portrait of the dynamical network system, where the phase portrait
of a dynamical system is a flow-invariant partitioning of the state space into a set of particu-
lar orbits (See dynamical system glossary of Appendix C) that offer skeletal information about
the topology of the flow [Wiggins90|. The phase portrait and its transformation upon changes
of signals and parameters are likely to provide important informations about decision-making
properties by depicting attractors, attraction basins, basin boundaries, bifurcation events and
transition trajectories. This is illustrated for the simplest decision-making switch (Fig. )
associated with a signal-induced destabilization of a fixed point through a saddle-node bifurca-
tion point (at s = s.) toward another stable fixed point that is stable for s < s., which implies
bistability and possibly hysteresis.

A Bifurcation diagram Phase portrait Temporal Trajectories

? s<s, S=S, S>s, O g 2
> —p Stable/center/unstable manifolds w ST -
rrrrverd [

i i Trajectories x(t)
Signal, s S, o » : >t
[ WD Attraction basins

State variable, x

B| Bifurcation b'd x/ Bistability
#1 SN FP FP/LC v
#2 SNLC LC LC/FP v
#3 Transcritical FP FP @
#4 Sup/Sub Pitchfor FP FP /v
#5 Sup/Sub Hopf FP LC /v
#6 SNIC FP/LC | LC/FP @
#7 SHO LC FP v
#8 Sup/Sub Flip LC LC /v
#9 Sup/Sub Neimark LC LC o/

Figure 1.5: Bifurcation mechanisms for discrete decisions. (A) The basic decision
switch can be described by a signal-induced destabilization of a (fized-point) attractor
when crossing a (saddle-node) bifurcation point toward another (fized-point) attractor,
during which the phase portrait structured by several invariant manifolds displays qual-
itative changes. Accordingly, decision making is sensitive to inducing signal intensity
and duration. (B) Repertoire of bifurcation scenarios underlying a transition between
two states, which are restricted to fived points (FP) and limit cycles of period-1/2
(LC’l/Q). Sup: supercritical. Sub: subcritical. Bistability: coexistence of two stable states
x' and x7 for s = s. — €.

e The diversity of bifurcation scenarios

Although the simplest decision switch can be described by a one-dimensional bistable system
(Fig.|1.5]A), refined and elaborate decision-making behaviours may involve a diversity of decision
attractors (fixed point, one or multiple frequency oscillations, perhaps chaotic attractors) and
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of bifurcation types, some of which are listed and depicted in Fig. [L.5B. In fact, the way how
temporal variations in bifurcation parameters and stochasticity (e.g., Langevin noise) control
the transition dynamics tends to depend on the type of underlying bifurcation |[Wiggins90,
Berglund06]. It is also noteworthy that codimension-1 bifurcation scenarios can intersect in the
parameter space into higher codimension bifurcation scenarios (e.g., Bautin, cusp, pitchfork,
Bogdanov-Takens, SNHO, SNSHO; some are depicted in Fig. [B.I). This thesis also explores
the conjecture that distinct types of bifurcation can underlie different decision properties, and
high-codimension bifurcations can underlie flexible decision properties.

1.2.4 Thesis outline

This thesis investigates differential equation models of protein networks that regulate important
cellular decisions related with proliferation and differentiation processes. The main objective is
to decipher the relationship between the structural and dynamical properties of these network in
order to shed light on key decision-making properties and strategies of living cells. This thesis will
be organized into chapters that will address these questions regarding four important decision-
making properties that are typically involved for cell division and differentiation decisions:

e Chapter 2: Decision speed
How do cells control the timing of their decisions?

e Chapter 3: Decision reversibility
How do cells control the (ir)reversility of their decisions?

e Chapter 4: Decision gating
How do cells seize or create decision-making opportunities?

e Chapter 5: Decision paths
How do cells control the sequentiality of their decision process?

12



Chapter 2

Decision speed

“Do you have the patience to
wait until your mud settles and
the water is clear?”

Lao Tzu

Speed-accuracy trade-off is an essential feature of biological decision-making pro-
cesses in general, and of division initiation decision in particular (Section 2.1). This
Chapter presents several studies of the G1-phase progression and G1/S transition
in the mammalian cell-cycle, which reveals a complex organization of the regulatory
network (Section 2.2.1 and [Pfeuty08]) that specifically allows for a tunable control
of the timing of G1/S transition (Section 2.2.2 and [Pfeutyl2b, Pfeuty12c]). These
studies highlight network and dynamic mechanisms that enables a fine-tuned control
of decision speed, regardless to some extent of the decision-making impulse (Section

2.3).

2.1 Introduction

2.1.1 Insights from neuroscience: speed-accuracy trade-off

In experimental psychology, the measures of reaction times and error rates in decision tasks
involving varying temporal constraints have established a fundamental principle in decision
theory known as the speed-accuracy trade-off [Wickelgren77,Bogacz10,Heitz12]: in such a trade-
off, decision makers implicitly compare the relative advantage between reacting quickly and
well-preparing and weighting their decision, in order to decide when to initiate the irreversible
step of decision making. On the one hand, urgent decisions with tight deadlines require quick
reaction times and commitment. On the other hand, error-free decisions in ambiguous situations
and in the absence of stringent deadlines require prior accumulation of evidences and complex
information processing before commitment. Despite the diversity and multiplicity of sensory and
motor modalities involved in decision tasks, the speed-accuracy trade-off seems to be captured
by rather simple computational models (called integrated accumulators or bounded integration)
whose parameters can be nevertheless highly flexible and adjustable depending on the attentional
effort, the motivation or the environmental context [Salinasl4.|Standagel4, Drugowitsch15].
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2.1.2 Speed and checkpoints for cell proliferation

The efficiency of cellular decision-making processes is dependent on various contingencies re-
lated to readily available informations, temporal constraints or metabolic costs, which should
also entail a trade-off between speed and accuracy. The temporal gap between signal exposure
and irreversible commitment can be highly variable and may significantly increase in certain sit-
uations. Among the many cellular functions that are based on discrete decisional processes, the
issue of whether to divide or not is probably the most archaic and ubiquitous decision to which
cells are confronted. The proliferation cycle of growth and division has indeed evolved as one of
the most fundamental strategy involved in the perpetuation and expansion of life. It basically
relies on the temporal coordination of diverse catabolic, anabolic and morphological processes
including protein synthesis, mitochondrial fusion, DNA replication, chromatin segregation and
cytokinesis. The accurate and successful orchestration of these events requires favorable exter-
nal and internal conditions (related to nutrient import, metabolic state, cell integrity, stress
events...) which are carefully evaluated through the integration and computation of diverse sig-
nals [Morgan07]. During the decision-making process of division initiation, the speed-accuracy
trade-off manifests itself through the competing requirements for:

(1) a quick enough division initiation to sustain high proliferation rate and to maximize the
fitness of the population.

(73) a careful enough division initiation to avoid partial or complete failures and maximize
the chances of giving birth to healthy daughter cells. This stringency of this requirement
is demonstrated by the occurrence of so-called cell-cycle checkpoints at the transition
between different cell-cycle phases, such as, for instance, the growth-dependent checkpoints
[Hartwell74}Pardee74] or the DNA-damage checkpoint [Bartek01].

Expectedly, the optimal trade-off between the two requirements would be determined by the
respective costs of cell division failures and division delays, an thus, would vary depending
on environmental context (e.g., poor versus rich nutrient conditions), species attributes (e.g.,
prokaryotes versus eukaryotes) or cellular lifestyle (e.g., unicellular versus multicellular). As a
matter of fact, the duration of the cell-division cycle of mammalian cells, especially their G1
phase, exhibits an extreme variability, notably over the course of development [Takahashi99,
Langel0l[Rocciol3[Donglg| (Fig. [2.1A).

A M G1/s
Commitment
@ Point .—'/
G1 s
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Figure 2.1: Decision speed during the Gl-phase of the cell cycle. (A) The
decision time Tgy — the time between GO exit (or M-phase exit) and S-phase initiation
— ranges in mammalian stem cells between 3hr to 30hr depending on various factors.
(B) Decision speed relates to the time t. between the onset of the inducing signals (e.g.,
growth mitogenic factors) and the irreversible crossing of a saddle separatriz (see Eqs
2.1 to 2.5).
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2.1.3 How to regulate transition speed?

The control of the decision speed associated for the initiation of cell division can be addressed
from a dynamical perspective as follows: let assume that a step signal (Eq. 2.1) makes a bistable
protein network transit from the steady state x° (e.g., GO) toward the stable steady state x!
state (e.g., S phase) (Eq. 2.2). The decision speed will mostly be related to the time t. (Eq. 2.3)
between the onset of the step signal and the crossing of a saddle separatrix beyond which decision
becomes irreversible despite the removal of decision-inducing signals (Eq. 2.4) (Fig.[2.1B). Within
this scheme, the control of decision speed can be investigated by determining how this critical
time t. depends on signal properties (sg, ds) and network properties (p) (Eq. 2.5).

Step signal: s(t) =so + IsH(t) (2.1)
Bistability: p>= (x0sadl gy = x0-sadil (2.2)
Decision time: te = {t : ¢*(x,80) € W3(x*2)} (2.3)

Saddle separatrix: W$(x%%) = {x : $*°(x,s0) = x*¥} (2.4)

Speed control? te = f(so,0s,p) (2.5)

2.2 Results: Temporal control of G1-phase decisions

2.2.1 Flexible G1l-phase transit through intricate feedback loops
See [Pfeuty0§| for more details

e The multiplicity of positive feedback loops

As emphasized earlier, the growth-dependent checkpoint that occurs in late G1 phase before
S-phase entry and initiation of DNA replication is the first and most important cell decision-
making step of cell division. Beyond this G1/S checkpoint, a sudden deprivation of growth or
mitogenic factors will not prevent the progression through the S phase, which suggests the occur-
rence of a saddle instability (like in Fig. ) induced by strong positive feedback mechanisms.
This irreversible transition can be explained by the structure of the G1-phase regulatory network
which comprises several positive feedback loops involving cyclin/Cdks complexes, notably cyclin
D/Cdk4,6 (cycD) and cyclin E/Cdk2 (cycE), and cell-cycle inhibitors, notably Rb proteins and
Cdk-inhibitors (CKI) (Fig. [2.2]A):

PFL1: E2F — E2F

PFL2: E2F — cycE —e Rb—e E2F
PFL3: cyck —e CKI —ecycFE
PFL4: cycE —e Rb—cycE

Although cooperation between these PFLs is sufficient to explain the irreversible transition
from G1 to S phase [Novak04, Gerard09], the coupling between growth and division or other
regulatory refinement may need to be taken into account in order to explain the timing of the
transition. In unicellular organisms, models of the cell-division cycle usually assume that the rate
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of cyclin synthesis is cell size-dependent so that G1-phase duration, Tz, essentially depends on
the time required to reach a critical cell size [Csikasz-Nagy06,Pfeuty07]. Cells from multicellular
organisms display a more flexible and reciprocal coupling between their growth and division
processes [David06, Ginzbergl5| as senescent or differentiated cells can grow very large without
dividing while some stem cells and cancer cells divide at very small sizes. Such a reciprocal
coupling between growth and division is also expected to enable mammalian cells to finely tune
their G1-phase duration in a context-dependent manner.

In order to confirm this hypothesis, we have proposed a model of the mammalian G1-phase
regulatory network [Pfeuty08] that notably includes many reciprocal interactions between ri-
bosomes and cell-cycle regulators (Fig. ), which thus implement many additional feedback
loops:

PFL4: Rb— Rib— cycD —e Rb
PFL5/6 : cycE — Rib — cycD,E

NFL1: ¢ycE — Rib — CKI —ecycE

NFL2: p53 —+ Rib — pb3

NFL3: cycD —e CKI — cycD

Among the many positive feedback loops, PFL4 is especially interesting as it operates up-
stream independently on cyclin E. Although the early-G1 PFLs should lead to the activation of
late-G1 PFLs (because cycD activates cycE synthesis via Rb phosphorylation and derepression),
basal or stress-induced activation of the p53-CKI pathway can inhibit late G1 progression and
S phase entry without significant interference with early G1l-phase progression and GO exit.
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Figure 2.2: G1l-phase arrest before G1/S transition. (A) Mammalian GI1-phase
regulatory network including the interactions between cell-cycle regulators and ribo-
somes (* are disrupted in section 2.2.3 and Fig.[2.3). (B) Schematic bifurcation dia-
gram showing that increasing [SF| stabilize a G1-phase arrested state between the GO
state and the S-phase state, by shiftin [GF g, threshold. (C) Schematic phase diagram
showing the separable control of two SN bifurcation for GO exit [GFls,, and for G1/S
transition [GFsn, ([SF]). (D) Very slow G1 phase progression with transient upregula-
tion of CKI and P51 close to the SNy bifurcation. All panels are extracted or adapted
from [Pfeuty0§].

Accordingly, increasing the level of stress factors [SF| can stabilize an intermediate
G1-phase arrested state (Figs. 2.2B,C) without compromising GO exit (i.e., [GF|sn1 at
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which GO-state branch is destabilized) as demonstrated by the existence of a tristability
region (Figs. [2.2C). Moreover, [SF] levels that are not high enough to stabilize this interme-
diate G1-phase arrested state can nevertheless significantly delay the irreversible transition to
the S phase state, which correlates with a transient increase of P53 and CKI during early G1
phase (Figs. 2.2D), consistently with experiments [Loewer10]. Such a non-monotonic response
of cell-cycle inhibitors following a step of [SF| manifests the presence of NFL and/or IFFL
mechanisms such as NFL1 and NFL2. A further question is to whether the observed slow-down
of G1l-phase progression requires particular bifurcation and network mechanisms.

2.2.2 Flexible decision speed through saddle-node ghosts
See [Pfeuty12bl|Pfeuty12c| for more details

e G1/S decision speed depends on network-driven transition trajectories

A simplified G1-phase regulatory network without Ribosomal and P51 proteins [Pfeuty12b]
is studied to clarify the dynamical mechanism by which an intermediate G1-phase arrest state
contributes to a flexible decision speed [Pfeutyl12b|. The [SF]-dependent control of G1l-phase
speed/duration was found to tightly depend on the network organization (Fig. ) Indeed,
disrupting specific seemingly-minor regulations (Rb—cycE and CKI—cycD) qualitative al-
ter the manner how Gl-phase duration depends on [SF| and how much (ir)reversible is the
[SF]-dependent Gl-phase arrest (Fig. [2.3A). In the wild-type model (left), the G1-phase pro-
gression speed smoothly decreases with increasing levels of [SF] when [SF] — [SF]s, as
1/Te1 o ([SF)sn — [SF])Y/?, whereas the Gl-phase arrest is fully reversed when [SF] de-
creases below [SF].. Following the two network alterations (among others), the Gl-phase
progression speed sharply decreases with increasing levels of [SF| when [SF| — [SF]. as
1/Tg1 o« —log ([SF]. — [SF]) ™", whereas the Gl-phase arrest is reversed only when [SF] de-
creases below [SF|s, < [SF].. The difference between these two behaviours relates to whether
the saddle-node bifurcation associated with the appearance of the G1-phase arrested state occurs
on the Gl-phase trajectory (¢>°(x%?) = x*") or not. In the latter case, G1l-phase arrest would
arise when the G1-phase trajectories meet the saddle fixed point (¢ (x%9) = x%2) (Fig. )
Given these differences, tunable transition speed relies on smooth slowing down of the flow speed
in a state-space region (called a bottleneck region) where a saddle-node is close to appear under
a parametric perturbation (called a saddle-node ghost or remnant).

Because the network model was simplified and not specific to a particular stress context, we
do not really expect or predict that disrupting one of these two regulations will induce quali-
tative changes of G1-phase progression. However, this result demonstates that the qualitative
properties of G1l-phase progression can drastically change by removing a subset of feedback or
feedforward motifs in the network, thus highlighting the functional importance of such regulatory
sophistications.

e Relations between bifurcation scenarios and decision properties

Like in the above models, the dynamics of cell-cycle transition dynamics between two phases
(G0/G1, G1/S, G2/M etc...) can be studied by analyzing the multistable switching behavior of
a network model restricted to the cell-cycle module and phases of interest. However, most cell-
cycle models describe the whole cell-division cycle as a limit cycle oscillator [Novak04,|Csikasz-
Nagy006, Gerard09]. The above described relationship between decision-making speed proper-
ties and bifurcation mechanisms can be recapitulated more generically for limit cycle scenarios

(Fig. [2.4) and [Pfeutyl2c]):
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(1) Tunable control of decision speed typically occurs in the vicinity of a saddle node on
invariant circle (SNIC) bifurcation (Figs. left). This bifurcation scenario entails a fully
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Figure 2.3: Two distinct classes of Gl-phase arrest depending on network
features. Alterations of the G1-phase regulatory network can qualitatively change (A)
the controllability of G1-phase duration (T = f([SF])) from tunable to non-tunable
and (B) the corresponding slow G1-phase trajectories from a saddle-node to a saddle

colneigbhorhood. Panels are extracted or adapted from [Pfeutyl2b].

reversible cell-cycle arrest.

Non-tunable (and quick) decision speed typically occurs in the vicinity of a saddle-
homoclinic bifurcation (SHO) (Figs. right). This scenario is associated to an irre-

versible, to varying extent, cell-cycle arrest.

Tunable decision speed and tunable irreversibility can nevertheless co-occur in the
vicinity of higher codimension bifurcations such as a saddle node bifurcation on a saddle
homoclinic orbit (SNSHO) (Fig. middle). This scenario has been evidenced in a model
of cell-cycle arrest and differentiation decisions in neural stem cells [Pfeuty15a], and is more
consistent with the observation of distinct, reversible and irreversible, cell-cycle arrest in

response to varying level of type of stress [Toettcher09, Purvis12].

18




Tunable decision speed Non-tunable decision speed
(s-s)* (s-8)" '—Iog(sc-s)'J
uT w Ut TN J Ut 'j l
o:ooo l...ll looo.l' ol.oo.ll
soee : : 2
1 I I
X pbpe—m—m———— ':'—.3 Xi ———————— :_—A.‘ X | L o J—
i 1. (R | L
o’oooo?ooox .’,n..o»-0~j .?h—'—v—r+’_
0.05 0.1 10.15 0.05 o1 0.05 0.1
S | S | S |
V : o
G55 @

Figure 2.4: Limit cycle bifurcation scenarios associated with tunable or non-
tunable decision speed. Saddle-node in Left-to-right panels represent three bifurca-
tion routes associated with local bifurcation of a limit cycle giving rise to tunable or
non-tunable decision making. Upper panels are extracted from [PfeutylZ2c]

2.3 Conclusion

In a basic bistable decision-making switch generated by a single PFL, the transition speed from
xY to x! is related to the degree of instability of the initial state measured by the flow speed at
IF(x°,s)| > 0. However, speed-accuracy trade-off suggests that the decision-making speed should
also depend on other context-dependent requirements such as the accumulation of evidences or
temporal deadlines. Our studies of division initiation decision (G1/S transition) have revealed
that part of the complex feedback and feedfoward organization of the network contribute to a
generic dynamical mechanism enabling for a flexible control of decision speed:

Cellular decisions featured with a temporally-flexible preparation stage before irre-
versible commitment may build upon “a saddle-node ghost mechanism?”.

In the multistable G1-phase regulatory networks that are studied in [Pfeuty08| Pfeuty12b|, we
showed that the condition for the decision-making trajectory to traverse this ghost region de-
pends on the feedback-feedforward organization of the network, in a manner that is not yet
really understood but that would require to depict more carefully the phase portraits and sta-
bility properties of invariant sets. The relationship between decision-making speed tunability
and the properties of transition trajectories near some singularity at s = s, is summarized by
(Appendix C or SM of [Pfeuty12b]):

Trajectory through | SN ghost Near saddle
Speed ¥ = 1/t, o (s — 8.)% | < —log (s — s.)
Tunability (9;%)7! | x & o N2 B/E

¥ > N 2e~B/* for ¥ small enough

The existence of a temporally-flexible preparation stage before irreversible com-
mitment can also be viewed as a reflection stage that would ultimately lead to make
or not the decision (to divide). This notion have been corroborated by a body of evidences
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showing the existence of a reversible and tunable G1l-phase arrest well distinct to GO arrest: (i)
upon wound or normal regeneration, adult quiescent stem cells first switch (eventually back and
forth) into a metabolically-activated early G1 state [Rodgers14}|Visvader16|, before to eventually
divide asymmetrically and give rise to transit-amplifying progenitors; (ii) upon moderate stress,
cultured cells can enter into a fully reversible G1-phase arrest state before to divide and prolif-
erate again [Toettcher09| Purvis12]. More generally, it is tempting to propose that a reflection
stage is all the more necessary during such G1 phase where many decision outcomes other than
to divide are possible (e.g., wait, repair, differentiate, senesce or die [Wainwright01, David06]).

Conversely, the speed-accuracy trade-off should also favor the ability to make fast and
unchecked decisions when it is needed. For instance, some stem cells, especially embryonic stem
cells and some neural stem cells, display a very short Gl-phase length and weak variations in
their cyclin level, which suggests that they are lacking checkpoints [White05| Ballabenil1}Roc-
ciol3|. Noteworthily also, transmission and repartition of maternal factors (P21, Arf) critically
determine whether daughter cells will born in a GO0-like state (with hyperphosphorylated Rb)
or a Gl-like state (with hypophosphorylated Rb), thereby contributing to both checked and
unchecked G1-phase progression [Moser18]. It is therefore conceivable that the cell cycle dynam-
ics can be switched between a low-amplitude limit cycle to make a quick division decision or
large-amplitude and speed-tunable limit cycle to make careful division decision among diverse
alternatives.

Time-lapse imaging using cell-cycle reporter probes (e.g., FUCCI) can provide accurate mea-
surements of the duration of cell-cycle phase, especially G1-phase [Rocciol3|Kafril3]. Coupling
such measurements with manipulations of (i) the cell environment (e.g., using microfluidic tech-
niques [Albrecht10]) or/and (ii) the regulatory structure (e.g., using genome engineering tech-
niques) would be nevertheless required to assess the nonlinear dynamical mechanism highlighted
in this chapter.
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Chapter 3

Decision reversibility

“There is nothing wrong with
(mind) change, if it is in the
right direction”

Winston Churchill

A key question related to decision making is whether and to which extent a de-
cision should be maintained upon removal of the decision-inducing signal (Section
3.1). We have shown that a well-design combination of positive and negative feed-
back generates a bistability featured with flexible hysteretic behaviors (Section 3.2.1
and [Pfeuty09]). Such feedback and dynamical mechanism is illustrated in the case of
tissue-level control of cell fate decisions (Section 3.2.2 and [Pfeuty16]). These studies
highlight network and dynamic mechanisms which allow for a fine-tuned control of
decision-making reversibility, regardless to some extent of decision-making initiation
(Section 3.3).

3.1 Introduction

3.1.1 Insights from neuroscience: changes of mind or firm commitments

A well-known aspect of human decision making is whether one can easily change its mind and
reconsider its decision or one is bound to its decision for a long time [Fleming09, Resulaj09,|Al-
abatankisl1]. On the one hand, decisions must be kept for long time enough to bring a true
benefit, which requires that decision attractors be both insensitive to and robust against various
sources of perturbations and signals. On the other hand, decisions need also to be reevaluated
in the light of the ongoing stream of new external or internal cues. These two conflicting re-
quirements suggest the existence of a trade-off between robustness and flexibility, which would
depend on the relative adaptive advantages of keeping its commitment or of changing its minds
throughout the decision process.

This fundamental trade-off is illustrated by the artificial perceptual phenomena of binoc-
ular rivalry where perception alternates at a certain periodicity between the different images
presented to each eye [Kovacs96|. This phenomena is explained in neural network models that
incorporate a mutual inhibition process (i.e., positive feedback loop) and a slow self-inhibition
process (i.e., negative feedback loops) [Theodonill]: the positive feedback loop triggers switching
transitions between the two perception attractors, and the negative feedback loop destabilizes
these perceptual states after some time.
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3.1.2 Reversible cellular decisions with negative feedbacks

The properties of reversibility and of negative feedback are also observed for many cell de-
cisions. The most archetypal case corresponds to intrinsically transient decisions such as the
extensively-studied case of bacterial competence where pieces of DNA are transiently up-taken
from the environment [Suel06]. These studies reveal how both positive and negative feedbacks
cooperate within a simple genetic circuit to produce an excitable dynamics that underlies tran-
sient cellular differentiation. While some cell decisions like bacterial competence are reversed
after some time unrelatedly to some extent to environmental changes, many others are re-
versed upon new environmental signals of specific nature and intensity. For instance, the cell
decision to switch its metabolism between the use of different nutrient (e.g., carbon) sources de-
pends on both the intracellular state of the metabolism and the environmental state of nutrient
availability, which involves regulated hysteretic behavior [Acar05,Oyarzunl5|. Such hysteresis is
expected to satisfy a trade-off between memory (to avoid spurious switching upon small fluctu-
ations of signaling cues), and flexibility (to quickly switch to another resource when one starts
lacking [Nguyenl1b, Wangl15|). Interestingly, this trade-off seems to involve particular regulatory
designs [Acar05, Oyarzunlb.

3.1.3 How to regulate hysteretic behavior?

The issue related to the reversibility of decision making can be formulated in terms of hysteretic
behavior in a multistable system. Let assume that a protein network implements a decision
switch driven by a given signal s, from a steady state x° (stable for s < s.) to another steady
state x! (stable for s > s.1) (Eqs 3.1). In this case, reversibility would be governed by the way
how the hysteresis size ds. (Eq. 3.2) and other decision properties (e.g., attractor coordinates
and distances) depend on the network architecture in general, and the positive and negative
feedback architecture in particular (Eq. 3.3):

Bistable switch H(x0, 5 < 500) =x° U p(x,8 > 8.) =x1 (3.1)
Hysteresis size: 0S¢ = S0 — Sel (3.2)
Hysteresis control?  {ds.,x%(sca)} = f(P) (3.3)

3.2 Results: Negative-feedback control of decision reversibility

3.2.1 Transition from bistability to oscillation

See [Pfeuty09| for more details
e Cross-shaped phase diagram

The bifurcation behavior of bistable systems with a single positive feedback loop can be
captured by the normal form: 2’ = s + B2 — 2. The phase diagram as a function of s and j3
typically shows a codimension-2 cusp singularity for s = = 0 at the intersection of the two
saddle-node bifurcation lines corresponding to a collision between two stable and one unstable
equilibria. In this system, hysteresis is observed by varying s back and forth while its extent is
controlled by 5 > 0. Importantly, the size of the hysteretic jump smoothly increase with /3 as
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Figure 3.1: Decision reversibility. (A) Reversible versus robust decisions would typ-
ically differ in whether decision is retained after signal removal or not. (B) In the case
of decision making based on a bistable switch, this property relates to the notion of
hysteresis defined by some signal range ds and attractor distance 6x.

dx = 2™ — 25" Y2, How does the presence of negative feedback modify these hysteretic be-
haviors? This has been analyzed in details using a two-dimensional dynamical model of chemical
reaction [Boissonade80]. The system displays a cross-shaped phase diagram characterized
with intersecting domains of bistability (two stable fixed points) and oscillation (one stable limit
cycle). The phase diagram notably exhibits a particular codimension-2 singularity where the
bistable regime disappears through two simultaneous local subcritical Hopf bifurcations.

Actually, many positive-feedback protein networks that regulate cellular decisions turn out
to involve negative feedback loops [Kim07,Pfeuty09], which questions the possible roles of those
negative feedbacks in decision-making properties.

e Tunable hysteresis

The significance of the transition from bistability to oscillations for decision making has been
investigated using a generic protein regulatory network where two positive-feedback modules are
coupled through a negative feedback loop [Pfeuty09] (Fig. [3.2A):

PFL1: X — X
PFL2: Y =Y
NFL1: X =-Y X

For some parameter range, the model displays a cross-shaped diagram (Fig. |3.2B) where, in
contrast to the results of [Boissonade80|, the bistability regime disappears through two saddle-
node bifurcation on a limit cycle (Fig. W} In both the Hopf or saddle-node cases, the fact
that two local bifurcations co-occur at separate state-space coordinates allows for discrete and
highly reversible decisions as well as the modulation of the hysteretic properties without signif-
icant changes of decision states themselves (Fig. ,D). This sharply contrasts with the cusp
bifurcation scenario described above. As a result, decision making can be more flexibly tuned
by using two appropriate bifurcation parameters (signals) that operate a separate control of
the initiation of decision making and of its reversibility /exit (shift of the two saddle-node coor-
dinates in Fig. [3.2D). Moreover, a negative feedback can also impact on the transition speed,
probabilities and trajectories (Figs. 4, 5 and 6 of [Pfeuty09]). However, only a small and specific
domain in the space of network topologies and parameters displays this particular bifurcation
and phase diagram. It remains thus debatable whether such a dynamical mechanism is really
used to control hysteresis and, afterwards, the reversibility of cellular decisions.
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Figure 3.2: Flexible control of hysteresis and decision reversibility. (4) A
generic class of protein network that combines two PFLs and a NFL. (B) Cross-shaped
phase diagram depending on NFL strength that display bistable and oscillatory regimes
intersecting at a codimension-2 bifurcation point. (C) Typical phase portraits associ-
ated with reversible or robust bistability on an invariant circle. (D) Typical bifurcation
diagram showin how hysteresis size can be controlled by two “unconnected” saddle-node
bifurcation allows for a separate control of hysteresis and discreteness (red arrows). (E)
Typical phase diagram, phase portrait and bifurcation diagram when hysteresis size is
controlled by the PFL only. All panels are adapted from [Pfeuty09].
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3.2.2 Differentiation decisions with tissue-level negative feedbacks

See [Pfeuty16] for more details

A modeling study of binary differentiation during development further illustrates the biologi-
cal significance of tuning the strength of a negative feedback loop for modulating the reversibility
of decision making [Pfeuty16]. At the tissue level, differentiation decisions are the by-product of
intracellular dynamics and intercellular signaling, which has motivated several models investigat-
ing how (diffusive) coupling between cell dynamical systems can lead to the symmetry-breaking
and clustering behaviors [Kaneko94,/Koseskal0]. The present model considers a particular type
of intracellular dynamics characterized with signal-induced bistability like in previous minimal
models of binary differentiation decisions [Huang07, Wangl1| and a particular type of intercel-
lular coupling known to trigger divergent fate decision mediates a so-called lateral inhibition
between neighboring cells (say A and B) |Lewis08}|Bessonnard14, Matsudal5|:

Notchy — Lfng/Hess— DIllg— Notchp (3.1)
Fgf2/Erka—Nanogs — Fgfda— Fgf2/Erkp
These intracellular and intercellular mechanisms (Fig. A) supplemented by the inherent

stochasticity of the intracellular dynamics, can be recapitulated into a simple stochastic dynam-
ical system model [Pfeutyl6|:

dx;
L = s+pai—a}—ym+V2D ()
dm 1

g S N 2 Tm

i=1,N

which, in the homogeneous and noiseless limit, display a cross-shaped phase diagram similar
to |Boissonade80]. This model belongs to the class of globally-coupled bistable systems [De-
sai78] where the coupling is inhibitory and delayed with a timescale 7,,. In these equations, p
represents the strength of intracellular PFLs while v represents the strength of global intercel-
lular NFL. This model is well-suited to study how the interplay between positive and negative
feedbacks and between oscillatory and transition dynamics contribute to an efficient collective
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symmetry-breaking process (Fig.|3.3B). Indeed, a population of stem cells must split in two pop-
ulations of differentiated cell where the relative size of each subpopulation is developmentally
controlled and may differ (i.e., proportion regulation and homeostasis [Mizuguchi95|).
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Figure 3.3: From tunable to robust differentiation decisions in cell popu-
lations. (A) During development, binary differentiation decisions often involve the
interplay of intracellular PFLs and intercellular NFL (e.g., Notch-mediated lateral in-
hibition). (B) This interplay helps a population in a given initial state to rapidly reach
a steady state with two populations of differentiated cells. (C) Such relaxation dynam-
ics is characterized with a preliminary phase where cells make a reversible switching
between the two states (due to mean-field fluctuations of m(t)) followed by a phase
where cells acquire a differentiated state in a robust and quasi-irreversible manner (as
m(t) has reached steady-state).

Consistently with a previous study [Huber03|, this type of system can produce a stable os-
cillatory state driven by the delayed negative feedback and a stable symmetry-broken state with
a bimodal distribution P(z) (with i = [P(x)) for which the negative feedback is neutralized.
The symmetry-broken state is always stable and coexists with a stable collective oscillation for
large enough v and 7,,,. The most efficient (i.e., noise-robust and quick) relaxation dy-
namics toward a symmetry-broken state is shown to arise through a state-dependent
control of hysteresis:

(1) First, when (if) the initial population state is far away from the target stationary state
(m(t) — m large enough), individual cells switch very easily, back-and-forth, between the
two states, due to noise or oscillatory mechanisms.

(74) Such noisy oscillatory and reversible switching behaviors enable individual cells to quickly
redistribute in the two cell-type attractors in the right proportions as m(t) — m.

(7i7) Finally, when such symmetry-broken stationary state is approached (m(t) ~ m), individual
cells start behaving in the robust bistable regime and they are therefore trapped or frozen
into one of their two cell-type attractors, thereby precluding the possibility from changing
their mind and differentiating again.

At the tissue level, the cooperation between negative feedback and noise facilitates an efficient
relaxation of any initial conditions (Fig. [3.3B) toward the symmetry-broken steady state with a
given proportion of each cell types, in which noise quickly damps the possible spurious oscilla-
tions and negative feedback avoids the spurious metastability and subsequent logarithmically-
slow relaxation (see Fig. 2 of [Pfeutyl6]). In comparison to the schematic intracellular network
model of [Pfeuty09] and Fig. , the negative feedback loop is mediated by an intercellular
mechanism and its strength depends on a slow population variable, which makes possible a
context-dependent shift from an oscillatory or noise-sensitive bistable system associated with
flexible cell fate priming to an highly-robust bistable system associated with irreversible cell fate
specification.
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This model shares many similitudes with other models investigating the binary differen-
tiation process of starved dictyostellium cells [Mizuguchi95| Rafols13] and of embryonic stem
cells [Bessonnard14}, DeMot 16|, where in both case robust symmetry-breaking relies on the in-
terplay between intracellular multistability and lateral inhibition mediated by Difl and Fgf2
respectively.

3.3 Conclusion

The regulatory network mechanisms enabling robust and irreversible switching behavior have
generally been addressed by investigating how an ultrasensitive switch-like response can be
turned into an hysteretic or irreversible switch-like response, for instance by combining posi-
tive feedback loops or adding cooperativity [Ferrell01,Brandman05,Shah11,Kim12Hsul6|. This
chapter proposes that well-designed combinations of several PFLs and a strong enough NFL can
implement a simple mechanism to also tune hysteretic properties:

Cellular decisions featured with a tunable (ir)reversibility may build upon “regulated
hysteresis associated with bistability on an invariant circle”.

The possibility to control separately the signal-dependent thresholds (saddle-node) for decision
initiation and exit without altering the decision states themselves sharply differ from the control
of hysteresis by positive feedback only, especially when approaching the cusp bifurcation. It is
to note that this mechanism entails that state-space trajectories are well-distinct for the back
and forth transition, which has also been shown to be the natural consequence of a curl flux in
the vector field [Wangl1}Lil4], which increases with the presence of negative feedbacks.

The control of hysteretic behavior and decision reversibility can be exploited for various
cellular decision-making context ranging from differentiation process and metabolic adaptation.
Developmental differentiation processes often involve an early stage of lineage priming
characterized with versatile transitions between precursor states [Chattwood13}Betizeaul3|, be-
fore to commit terminal differentiation in a robust manner. Conversely, fully differentiated cells
can sometimes dedifferentiate or transdifferentiate upon injury [?,Merrelll6]. Similar trade-off
applies for metabolic decisions which need be robust in order to prevent cells from a costly,
back-and-forth switching between two equally-available nutrient sources, but must also be made
flexible in order to motivate cells to seek other nutrient supplies when those in current use
starts running out |[Nguyenl5,|Wangl5|. Our proposal that intracellular or intercellular nega-
tive feedback can contribute to such plasticity is well-supported by the common presence of
NFLs in metabolic pathways [Kaniak04, Acar05] and differentiation pathways (such as through
lateral/intercellular inhibition [Rafols13,|Matsudalb,[DeMot16]).
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Chapter 4

Decision gating

“Luck is what happens when
preparation meets opportunity”

Seneca

Living cells display various types of endogenous dynamics - e.g., circadian, cell-
cycle or metabolic oscillations - which are likely to influence and bias decision
outcomes in response to inducing signals, which we call decision gating (Section
4.1). The intracellular oscillations are shown to allow a tunable control of cell de-
cision outcomes, both in the context neural stem cell differentiation (Section 4.2.1
and [Pfeutyl5a, Pfeuty15b]) and from a more general viewpoint (Section 4.2.2 and
[Pfeuty14)]). These studies highlight network and dynamic mechanisms that allow for
a fine-tuned control of decision outcomes through the interplay of oscillatory and
signaling dynamics (Section 4.3).

4.1 Introduction

4.1.1 Insights from neuroscience: attentional gating

Magicians know very well that attention is a critical cognitive process that shapes our per-
ceptual decision making, and can therefore bias them as perceptual illusions [MacknikOg|. In
most situations however, attention and the related processes of expectation, anticipa-
tion and preparedness aim to improve further decision-making processes |Summer-
field14, Battistonil7]. Interestingly, focused attention is a highly dynamic process where, for
instance, enhanced brain rhythms at various frequencies participate to the performance and
accuracy of signal-processing and decision tasks [Schroeder09, Fiebelkornl4}Petrol5,|Nobrel§|.
Even without any attentional focus, the resting brain settles in fact in a highly dynamic spon-
taneous activities [Berkes11)Tozzi16|, which may influence further signal-induced decision mak-
ing [Hesselmann08§|. Last but not least, it has been proposed that a main function of spontaneous
or evoked brain oscillations would be to control the flow of signals and informations, notably
through gating and multiplexing mechanisms [Akam14].
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4.1.2 Cellular decisions gated by intracellular oscillations

A living cell often exhibits endogenous dynamical behaviors related to the ongoing functions of
signaling, metabolism and proliferation. Such intracellular dynamics may influence the manner
how transient extracellular perturbations/signals are converted into decision outputs. In uni-
cellular organisms, the decision to divide or not is typically gated, in a more or less stringent
manner, by their circadian clock [Moulager10] or by their metabolic clock [Papagiannakis17]. In
multicellular organisms as well, the cellular decision to differentiate into a particular subtype
has been shown to depend on the phase of the cell-division cycle [Pauklinl3] or of the circadian
clock [Brown14]. More surprising is the involvment of oscillatory pathways driven by intercellular
signaling in regulating cell fate decision outputs in animal stem cells [Imayoshil4,Isomurald4],
but also in bacteria [Schultz13||BenJacob14] where it was proposed that “each oscillation opens
a short interval with high transition probability turning oscillation into opportunities. In these
diverse situations, it is natural to hypothesize that intracellular oscillations can in principle
modulate the cellular sensitivity to decision-inducing signals or the cellular competence to make
a decisions, questioning the network and dynamical mechanisms involved in this gating process.
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Figure 4.1: Cell decisions gated by intracellular oscillations. (A) Examples of
intracellular oscillations that can influence stem cell fate decisions. (B) Decision gating
as a state-dependent - reversible or irreversible- transition from basal oscillations to
many fate alternatives.

4.1.3 How to gate transitions with oscillations?

In the following, decision gating is investigated in the case where a signal input (say scalar to
make it simple) (Eq. 4.1) can make a cell eventually switch from a basal oscillatory state 7 stable
for s < s.9 and of period T° (e.g., proliferating stem cells) to a stable state x’ eventually among
many alternatives (Eq. 4.3) (e.g., non-proliferating differentiated/quiescent/senescent states).
The question that arises is whether and how decision outcomes would depend on the interplay
of signal properties and oscillations properties.

Step/Rectangular signal  s(t) = so + dsH(t)/IL(t, Ts) (4.1)
Pre-decision oscillations: ¢>(x € 7%, 5 < s¢0) € 7" (4.2)
Post-decision states: P (xI=EN (s > 5.5) = xI=LN (4.3)
Gate control? > (x € 4%, s(t)) = f(x, Ty, 50,08, Ts,p) (4.4)
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4.2 Results: Oscillatory control of differentiation decisions

4.2.1 Fate decisions of neural stem cells

See [Pfeutylba,Pfeuty15b] for more details
e Regulatory network for neural stem cell fate decisions

The embryonic and postnatal development of the central nervous system entails the differ-
entiation of neural stem cells (NSCs) into a multiplicity of cell types (neural, glial) and subtypes
(e.g., pyramidal or GABAergic neurons) |Greigl3|. Before reaching a decision on their fate, neu-
ral stem cells actively divide and are subjected to highly dynamic intercellular signaling. This
begs the question of the role that the fast oscillations in the Notch-Hesl pathway and the slow
oscillation of cell-division-cycle pathways play together in the cell-fate decision of neural stem
cells.

Like for cell-cycle pathways and other signaling pathways [[somural4|, the Notch-Hes1 path-
ways also combines PFL and NFL in a manner that can give rise to oscillations (of a period
about 3hr) as well as two steady states associated with either high or low levels of Notch and
Hesl ( |Goodfellow14] and Fig. S2 of [Pfeutylba]):

NFL1: Hesl— Hesl
PFL1: Hesl—miR9— Hesl
PFL2: Hesla —1Dllg ~ Heslg —Dllg = Hesly

Interestingly, there is a significant crosstalk between Notch-Hesl signaling pathways, G1-phase
regulatory pathways, especially toward the regulation of the neural differentiation factor Ngn2

(Fig. [4.2A):

PFL3: Ngn24 — Dlly = Heslp—Ngn24 — Dllg = Hesl,— Ngn2y4
PFL4: Ngn2—cycD,E —mNgn2

IFFL: Hesl jl Ngn2U Hesl —cycD, E —m Ngn2

CFFL: Sprp—Hesl legnQUSDIF%NgnQ

e From oscillatory to transition dynamics

Numerical simulations and bifurcation analysis of the overall NSC regulatory network show
that the crosstalk between signaling, cell-cycle and differentiation pathways generates a sub-
tle and sophisticated fate decision dynamics. First, under the simplifying assumption of static
[Hesl] levels as a control parameter, various combinations of [Hesl] levels and [Sp;f] levels
(e.g., differentiation factors such as Fgf10, Wnt, Shh) can generate diverse cellular phenotypes
ranging from fast and slow Gl-phase progression to reversible (G0) or irreversible (late G1)
cell-cycle arrest depending on the occurrence of SNIC or SHO bifurcations (Fig. and Fig. 3
of [Pfeutylba]). This diverse phenotypes have been characterized experimentally including the
result that intermediate Hesl levels promote cell-division cycles while high or low Hesl levels
promote well-distinct cell-cycle arrest. With respect to decision gating, the distinct proper-
ties and localization of these two limit-cycle bifurcations entail that a same [Sp;y]
signal can lead to different GO or G1 cell-cycle arrest outcomes depending on the
cell-cycle state and the Hes1 levels of the cell when signal is received.

This picture is further complicated when we consider Hesl dynamics driven by the Delta-
Notch lateral inhibitory coupling between cells. We found that Hesl oscillations is likely to
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contribute to an highly dynamical proliferation state that make coupled cells eventually desyn-
chronize each other thereby generating dynamic cell-to-cell heterogeneity (Fig. ,D). Such
desynchronization and heterogeneity is further found to promote divergent fate decisions in re-
sponse to transient [Sp;y], where the cell starting first to differentiate into neurons (High [N gn2]
and [DIl]) inhibit the differentiation of the coupled cell (through lateral inhibition) which either
shift to a quiescent GO state or proliferate again (Fig. ,D). In sharp contrast, two syn-
chronized cells, hence having the same sensitivity to differentiation factors [Sp;¢] and the same
competence to differentiate, may inhbibit and neutralize each other from differentiating when

receiving similar [Sp;¢] inputs (Fig. and Fig. S3 of [Pfeutylbal).
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Figure 4.2: Fate decision dynamics of neural stem cells. (A) Neural differentiation
depends on several signaling pathways, cell-cycle and differentiation pathways. (B) Two
limit-cycle bifurcation scenarios towards a reversible quiescent GO state and a irreversible
differentiation state. Up panel: phase diagram where [Hesl] is taken as a bifurcation pa-
rameter. Middle panel: Bifurcation diagram as function of Hesl. Down panel: Examples of
Hesl1 driven transitions between cell-division cycle and two well-distinct cell-cycle arrested
state. (C) Time course of signal and concentration associated with a asymmetric fate de-
cision in a two coupled-cell model where Delta-Notch coupling produces Hes1 oscillations.
(D) Probability Pp that one of the coupled cells differentiate is much higher when coupled
cells are desynchronized (especially when the cells receive the same differentiation signal).

All panels are extracted from [Pfeutylba

To summarize, cell-division-cycle and Hesl signaling oscillations play cooperative roles in
tuning decision probabilities through opportunity windows and dynamic heterogeneity:

(i) Opportunity windows: a pulse of [Sp;y] (if not too long and high) must occur during the
G1-phase in order to promote differentiation. In consequence, the lengthening of G1 phase
increases the chance that a signal occurring in G1 would induce neural differentiation in

line with experimental observations |Langel0)].

(#4) Dynamic heterogeneity: a pulse of [Sp;f] must coincide with a low Notch activity in order
to induce differentiation, such that occurrence of asynchronous and heterogeneous Hesl
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and cell-cycle dynamics between cells enables then to reach divergent fate decisions in
response to the same [Sp;y] signal.

4.2.2 Oscillatory phase-dependent decisions

In the context of stem cell differentiation decisions, we have identified several mechanisms
by which oscillations can drive flexible decision-making (schematically represented in
Fig. in the case of asymmetric and binary fate decisions of neural stem cells [Pfeuty15b]):

e The signal-induced switch between a limit cycle and another attractor can depend on the
phase ¢ at which the signal is received, which leads to phase-dependent relationship
between signal inputs and fate decision outputs (¢*°(v,s(t)) = f(¢,ps)). In com-
parison, a perturbed steady state can only have a single decision output for a given signal
input (¢>(v,s(t)) = f(ps)). This is somehow similar to the concept of phase response
curve (PRC) describing the relation between signal input and phase change ouput.

e Such phase-dependent input-output relationship can be modulated by signal-dependent
changes of limit cycle trajectories, period and bifurcation type. In the case of
PRCs, their shape is indeed known to tightly depend on the nonlinear dynamics of oscil-
lators (e.g., |Pfeuty03} Pfeuty11]).

e Finally, the phase itself can be modulated by previous perturbations or ongoing
(de)synchronization processes between intracellular oscillations (e.g., cell cycle and
Hesl) and between neighboring cells (e.g., through Delta-Notch coupling). In particular,
desynchronized oscillations provides a tunable source of cell-to-cell heterogeneity that can
be used for symmetry-breaking without requiring any source of stochastic fluctuations
[Matsudal5, DeMot16}Pfeuty16].

In contrast with the PRC properties of neuronal oscillations or circadian clocks, these phase-
dependent decision properties cannot be studied in the limit of small perturbations. However,
some investigations can nevertheless be done on low-dimensional models to study how the prob-
ability to make a given decision depend on signaling and oscillatory properties [Pfeuty14].
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Figure 4.3: Schematic illustration of NSC fate decisions based on
phase/shape/synchronization of cell-cycle and signalling oscillations. Fz-
tracted from [Pfeutyl5b).
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4.3 Conclusion

Unlike a steady-state attractor, a limit-cycle attractor can retain some memory or encode some
information through its phase, period and state-space coordinates. Context-dependent regulation
of the amplitude, frequency, shape and synchronization of cellular oscillations therefore provide
a substrate for temporal coding and functional pleiotropy, especially in neurons [Akam14| but
in any other cells as well [Beharl0,Levinel3]. In line with this idea, our study of neural stem
cell fate decisions suggests that:

Cellular decisions featured with tunable opportunity windows may build upon “os-
cillatory dynamics whose phase, trajectory, period, synchronization and bifurcation
properties” modulate signal sensitivity and decision outcomes.

If a limit cycle is the simplest attractor that can perform temporal discrimination between
signaling inputs, other high-dimensional attractors and dynamics (e.g., line attractors, limit
torus or itinerancy) could as well confer this type of flexible signal processing.

Intracellular oscillations are well-suited to underlie various cellular functions such as circadian
clocks, developmental cycles or spatial periodic stripes [Kruse05, Tiana07]. Their proposed role
in driving cellular differentiation and symmetry-breaking processes is much less transparent but
quite appealing [Kaneko94|Kaneko97,[Schultz13|Isomural4|. Our work suggests that the oscilla-
tory drive of cellular decisions provide an additional lever of control that is particularly suitable
in context where many decision outcomes are possibles and should be distributed over time and
space. This is typically the case during the development of the central nervous where the well-
scheduled production and layering of many subtypes of neuronal and glial cells |Greigl3| clearly
rely on the dynamic versatility of neural stem and progenitor cells |[Betizeaul3,|[Imayoshil4].

Testing the existence of oscillatory gating mechanisms should only to measure the probabil-
ity for a given cellular transition (e.g., death, differentiation) to occur as a function of signal
properties and the phase of the intracellular (cell-cycle, circadian or signaling) oscillations, us-
ing for instance time-lapse imaging techniques [Rocciol3|Kafril3|. Quantifying how such gating,
if exists, has been exploited for a collective and temporal control of developmental processes is
much more difficult to assess. To address how oscillatory gating may influence spatial patterning
(stripes, clusters, salt-and-pepper), a possibility could be the design and study of multicellular
synthetic systems endowed with oscillatory, multistable and synchronization properties [Ull-
ner(7,/Koseskal0O, Matsudal5,|PerezCarrascol8].
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Chapter 5

Decision paths

“The path is the goal”

Siddhartha Gautama

Many complex biological processes can be described as a coordinated sequence of tran-
sition events where the path is somehow more important than the initial and the final
state (Section 5.1). The study of two sequential cellular decision processes — oocyte
meiotic maturation and pluripotent stem cell transitions — reveals that a bistable
transition path can be both very complicated and very robust to diverse perturbations,
which rely on a complex feedback/feedforward architecture of their requlatory network
(Section 5.2). These studies highlight network and dynamic mechanisms allowing a
fine-tuned and robust control of decision paths, regardless to some extent of the start-
ing point and the final destination (Section 5.3).

5.1 Introduction

5.1.1 Insights from neuroscience: transient neural and cognitive dynamics

When one learns to play tennis, the teacher usually stresses the importance of your posture and
gesture to reach your goal, which is to send the ball at the desired place and pace. This idea
of an important role for transient dynamics have been proposed as an alternative paradigm to
understand information-processing and decision making [Rabinovich08aj, RabinotichO8b:

“Fized-point attractor dynamics express no useful dynamics; only the state the net-
work settles into, given by its initial conditions, matters, not the path taken to reach
that state. An alternative theoretical framework may explain some forms of neural
network dynamics that are consistent with experiments, in which transient dynam-
ics are resistant to noise and small variations in initial conditions such that the
succession of states visited by the system is stable.” —

Transient neural dynamics has been proposed to serve various purposes during decision making,
such as the generation of complex sensorimotor tasks [Roknil2], the dynamic coding of sensorial
representations such as odors [Mazor05] or working memory processes [Spaak17,Nachstedt17].
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5.1.2 Sequential decision-making during developmental processes

In the context of cellular decisions, the critical importance of the notion of trajectories/paths
is illustrated by the Waddington’s epigenetic landscape |[Waddington42] that depicts the devel-
opmental control of cell-fate decisions as branching and diverging paths from the zigotic cell to
fully-differentiated cells (e.g., neuron, erythrocyte, fibroblast, myocyte) (Fig. [5.1]A). In parallel
to cell proliferation required to increase the number of cells, this branching process generally
corresponds to the binary cell-fate decision process through which a given stem or progenitor
cell type differentiates into two possible cell subtypes, whereby, on the whole, it gives rise to a
diversity of lineage paths. Alternatively, in vitro culturing and manipulation of cells also enable
to induce reprogramming paths which can be used to trigger transdifferentiation or induced
pluripotency [Takahashilb|. These developmental and reprogramming paths raise the issue as
to (i) what are the dynamical and biochemical mechanisms that allow for a stringent and direc-
tional control of these assorted cell-lineage paths in such a way as to avoid developmental defects
related to spurious cellular states (e.g., cancer cells) or spurious tissue states (e.g., hypertrophy,
hypotrophy), and (ii) how to exploit these mechanisms to reprogram cell fates and states for
medical purposes.

The occurrence of diversified, yet robust, cellular decision paths is also a salient feature of
much more basic developmental cycles. Many species ranging from yeast, amoeba, plants or
animals can display diverse developmental cycles in relation with various patterns of ploidy
(number of sets of chromosomes) and of growth-division coordination (Fig. [5.1B). Besides the
usual cell-division cycle which include the successive G1, S, G2, M and cytokinesis phases, some
cells alternatively can (i) duplicate their genomic DNA without undergoing mitosis (endocy-
cling) or cytokinesis (endomitosis); (ii) reduce their chromosome number by decreasing ploidy
(meiosis); (iii) undergo nuclear division in the absence of growth or cell division (syncytial cy-
cles), or (iv) fuse to create polyploid cells (mating or fertilization). The fact that these cell-cycle
variants share some events though they differ in their sequential patterning provides a valuable
framework to study cellullar decision paths.
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Figure 5.1: Developmental paths. (A) Diversity of developmental or reprogramming
paths associated with stepwise cell-fate transitions between cellular subtypes including
totipotency, pluripotency, multipotency, bipotency and fully diffentiated cells (extracted
from [Takahashi15|]). (B) Diversity of developmental paths associated with cell-cycle
variants (blue: mitotic cycle; Orange: endocycle; grey: meiotic maturation; green: syn-
cytial cycle). (C) A schematic state-space representation of robust and complex tran-
sient dynamics of a cell-fate decision switch (Eqs 5.1-3).

5.1.3 How to shape transition paths?

Decision-making paths can be investigated in the case where, upon application of a rectangular
(or step) signal s(¢) (Eq. 5.1), a bistable regulatory network (Eq. 5.2) initially setting in a stable
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state x¥ is destabilized and follows a particular temporal and state-space trajectories (Eq. 5.2
and Fig. ) toward a final stable state x!'. Path control would require such trajectory to be
implemented at the level of network organization and, at the same time, to be robust against
many sources of structural, dynamic and environmental variability (Eq. 5.3):

Rectangular signal s(t) = so + 0sII(¢, Ts) (5.1)
Bistability H(xY1 s0) = x0/1 (53.2)
Decision Path x(t) = ¢"<t<T(xY 59 + 8s) U ¢>T (¢ (x50 + 05),80)  (5.2)
Path control? x(t) = f(x°,T,és, p) (5.3)

5.2 Results: Sequential control of developmental decisions

5.2.1 Meiotic transitions during oocyte maturation

See [Pfeuty12a] for more details

The cell-division cycle events associated with oocyte maturation follows a well-elaborated
decision-making pattern that occurs only in oocyte though it is critical for the life cycle of verte-
brate organisms (Fig. and [5.2]A)): upon exposure to progesterone (s = [Pg]), G2-arrested
immature oocytes accomplish a firt meiotic division followed by a second one that remains unfin-
ished and ends with an arrest in metaphase II, which is reflected by a non-monotonic timecourse
of MPF activity (Fig. ) How can a sequential decision-making pattern be elicited be a
single signal input and, at the same time, highly robust to a broad range of perturbation?

To address this issue, we have elaborated a model of the maturation regulatory network
(including 12 variables and 50 parameters) which couples two pathways that usually operate
independently (Fig. that is a simplified representation of Fig 2 of [Pfeutyl2a]). First, the
mitotic regulatory network driven by cyclinB-Cdks (called here maturation promoting factor
MPF) involves a set of feedback loops that generate an excitable (and oscillatory) behavior
underlying M-phase initiation and completion:

PFL1: MPF —eMyt—e MPF
PFL2: MPF —cdc25— MPF
NFL1: MPF = APC —sMPF

(5.1)

Second, the MAPK pathway, involved in processing a variety of extracellular signals and in
initiating a diversity of cellular responses, typically includes a positive feedback loop which
contributes to induce bistable transitions, here:

PFL3: Mos— Erk— Mos

During the oocyte maturation, these oscillatory and bistable modules are tightly coupled
at several levels, implementing additional positive feedback loops and negative feedback loops
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whose respective roles remained unclear:

PFL4: MPF — Mos—e Myt—e MPF

PFL5: MPF — Mos— Erk—cdc25— MPF

PFL6: MPF — Mos— Erk— Rsk —e Myt —e M PF

PFL7: MPF — Mos— Erk— Rsk— Emi2 —e APC —aMPF
NFL2: MPF —e Emi2—e APC —uMPF

A Meiosis | | Meiosis Il ] B C
1y r @agic —— T
b ) v ' t Wyt ot Mil-arrest
= < Cde2s C——m— : i v !
3 Mos -e Myt o—e MPF ARG :—:AOESB E ,‘:E
g T } vl = U NI
’ 2z T j k) i
"‘" 7 . Erk APC g os| L b
_ Time v J 8 ootk sg,anes‘_i g
) c 0 - L
o T Rsk —» Emi2 0 2 4 02 0 02
= —I_l > t Time (h) [Pg]
D wild- type Some network disruptions
5
[) PG G RGO
Mfs:;MPF MOS <« MPF Mos “«—> MPF Mos $€ MPF
v o< v + 7 v T
Emi2 —e' APC Emi2 —e APC Emi2 APC Emi2 —e  APC
A
Mos A% Mog 4+ Mos & —— Mos
(= / (- 4,
7 / va
i —
Y% ¥ MPF AFC/ FPE arc ® FMPE b > MPF
ol i a4 a4 Ea
_osf zZ é 051 E| = = | =
4 > =Ly < N7 N7
0 — [} = Time Time Time
Ana |
g 0.2 % | g 02}
< |= = =
&
G Met Il
00 0.4 0.8 00 0.4 0.8
[MPF] [MPF]

Figure 5.2: State-space dynamics and feedback logic of meiotic transitions.
(A) Time courses of MPF associated with meitoic maturation consisting in G2/M tran-
sition, first meiosis, meiotic transition and Mitotic arrest. (B) Simplified representa-
tion of the maturation regulatory network model. (C) Simulated temporal concentration
trajectories associated the stepwise maturation process and corresponding bifurcation
diagram showing multistability (bistability and a small region of tristability). (D-E)
Up, middle and bottom panels respectively display the network logic, state-space tra-
jectories and temporal trajectories. (D) The wild-type network display concentration
trajectories that are consistent with experimental observations (A) and that are robust
to wvariations in signal levels (left) and parameter values (right). (E) The networks
where specific link between MAPK and MPF modules are disrupted typically show spu-
rious dynamical trajectories and, thus, oocyte maturation failure, which can be due to
both spurious attractors (middle) or spurious transient dynamics (left and right). All

panels are extracted, adapted or inspired from |Pfeutyl2a).
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While the MAPK and MFP modules respectively display a bistable behavior and an ex-
citable/oscillatory behavior, their coupling through PF4-7 and NFL2 generates a specific tran-
sition dynamics similar to those observed during oocyte meiotic maturation (compare MPF
trajectory in Fig. and Fig. ) This complex transition dynamics is characterized with :

(1) A high-dimensional and non-monotonous trajectory between the destabilized G2-arrest
steady state (through a SN bifurcation and the final metaphase-II-arrested steady state

(Fig. F-20).

(7i) The state-space and temporal trajectories are shown to be very robust against moderate
variations of initial conditions (not shown), signaling levels and parameter values (bottom
left panels of Fig. ), though the existence of another attractor that is not reached but
that bottlenecks the trajectory through the meiotic transition (Fig. [5.2/C).

(7i7) This particular trajectory requires the multimodal coupling between the MAPK and MFP
modules, as the disruption of one mode of coupling can lead to spurious transition tra-
jectories and final states (Fig. ) Note that one type of failure occurs because the
decision-making trajectory reaches and stops at the intermediate MI-MII steady-state at-
tractors whose role was rather to shape the transition trajectory. Some of these defects
have been observed experimentally upon ablation or overexpression of specific proteins
(see Table 1 of [Pfeutyl2al).

Overall, these findings suggest that complex sequential decision making can be built upon
the well-designed coupling between modules and their dynamics, in order to perform both
temporal coordination and segregation of several decision steps.

5.2.2 Pluripotent transitions during embryonic development

See [Pfeuty18] for more details

Pluripotency is an early stage of vertebrate development during which (pluripotent) stem
cells progress from a naive to a primed state before differentiating into lineage-restricted mul-
tipotent stem cells (Fig.[5.3)A) such as neuroectoderm, mesoderm and endoderm lineages. This
cell fate progression from a naive to a primed state occurs in parallel with discrete changes
in the epigenetic and transcriptional programs as well as with tissue-specific changes in extra-
cellular signaling and spatial patterning. Such a well-scheduled set of coordinated decisions is
thus thought to be of critical importance to unfold, in space and time, multilineage diffentia-
tion |[Smith17].

Strikingly yet, this simple pattern of sequential fate decisions is regulated by a quite complex
protein network (Fig. [5.3B) which combines a dense set of PFLs and a small set of NFLs and
IFFLs essentially mediated by Oct4:

PFL1/8: Oct <> Nanog <+ Klf <+ Esrrb <> Nanog
PFL9/12: Esrrb <« Oct <> KIf
NFL1: Oct — Tecf3— Esrrb — Octd
NLF2: Oct— Erk—e Klf4 — Oct4
IFFL1: Oct — Tcf3—Esrrb U Octd — Esrrb
IFFL2: Oct— Erk —e Klf4 U Octd — Klf4
CFFL: LIF —eGsk3/Tcf3— Esrrb U LIF — Stat3 — Klf4 — Essrb
CFFL: Stat3 —» Myc—e Erk —e Klf4 U Stat3 — Klif4

37



A Pluripotency — B
p| Late Lineage
[ IC,M Epiblast ’[Differeptiation}
| e

.
< &)
Naive/ Primed/ Non-pluripotent/ \

MESC(N) mEpiSC (P)| Differentiated (D) @_ @
J

1 0.5 1 0.5 0 1

0.5 0
(XOct+XNan)/2 (Xoct+XNan)/2 (xoc(+XNan)/2

Figure 5.3: State-space dynamics and feedback logic of pluripotent stem cell
transitions. (A) The forward transition between naive and primed pluripotent states
follows a specific logic in vivo and can be controlled in vitro. (B) Pluripotency regu-
latory network model from which a set of parameter-optimized models is obtained by
fitting experimental data (Fig 2 and 3 of [Pfeutyl18]). (C) The overall set of optimized
models share similar signal-dependent multistability between the naive, primed and non-
pluripotent states. (D) The overall set of optimized models share similar state-transition
trajectories featured with canalization (through the primed state) and directionality
(from naive to differentiated).. (E) A coarse-grained modular model that retains the
multistable and canalization properties of the detailed mode (see Fig 7 of [Pfeuty18]).
All panels are extracted from [Pfeutyl8].

Identifiability, sensitivity and perturbation analysis of the complex network structure shows that
the existence of a core architecture that implement two important properties of decision-making
dynamics:

(1) Signal-dependent multistability between naive pluripotency, primed pluripotency and non-
pluripotent states (Fig.[5.3/C), despite the intrication of PFLs suggesting that some network
features contribute to a segregation between naive and primed states.

(7i) Canalization where the destabilization of the naive pluripotent state fosters a state-space
trajectory that is canalized through the primed pluripotent state in a manner that is robust
(Fig. [5.3D) to variability in initial conditions (two small panels), in signaling pattern
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(compare left to middle panel) in parameters (the different lines represent models with
different optimized parameter set), before to exit pluripotency.

Network perturbation approach and modular analysis allows to derive a simplified coarse-
grained model that summarizes the core regulatory features of the detailed network including
PFLs, NFL and FFLs (Fig. |5.3E):

PFLs: Xy < Xy < Xp e Xp
NFL: Xp— X;—+4Xy— Xp
IFFL: Xp — X; 41Xy U Xp — Xy
CFFL: S, — Xy US,—X;— XN

This low-dimensional (n; = 3) dynamical system model can indeed reproduce accurately the
multistable and transitional properties of the original detailed (n; = 10) model (compare Fig. 6 of
[Pfeuty18] with Fig. 5.3 which highlights the core design principles that underlie the multistable
and canalization properties. Similarly to the meiotic maturation network, the feedback and
feedforward coupling between PFL modules seems important for the temporal coordination and
segregation of intermediate metastable states and decision steps.

5.3 Conclusion

For the two biological case studies of oocyte meiotic maturation and pluripotent stem cell transi-
tions, the sequential decision dynamics is shown (i) to be captured by a core network organization
where several PFLs are combined in a complicated manner and (ii) to correspond to state-space
trajectories that are very robust against diverse sources of variability, which suggests that:

Cellular decisions featured with a complex and robust sequence of intermediate steps
may build upon “the shaping of a slow invariant attracting manifold”.

The Invariance property would ensure that such manifold is a particular solution trajectory
that organizes and partitions the phase portrait and that can be shaped like other solutions (such
as a limit cycle). The slowness and attraction properties would ensure that transverse
perturbations and neighboring trajectories are quickly relaxing and converging to this particular
trajectory, which bears some analogy with the Waddington’s concept of canalization
[Waddington42]. In the cases studied in this chapter, the slow manifold of interest is likely
to be one-dimensional as it is the remmnant of the heteroclinic conmection between the initial
saddle instability and the final stable steady state (i.e., WY (x*%4) U W5 (x/)). The conjecture
above needs to be supported by more careful analysis of the phase portraits and the stability
properties of invariant manifolds.

We also have to understand how the shape, the stability and the flow properties of such
slow attracting manifold depend on the network structure, though we hypothesize that PFLs
critically contribute to generate saddle-node ghosts and transverse stability, while negative feed-
back and feedforward loops shape and drive trajectories between and through those ghosts with
a certain speed (similarly to NFL-PFL limit cycles where NFL sets the angular speed while
PFL contributes to robust amplitude and local slowing down of oscillations [Novak08 Tsai08]).
This hypothesis also entails that the slowness of the manifold emerges from the feedback-
feedforward architecture rather than the existence of slow variables and regulatory mechanisms,
related for instance to slow epigenetic changes. It is to note that a slow manifold mechanism
has been characterized in modeling studies of spatial patterning during embryonic develop-
ment [Manu09, Tufceal5lVerd17] and that a related concept of dominant kinetic path have
been developed for stochastic protein networks [Wangl1Lil3].
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Noteworthily also, the decision-making process with a flexible preparation phase (discussed in
Chapter 2) can be also viewed as a sequential decision process —first preparing to make a decision
and then making the decision—. In fact, the bifurcation diagrams also share similitude with the
possible existence of tristability (compare Fig. 2.2B, Fig. and Fig. 2 of [Pfeutyl2a]) where
the intermediate stable states may not be reachable during the decision switching behavior, but
can still shape transition trajectories through bottleneck state-space region.

Last but not least, the development of genome-scale single-cell measurement techniques have
allowed the possibility to characterize developmental trajectories bringing to the fore the notion
of continuum [Morganil7,|Smith17], or continuum of microstates [Hormozl16||Jangl7], which
remains to be characterized from dynamical system perspective.
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Chapter 6

Perspectives

“There is no (living) organism
without teleology; there is no

teleology without inwardness;

and life can be known only by
life”

Hans Jonas

6.1 A brief summary

In this thesis, I have discussed how diverse cell decision properties - speed, reversibility, gating
and paths - can be controlled and tuned at the levels of nonlinear dynamics and loop motifs of
intracellular biochemical networks. The fact that complex network and dynamical mechanisms
can produce subtle decision properties was quite expected. Less expected was the critical im-
portance of coupled PFL-NFL-FFL mechanisms, oscillatory behaviors and bifurcation types in
producing diverse and tunable decision-making properties (Fig. [6.1]).

TUNABLE PATHS

TUNABLE SPEED —— ~— TUNABLE REVERSBILITY —— ~—— TUNABLE OUTCOMES  —

N
N

e PFLs + FFL e PFLs + NFL e PFLs + NFLs e PFL+NFL+FFL
e Saddle-node ghosts e SN on invariant circle e Saddle Homoclinic o Slow invariant manifold

AN J\ J \

Figure 6.1: Nonlinear dynamics for fine-tuning diverse cell decision properties.

Notably, while PFLs shape the attractor landscape featured with multistability that define
alternatives and instabilities that trigger transitions, the role of NFLs and FFLs is rather to shape
and drive the transient and transition dynamics, whereby they contribute to a fine-tuned control
of the speed, reversibility, opportunities, sequentiality of decision making. In parallel, oscillatory
dynamics, slow manifold and related bifurcation scenarios illustrate the nonlinear dynamics that
can implement such fine-tuned control of decision making. This is in line with the proposal
that controllability is a crucial feature of adaptive regulatory process |[BarYam09,
Muller11,|Zanudo17]. However, this thesis has barely scratched the surface of some important
topics regarding the manner how cellular decision making can be shaped by evolutionary trade-
offs, engineering tools or stochastic processes.
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6.2 Other dimensions of cell decision making

6.2.1 Optimality in cellular decision-making

e FEwvolutionary trade-offs

The organization of intracellular networks has evolved to track and keep memory of slow
and fast changes in the cell environment [Brooksl11, Voordeckersl5]. Regulatory networks and
regulated phenotypes have co-evolved to satisfy trade-offs between a variety of costs and benefits,
which can typically be studied within the framework of multi-criteria optimization problems
[Poelwijk11}Shovall2, Hart15]. Cost-benefit trade-offs reflect the constraints acting at different
levels of biological organization such that, at some point, fitness improvement in one phenotypic
trait (objective) is achievable at the expense of others. This trade-off defines a high-dimensional
Pareto optimality front in the objective space (related to the network dynamics) corresponding
to an optimal set of regulatory network designs and parameters (Fig. ) Therefore, slow
evolutionary and context-dependent adaptation of network dynamics and structure are therefore
prone to occur on this sub-manifold. In determining Pareto fronts with respect to cell decision
making [Giagkiozisl4], the main difficulty is to identify and quantify the relevant constraints,
costs and benefits, which are inherent to any decision tasks such as:

(1) Energetic costs corresponding to the unavoidable dissipation or consumption of free en-
ergy required for information processing [Mehtal2, Parrondol5| or for the maintenance
of network organization [Mengistul6]. However, such thermodynamic and metabolic costs
remain exceedingly difficult to quantify despite several attempts |Lan12,|L.i14, Milo16].

(7i) Adaptive benefits provided to cells when they take the most appropriate decision among
many other possible ones. This is again very challenging to quantify especially because
fitness is mostly effective at the level of cell populations. While some insights into adaptive
benefits can be obtained by measuring time-averaged and population-averaged growth rate
in a controlled environment [Perfeitol1[Mitchell15], it is much harder to assess the extent to
which specific cell decision-making properties contribute to improving the development and
homeostasis of multicellular organisms. A more reasonable strategy in this case would be to
focus on one particular decision ability such as speed, accuracy, distribution, information-
processing (e.g., [Kobayashil0,Siggial3|) or one multicellular feature (see (iii)).

(7i7) Social constraints that shape cellular decision making toward both the development and
adaptation of the multicellular organisms. Intercellular interactions provide additional lay-
ers of negative and positive feedbacks, which contribute to various important developmen-
tal processes such as cell-fate diversification, spatial patterning, temporal schedules, size
control, wound repair, ageing and others [Freeman00} Lewis08|. Although these processes
involve the crosstalk of specific and complicated pathways regulating diverse cellular func-
tions such as intercellular communication, metabolism, proliferation, differentiation, shape
or motility, some principles can be nevertheless captured by simple models where colonies
or tissues are described as a spatially-continuous [Vakulenko09, Kondol0] or spatially-
discrete |[Kaneko94, Mizuguchi95, Koseskal0,|Ares12] models of cells, where both intracel-
lular and intercellular dynamics are idealized.

e Engineering approaches of cell decisions

This notion that network architecture has evolved to meet some optimal trade-off between
several objectives can be exploited to engineer and manipulate the configuration of such
network architecture toward scientific, therapeutic or industrial purposes. Synthetic biology
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provides indeed techniques to explore network spaces which have already been applied to in-
vestigate various cell decision-making problems, for instance to reveal the critical role of noise
on bacterial fate decisions [Cagatay09], to clarify the role of intercellular coupling in binary
cell-fate decisions [Matsudal5|, to question the interplay between dynamic signaling and deci-
sions outcomes [Gordley16], to force cells to remain in an undecided saddle state [Lugagnel7],
to reprogramm cell fate [DelVecchiol6] or to engineer a kill switch [Chanl6].

6.2.2 Statistical aspects of cellular decisions

Thermal fluctuations or other sources of randomness impact on a broad spectrum of intracellular
processes (conformation, binding, polymerization, transport etc...) as illustrated by the highly
stochastic gene expression dynamics [Maheshri07,Raj08|, while such noises have many functional
implications for the adaptive, developmental and evolutionary behaviors of living organisms
[Eldar10, Tsimring14]. In the context of decision making, the significance of intracellular sources
of noise and variability can be addressed essentially in terms of the statistical and information-
theory features of decision dynamics (Fig. [6.2B).

e Dynamical and cell-to-cell variability

In this thesis, decision-making processes were essentially described in terms of state-space
attractors and trajectories, while their robustness was analyzed in terms of local stability or
sensitivities. In presence of intrinsic and extrinsic sources of noise, more suitable framework and
tools stemming from statistical physics (master equation, Fokker-Planck equation, stochastic
differential equation, stochastic simulations) describe decisions in terms of probability distri-
butions and transitions rates and is definitively necessary to explain and quantify cell-to-cell
variability of gene/protein expression in isogenic populations [Simon1§].

In addition, the advent and recent use of single-cell genome-wide techniques, such as single-
cell transcriptome sequencing (scRNA-seq) [Tang09|, profiles, follows and compares the state of
many (isogenic) cells in their high-dimension (~ 10%) gene expression space. The application and
combination of cutting-edge statistical techniques (feature selection, dimensionality reduction,
clustering...) to these high-dimensional data can thus shed new lights to cell decision making es-
pecially during development |[Trapnelll4|Kester18| Kumarl7,Griffiths18] (and reference therein),
for instance to discriminate and map cellular states, to quantify gene expression variability over
time and between cells, to characterize developmental trajectories and bifurcation events, to
reconstruct lineage structure or to infer regulatory network architecture and models.

As well-illustrated in the case of binary fate decision of stem cells, these diverse statistical ap-
proaches are equally-important to determine how the interplay of stochasticity and multistability
leads to particular statistical properties of fate decisions [Wangl1,DeMot16] or how stochastic
and multistable properties can be inferred from statistical analysis of single-cell measurements
during fate decisions [Marcol4, Semraul7].

e Information processing

Besides its influence on gene expression dynamics and cell-to-cell heterogeneity, the biological
significance of stochasticity could also be addressed from a cognitive viewpoint. Indeed, a living
cell (or organism) must make decisions under various sources of uncertainties due to the inherent
unpredictability of environmental changes and the incompleteness of sensory and stored infor-
mations. Cell decision making can thus be viewed as a probabilistic process in which a cell infers
the most probable actual and future states of its environment, from a finite and partial amount
of available informations. Diverse information-theoretical approaches and measures have been
proposed to investigate how cellular signaling pathways encode and decode informations over
time and how those events impose constraints on decision accuracy and speed [Kobayashil0}Sig-
gial3, Bowsherl4].
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Figure 6.2: Optimality and statistical approaches of decision-making. (4) How
do evolutionary/engineering changes of network design translate into an more or less
optimal trade-off between natural or desired objectives for decision-making tasks? (B)
How do the many sources of protein expression variability translates into statistical
properties of decision making (transition paths and rates..)? The bottom left panel is
extracted from [Wangl11].

6.3 On-going project: cell decisions between life and death

The ongoing research projects are primarily dedicated to the topic of stress-induced cell death
decision-making and are parts of a collaborative and interdisciplinary program which combines
theory, modeling and experiments H

6.3.1 Design principles of stress-response networks

e Adaptive homeostasis through negative feedback

Living cells are continually exposed to a diversity of stress conditions, be they nutritional,
chemical, oxidative, thermal, mechanical or others, which produce intracellular damages that
threat the homeostasis and survival of cells. To cope with this threat, cells also evolved adaptive
mechanisms through which stress and damage signals are processed via a regulatory network
that elicits a repair and defense response aiming at preserving cellular homeostasis and survival.
This network is implemented by a core negative feedback loop, in which stresses — such as
oxidative stress (OxS), heat shock (HS), carbon starvation (CS), ionizing radiation (IR) or

!Theory: Q. Thommen (MCF), D. Labavic (PostDoc), M. Ladjimi (Thesis); Experiments: E. Courtade (MCF),
F. Anquez (MCF), M. Guibert (PostDoc)
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osmotic shock (OsS)— produce cell damages or imbalances — production of reactive species (H2O2)
or of misfolded proteins (MFP), ATP depletion (AMP), DNA double-strand break (DSB) or
turgor pressure changes (DP) —, which leads, directly or indirectly, to the activation or synthesis
of regulatory and repair proteins (Fig. A):

Stress Damage Regulator Repair Damage
OxS: Ho0p  — G6P — NADPH = H,0,
HS:  MFP % HSF 5  HSP —«  MFP
cS:  AMP  — AMPK  — ATP —a  AMP
IR:  DSB - ATM 5 DDR ~« DSB
0sS: AP — HOG % Glyc —s AP

where * indicates an indirect and effective regulation mediated by several regulatory species
and mechanisms.

Oxidative stress Heat stress Metabolic stress =~ DNA damage stress  Osmotic stress
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Figure 6.3: Interplay of negative and positive feedbacks in stress-response
networks. (A) Schematic representation of the negative feedback network involved in
the adaptative response to oxidative, heat, carbon starvation, DNA-damage and osmotic
stresses. (B) Schematic representation of the positive feedback network involved in the
death response to damage. (C) Study of the relationship between stress profile, network
structure, non-genetic heterogeneity and decision properties.

o Clell death through positive feedback

From an individualistic viewpoint, stress-induced cell death in unicellular organisms can
merely be seen as a failure of the cell to survive or adapt to a too high level of damages. By
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contrast, in cell colonies or multicellular organisms, individual cell death can be seen as an ex-
pression of a social behavior as death may occur and even be actively induced in the absence
of intracellular damages, for the benefit of the whole colony/organism, a phenomenom that is
called programmed cell death |[Ameisen02|. In these cell societies, heterogeneous levels of stress
exposition or sensitivity among diverse cell types may justify the strategy to make or let die
part of the population, and eventually replacing it through division and differentiation processes,
whether it occurs during bacterial bet-hedging process [Veening08| or tissue regeneration [Pellet-
tieri07,[Visvader16]. In the course of metazoan evolution, cell death has become an increasingly
prominent and well-regulated process used for instance for promoting the interdependency be-
tween cells, for avoiding the survival of misrepaired and misbehaving cells, for improving cellular
debris clearance or for shaping body plans and organs. Cells are thus equipped with death regu-
latory pathways that are sensitive to various extracellular and intracellular signals and that can
elicit cell death through a variety of enzymatic and morphological processes, including apoptosis
but also regulated necrosis, necropoptosis, autophagy, mitotic catastrophe or senescence |Kroe-
mer09]. The irreversible nature of the cell-death process typically relies on the presence of strong
positive feedback loops such as those operating during apoptosis [Legewie06] (Fig. [6.3B):

PFL1: Cytc.— Cytem—_se

PFL2: C3—eXIAP —e(C3

PFL3: C3—eXIAP —e(C9—(C3

PFL4: C3—-C9—C3

PFL5: C3— Baz, Bid— [CytClretease > CI—C3

These positive feedback loops contribute to amplification mechanisms when some threshold of
caspase activity is reached, which triggers a set of irreversible events starting first with the
mitochondrial changes and culminating in the activation of effector caspases and cell bebbling.

6.3.2 Stress time profiles and fractional killing

The forward coupling between an adaptive negative feedback process and an irreversible positive
feedback process raises a number of issues about life-death decisions. On the one hand, adaptive
negative feedback do not only lower steady-state damages, but can also induce an accelerated
response |Rosenfeld02], noise-filtering properties [Singh09, Guantes10|] or a transient overshoot
[Ma09, Ray10,|Karin16]. On the other hand, death positive feedback induces an irreversible
commitment [Legewie06], with nevertheless a highly variable kinetics and outcomes [Spencer(9,
Roux15,Paek16]. Their coupling may therefore shape or produce decision behaviors sensitive to
signal dynamics and stochasticity in sophisticated and cell-specific manner (Fig.[6.3C). All these
considerations are investigated in several related projects:

(1) Stress time profile: How does the temporal profile of stress signals influence life-death fate
decisions? This issue can be explored by, first, looking for the relation between the char-
acteristics of signal inputs (e.g., duration, intensity, frequency, shape index, asymmetry
index...) and those of the decision-making output (e.g., death type, probabilities and ki-
netics), and then, by determining how this relation depends on the characteristics of the
regulatory network (e.g., regulatory timescale, feedback structure). Such a systematic ap-
proach would be valuable to identify relevant evolutionary and adaptive trade-offs related
to the natural environment, resource allocation and social constraints and, in fine, to de-
sign therapeutic protocols that would selectively optimize or minimize cell death. This
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issue is actually addressed from a dose-response viewpoint focusing on hyperthermia dose
responses E] and on general dose-rate effects [ﬂ

(74) Fractional killing: How do various sources of stochasticity and heterogeneity influence the
variability of cell death fate decisions 7 Fractional killing is a process whereby varying
level of stress is prone to induce only a fraction of cell to die (and survive). Whereas
many theoretical and experimental works have investigated how fractional killing may
depend on stochastic damage production [Loewerl13|, stochastic gene expression dynamics
[Gaudet12,Bertaux14] and on the negative feedback adaptive dynamics [Roux15,Paek16],
it remains to understand their respective interplay. Indeed, the effect of diverse sources
of stochasticity on cell fate decision properties (i.e., death probabilities and death time)
should depend, in various ways, on the nonlinear dynamics of stress-response regulatory
networks (i.e., phase-portrait characteristics).

Related to these theoretical issues, decades of dose-response studies have provided systematic
statistical measurements of cellular survival response in response to various types, combination
and time profile of stress, thereby providing an extensive dataset to fuel or test models. In
our team, experimental setups are readily available and will be further refined to monitor heat
and oxidative stress inputs and to evaluate cell death outputs (time, type and kinetics), so
as to generate multi-dimensional and multi-parametric dose response curves that will allow us
to address the subtle relationship between stress time profile, regulatory network design and
cell-fate decision properties.

6.4 Epistemic considerations

6.4.1 From biochemical mechanisms to dynamical principles

While experiments aim at interacting with natural phenomena to gain knowledge, models use
such knowledge to construct an effective (able to generalize and predict) conceptualization of
these phenomena. However, it seems intrinsically difficult to reconcile the search for unifying
theoretical principles and the diversity and complexity of life’s biochemical mechanisms. Model-
ing approaches in life sciences are therefore pulled between a given theoretical framework (e.g.,
dynamical system theory, statistical theory, information theory or network theory) and the
complex multiscale biological reality. Such gap is continously widening with the development of
measurement techniques that lead to an accumulation of quantitative structural and dynamical
informations over a broad range of spatial and temporal scales, though sophisticated methods
to read out such informations are being developed. To bridge this gap, a modeling strategy that
has been used in our framework is to build models with varying levels of resolution ranging from
(i) reduced or coarse-grained models keeping a minimal set of properties in order to match qual-
itative and general behaviors to (ii) detailed or fine-grained models incorporating an extensive
set of properties in order to match quantitative and specific behaviors. To illustrate this idea,
the electrical activity of neurons has been described using a wide spectrum of models ranging
from low-dimensional phase, rate or pulse models to high-dimensional conductance-based and
compartmentalized models, in which each description level is useful to explain a certain class of
behaviors and is consistent with that of all the others (e.g., [Pfeuty03]).

A more ambitious strategy is to use methods for model reduction that are suited for multi-
scale phenomena |Gorban06, Radulescul2,Snowden17,|Transtrum16|, which “alleviate the issue
of complezity by seeking to eliminate those portions of a biochemical reaction network that have

2Ladjimi et al, A dynamical framework for refining thermal dose models and capturing dose-time profile effects,
in preparation
3Labavic et al, Inferring cellular adaptive properties from dose-rate response curves, in preparation
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little or no effect upon the outcomes of interest, hence yielding simplified systems that retain
an accurate predictive capacity and a strong explanatory power”. As mentioned in the introduc-
tion, the diversity of biomolecule types, of regulatory mechanisms and of timescales involved
in biochemical reactions leads to dynamical systems of high dimensionality, nonlinearity and
stiffness, which makes model reduction both necessary and challenging. However, the existence
of a few stiff parameters combinations in systems biology models |Gutenkunst07] or the map-
ping of high-dimensional single-cell data to low-dimensional space and manifolds |Trapnelll4]
support the relevance and usefulness of low-dimensional effective models. A broad spectrum of
model reduction methods are now available and will certainly help in the quest of structural and
dynamical principles.

6.4.2 The nonlinear dynamics of life

The working hypothesis underlying our dynamical modeling framework is that “important cell
decision-making properties primarily emerge from the organization and the transformation of
the phase portrait of the protein network dynamics”. This view of biological processes builds
upon the long-standing idea that living systems are specified by some dynamical and structural
features that are to some extent independent of their (bio)physical and (bio)chemical substrate.

Indeed, far-from-equilibrium dissipative systems of diverse nature can display complex spa-
tiotemporal behaviors ranging from symmetry-breaking and patterning to turbulence and chaos.
The presence of additional layers of organization and nonlinearities in living dissipative systems
is likely to refine, but also restrict, their dynamical behavior in a life-specific mode that still needs
to be clarified. A few centuries ago, Kant already intuited the self-organized and self-directed
nature of living beings [Kant1790}, Weber(2]:

“Living systems display a unity that is related to their essence as globally functioning,
actively integrated, cohesive and purposive entities. Living systems are in other words
organised essentially in view of certain purposes. They are natural purposes - both a
cause and effect of itself - in which nothing whatsoever is the result of chance.”

Since, many philosophers, biologists or physicists have developed concepts and theories to
refine this idea in the light of new scientific knowledge around two poles of nonlinear processes:

(1) The organizational circularity between the metabolism and its membrane boundary
[Varela74] or its repair system [Rosen91|, between the thermodynamic work and its con-
straints [Kauffman00], between an ergodic system and its markov blanket [Fristonl3]...

(71) The adaptability to changing environments in its various dynamic aspects such as home-
ostasis [Ashby62|, evolvability [Kirschner06|, anticipation [Rosen85|, free energy minimiza-
tion [Fristonl2]...

How do self-production over space and self-preservation over time translate into universal
laws and principles of biology? The answer probably requires the development of a self-consistent
theoretical framework that encompasses nonlinear dynamical system theory, network theory,
statistical theory, information theory and biosemiotics theory. Decision making, as an intuitive,
ubiquitous, dynamical, cognitive behavior, seems well-suited to the pursuit of this goal.
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Appendix A

Glossary and nomenclature

Acronyms or abbreviations

MPF
MFP
ROS
DSB
CKI
DIl
Ngn
GF
SFE
DF
NSC

Maturation Promoting Factor (i.e., p34cdc2-cycB)
Mis-Folded Proteins

Reactive Oxygen Species (e.g., HoO2, O5)

DNA strand breaks

Cyclin-dependent Kinase Inhibitor (e.g., p21, p27, P57, Ink4)
Delta ligand

Neurogenin

Growth/mitogenic factors (e.g., Insulin, nutrients, cytokines)
Stress factors (e.g., ROS, MFP, DSB)

Differentiation factors (e.g., Notch, Fgf, BMP)

Neural Stem Cells

Network links

Transcriptional /translational upregulation
Post-translational activation

Transcriptional /translational downregulation
Post-translation inactivation

Upregulation of protein degradation
Intercellular interaction (here —).

Network motifs

PFL
NFL
CFFL
IFFL

Positive Feedback Loop
Negative Feedback Loop
Coherent Feed-Forward Loop
Incoherent Feed-Forward Loop

Table A.1: Protein networks.
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Acronyms

ODE

Ordinary Differential Equations

PRC Phase Response Curve

FP Fixed Point

LC Limit Cycle

SN Saddle Node

SNIC Saddle Node on Invariant Circle

SNLC Saddle Node of Limit Cycle

SHO Saddle Homoclinic Orbit (or loop)
SNHO Saddle-Node Homoclinic Orbit (or loop)
SNSHO Saddle-Node on a Saddle Homoclinic Orbit (or loop)
Mathematical notations and symbols

X VS Z; vector vs scalar

H(t)

TI(t, At)
w
Ws/u/c(u)
P(azi, t)

Set of biomolecule (mRNAs, proteins) concentrations

Set of signaling molecules concentrations

Set of kinetic reaction rates

Smooth vector field produced by set of selected biochemical reactions
Flow/evolution operator associated with F: ¢f(x¢) = {x(¢),x(0) = x¢}
Steady state « solution of ¢f(x%) = x°

T-periodic limit cycle orbit where ¢ (x C 7*) = x

Phase of a limit cycle

Heaviside step

Rectangular function

Invariant manifold ¢'(M) = MVt

Stable/unstable/center manifold of a limit set u

Probability distribution of variable x; at time ¢

Phase portraits/Bifurcation diagrams

®/0/0 Stable/Unstable/Saddle-node fixed point
—/-- Stable/Unstable steady-state branch
Table A.2: Dynamical system modeling.
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Glossary for nonlinear dynamical systems

Invariant manifold - Flow-invariant set of points that are continuously and smoothly
parameterizable geometric objects. Important ones are closed limit sets and (un)stable/center
manifolds of limit sets.

w/a limit sets - Asymptotic orbits for ¢ — £oo that can be fixed, periodic, quasi-periodic or
aperiodic orbits depending on their geometry.

Attractors/repellor - w/a limit sets of all their neighboring points.
Saddle limit set - Both w and « limit set of two subsets of neighboring points.

Stable/unstable/center manifolds of a limit set (W®"¢(.)) - Invariant manifolds that
converges to it for ¢ — +oo and are tangent to their stable/unstable/center eigenspaces (i.e.,
R(\i) <0,>0,=0).

Weak /strong manifolds - Submanifolds of W*" associated with the eigenspace corresponding
to the eigenvalue of lesser/higher magnitude when well-separated.

Slow manifold - In slow-fast systems, an invariant or locally-invariant manifold that is
normally hyperbolic (the expansion or contraction in the transversal direction is much larger
than in the tangential direction). A slow manifold can be locally attracting, repelling or of
saddle-type, and is often the center manifold of a non-elliptic fixed point (A; = 0).

Attraction basin - the stable manifold of an attractor delimited by boundaries (generally
defined by the stable manifold of saddle limit set).

Homoclinic/heteroclinic manifolds - Intersections of stable and unstable manifolds of the
same/different limit set(s).

Bifurcation - Occurrence of sudden, local or global, qualitative/topological change in the
dynamical system behavior upon a small smooth parametric change, which can be described as
a collision between invariant sets.

Codimension of bifurcation - the number of parameters which must be varied for the
bifurcation to occur.

1D bifurcation - Family of bifurcation of 1D flow (fold!, cusp?, swallowtail®, butterfly*,
pitchfork!/*°, transcriticall/>).

SN-type bifurcation - Local bifurcation associated with the collision and disappearance
of two equilibria, and can occur for instance on a one-dimensional invariant manifold (e.g.,

invariant circle for SNIC or a homoclinic orbit for SNSHO).

Homoclinic-type bifurcation - Global bifurcation associated with the collision of a limit cycle
with an equilibria (e.g., saddle for SHO, saddle-node for SNHO).
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Appendix B

Bifurcation unfolding
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Figure B.1: Unfolding of high codimension bifurcations. White: Non-singular;
Grey/Yellow/Blue/Green: codimension-1/2/3/4 singularities. (A) Bifurcation scenarios of limit
cycles possibly relevant for cell-cycle arrest and exit. (B,C) Typical bifurcation scenarios and
phase portraits for competing/binary decisions with PFLs only (B) or with both PFLs and NFLs
(C). (D) Stepwise changes of phase portraits from (B) to (C).
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Appendix C

Some maths

Tunable speed through saddle-node ghost

The topological normal form of a saddle-node bifurcation reads z’ = € + 22. For € small and
positive, integrating this equation :

t/ z(t")
/ dt = / (2% 4 ¢) tdx (C.1)
0 xo

which allows to compute the time to go from zq to z(t'):
t' =1/v/e [arctan (z(t')/€) — arctan (zo/€)] — 1/v/€ (C.2)

by taking the limit ¢ — 0T. For € small, enough most of this time is spent within the saddle-node
ghost (zsn(e = 0) = 0) (i.e., just before to make the decision). Defining speed as ¥ = 1/, the
speed tunability (by s) can be defined as the inverse derivative:

(‘f)l =Ve=x"1 (C.3)

Non-tunable speed near a saddle

Let consider a system that contains a saddle fixed point and a stable and unstable manifold
(W#/%(x°%4)) associated to this saddle point, where the linearized dynamics along the single
unstable direction reads ' = \,z. For some critical signal parameter s., the initial state (e.g.,
a destabilized steady state) of the system belongs to the ((n; — 1)-dimensional) stable manifold
and will converge to such saddle fixed point:

x! € W#(x*4) (C.4)

However, a small parametric perturbation induces a shift between x° and W#(x**?) that further
translates into a shift € between the x(t) and W?*(x*??) at the entry of an hypercube A around
the saddle wherein trajectories evolve according to the linearized flow. The time spent in this
hypercube reads:

t'=1/AuIn(AJe) = —(Ay) 'lne (C.5)
by taking the limit ¢ < A. Again, defining > = 1/t/, the inverse derivative reads:
5\ L
(Z) =\, e(lne)? =\, e M/ %2 (C.6)
€

It remains to determine how e scales with the parametric perturbations (i.e., [SF] in the model
studied in Chapter 2).
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e 2000-2001: Master de Science Cognitives. Laboratoire Neurosciences Cognitives et Imagerie

Cérébrale. Hopital la Pitié Salpetriére.

2001-2004: PhD Neurosciences. Laboratory of Neurophysics and Physiology of Motor Sys-
tem. Université Descartes.

2005: Post-Doctoral fellow. Interdisciplinary Center for Neural Computation. Hebrew Uni-
versity of Jerusalem.

2006-2009: Post-Doctoral JSPS fellow. Laboratory of Complex Systems and Non Linear
Sciences. Tokyo University.

2009-2011: Post-Doctoral ANR fellow. Institut de Recherche Interdisciplinaire / Labora-
toire de Physique des Lasers, Atomes and Molécules. Université Lille I.
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