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Iterative SolversFor SingularSymmetricLinear
Systemsan Low FrequencyElectromagnetics

A. Tinzefte,Y. Le MenachandF. Piriou
LAMEL, L2EP, USTL, Citée Scientifiqu&9655 Villeneuved’Ascq, France

Abstract—In this paper, several methods based on Krylov Il. MODEL
methods are proposed to solve the singular linear systems from .
Finite Element Method. Indeed, in the magnetostatic case, for A- A Magnetostatic Case

formulation the system to solve is singular but it is auto-gauged  Tpe magnetostati@ssumptionsntroducedinto Maxwell's

by Krylov methods. However, due to the computation of residual . - . .
vector all the methods (CG, MRTR, SOMR,MINRES) do not equationandwith the help of vectorpotentialandthe magnetic

present the same behaviour. Moreover, these methods are applied relationship,we obtainthe classicalA-formulation.
to eddy current problem. The numerical behavior are compared

1
and analyzed. curl—curlA =J (1)
Index Terms—Numerical analysis, Eddy currents, Magneto- ) ) : - )
statics. With i the magnetic permeability, the current density and
. INTRODUCTION the magnetic vector potential. According to the classical works

For the Finite Element Method (FEM) applied to electral?] [14] concernin_g the disc_retisation of magnetic_quant_ities,
magnetism, we are led to solve linear system of equatiofide Vector potentialA is defined on the edges (circulation)
there are different methods for solving efficaciously such sydnd the current densit§ on the facets (flux). But to define
tems. Given sufficient memory and reasonable performanée discrete form of the constitutive law we must introduce
direct solvers would be the method of choice for solving linedp€ duality conditions between two series of spaces. In these
systems which have a regular matrix. The Krylov Subspaggnd|t|_ons, if we consider a primal mesh on_whlch the vector
iterative methods such as Conjugate Gradient (CG) [7] requR@tential (notedA.) then the current density (notedi; )
less memory than direct solvers. Consequently, they are pyéll be expressed on facets of the dual méeh Moreover,
ferred for very large sparse linear systems that cannot fit ir#§ing the properties of the incidence matrix we can define
memory using direct solvers. Also, these methods represéit discrete operators of gradient, curl and divergence. These
a good computation tool for solving singular systems. This @Perators are denoted on the primal me&h:C andD and
the case in magnetostatic when we use the formulation in tefgpectivelyG, C andD on the dual mesh. It can be noted that
of the vector potential without gauge condition. The gaugie have the following propertie€s” = —D andC = C”".
condition can be introduced with the help of an edge tre€onsequently, the discretized form af formulation (1) can
alternative gauges are possible. With the gauge condition b Written _
system is well defined but the convergence of iterative method CTMY4CA, = J;¢ (2)
is very slow, so the gauging is impracticable [10]. , i o i .

In the case of non-gauged formulation, the properties whereMg is _th(_e materlgl matrix including the permegbll|ty
iterative solvers can be used to auto-gauged the problem [1@']151 the metric information. Usually, the current density are

So, the system converges and has an infinity of solutiofCWN On primal mesh then a matrix (notdder) containing

(potential) if the matrix equation is compatible. In the Ca>sEnly geometric data must be introduced to transfer the current

of vector formulation (curl-curl equation), the compatibilit ensity on dual mesh.
|mpI|_es that the right hand side (the current d_en5|t_y) should CTMY%CA, = MegJe ©)
be divergence free. We can see, that all solutions in term of
potential give the same magnetic field. The same finding The system is singular. Indeed an infinity of solution can
observed for eddy current problem, when we use the potentiakify the equation (1) iMeJ¢ is in the range olCTM}% C
formulations. (divergence ofJ must be free [1]). In fact, the system is
The CG is reliable on positive-definite systems. Althougloversized by the number of nodes minus one equation. To
we notice that, in the case of singular systems, this method @arsure the uniqueness &f, there are two possibilities : the
breakdown and his convergence is irregular. In this paper, West one consists to use a spanning edge tree to eliminate the
propose to use other methods of Krylov subspace type, whigbeless unknowns. The second one consists to impose the new
have a much more stable behaviour. An example is proposezhstraint on theA, adding the coulomb gaughA. = 0.
to illustrate our results. This gauge can be write such thaG” A, = 0. As the size of
A. Tinzefte, Y. Le Menach and F. Piriou, are with the Laboratory of Electrotechnicés is the product of the node number by edge number, and to
and Power Electronics (L2EP), University of Lille, 59655 Villeneuve dAscq cedexensure the solution one potential must fixed. Consequently, the
France (e-mail: yvonnick.le-menach@univ-lillel.fr). system becomes well-defined by adding this gauge condition.
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In the case of non-gauged formulation, Z. Ren [10] clarifiedtherex is an arbitrary initial guess with the corresponding
the coulomb gauge are weakly imposed with the algorithm aésidual vectory = b — Az and (A, o) is thekth Krylov
conjugate gradient (CG). subspace defined by

B. eddy current problem Ki(A,70) = span{ro, Aro, ..., A" ro} 9)
Many formulations can be udéo compute the eddy currentThere are two main steps in designing a Krylov subspace
(H-formulation, T-Q formulation andA-y formulation). In method. The first step is the construction of suitable vector
this paper, the potential vector introduced in the magnatios v1, vz, - - -, vk that spank,. (A, ). Then, setting
case is kept. Then we present only tAep formulation. In
Maxwell-Ampere equation, the current density represéms Vie = [1,v2, - ] (10)
eddy current. In this conditions, with the help of the elieelir \ye parameterize théth iteration (8) as follows
scalar potential the equation (3) becomes
] IA zr = xo + Vizk, where z, € RE (11)
curl—curlA + o(— + grady) =0 (4) ) ) _
K ot Therefore, as a second step, it remains to specify the
Moreover, theconservatiorof the eddy current must verified.choice of z;, in (11). Various strategies in the above two
A steps lead to various Krylov subspace methods. When
diva(E +gradp) =0 (5) is nonsymmetric, there are Krylov subspace type iterative
) o ) ) solvers based on biorthogonality, such as the BICG method
Tht_—? d|scret|sat_|on can be_ carried out with the same SChe'[ﬂT'and its modified versions such as the CGS [13], Bicg-stab
which present in the previous paragraph. [15] and QMR [5] methods. There are also methods based on
T £ - 0Ae minimizing the residuat = b — Az, such as the Generalized
C Mg CAe + M ot +Gyn) =0 ©6) Conjugate Residual (GCR) method [3] and the Generalized
0A. Minimum Residual (GMRES) method [11].
ot
whereMY, is the material matrix including the conductivity This paper is devoted to a symmetric systems. We present
and the metric information. This system is singular; indéeed SOme Krylov subspace type iterative methods adapted fer thi
number of these unknowns is the sum of the nodes and edg@se. The CG is the most popular ore.is effective for
and the rank of the system matrix is equal to the numbgystems of the form (7) wheré is symmetric positive definite.
of edge. A gauge condition must be applied to obtain thehe CG algorithm can be derived from the Lanczos process
uniqueness of the solution. Although, the auto-gauged ef tWho construct a basis vectogs);} for Ky (A,r9) and the

GTM(

+Gpn) =0

CG is not proved forA-¢ formulation. vectorz; is chosen such as the residuglverifies the Galerkin
condition
| I1. |T-ERATIVE METHODS _ e L Ku(A,rg) o VkTTk —0. (12)
In the previous section, we have to solve a system of linear
equations The Lanczos process iteratively computes vectarsas
Az =D, (7) follows: vy =0, [iv1 =ry whereg, = ||l
whered € RV*V is symmetric semi-definite; andb € RY. o = vE Avk,  Brg1Vigr = Avg — Qg — BrUr—1
Two cases can be distinguished: . -
1) The case whered is nonsingular and consequentl;}’v'th Pr+1 = 0 chosen so thaflug.| = 1. The Lanczos

process transforms a symmetric matrik to a symmetric

positive definite. - :
tridiagonal matrix :

2) The case wherél is singular.

Many resultsare known about the first case [7], where the (a1 B2 0 -+ 0
CG is a successful iterative method.
We are interested by the second case whéres singular, P
here, the system (7) has a solution if, and onlybifs in the Te:=1| o . "=, . 0
range of A. In that case the solution is not unique. Indeed, . ) )
Let z € RY be a solution of (7), thett = =+ y is a solution oo e
for everyy in the Kernel space ofl. L0 0 B an
In exact arithmetic, the process terminates aftex N steps,
An important class of iterative methods available for suyi j ¢ g, £0fork=1,...,mandBm.1 = 0. So from now on
the system (7) are the so-called Krylov subspace methodsyye can assume that, 20, k=1,...,m.

An iterative scheme for solving linear systems (7) is called after the kth step, we have
Krylov subspace method if it produces approximate solgtion .
(k

of the form AViy = VilTh + Br1vr+164, )

(13)
an € 2o+ Ki(A, 1), k=1,2,... (8) ViV =1=1,....eM], Vv =0
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then VkTAVk =T, and VkTro = Blegk). matrix A. In the implementation of the nonsymmetric QMR,
So, (11) becomes, = ro — AViz,. And with the choice (12), z; is chosen as the solution of the least-squares problem

we have ~ ~
Vilry = Vil'rg = Vi AVizy, = 0 1B1e1™" = Tezel, = nglllgk 81y = Tiyll
and finally we obtain even if V1 is not orthonormal in the nonsymmetric case.
This is called aguasi-minimisation residual property.

Tz = ﬁ1€§k)- In the MRTR, the Lanczos process is implemented differ-
ently than the classical one. And the residual minimizatson
fsed to determine the parameters of the residual, see [1].

When the system is singular, the CG method and methods
based on biorthogonality may diverge whé&j is singular.

Ty = LyDLY An otherwise, for methods based on minimizing the residual,

as shown in [12], the coefficients, and ¢; of the Givens

exists. HereDy, is diagonal with positive element, ant, rotation matrix verify||rx |2 = |sk|||rk—1|2 With ¢ + s, = 1;
is unit lower bidiagonal. IfA is an indefinite symmetric ands; = 1 is equivalent tadet(T}) = 0.
matrix, then the Cholesky factorisation @, can still be So, at thekth step, there will be stagnation of the residual
tried, often with success, but it does not always exist amd caorm associated with the solutiar, if and only if s, = 1
no longer be relied upon numerically, and the CG becan(g, singular). Therefore, in exact arithmetic, the residual is
instable numerically. Otherwise, CG may breakdown whesxpected to decrease monotonically without divergence and
ar = vl Avy = 0 while v, # 0, here the algorithm is stagne ifT}, is singular.
stopping prematurely. This is also the case when the matrix
is singular. The convergence rate of all these methods is determined by
Because of the problems cited above, the CG is impracticakie spectrum of eigenvalues of the matrix An acceleration
for singular systemsThat iswhy we propose the use of theof the convergence rate can often be achieved by replacing th
following methods which turn out more stable numerically. system (7) by the preconditioned system.

MINRES (Minimum Residual Method [9]), SQMR (Sym- M-1Az — M-1p
metric quasi-minimal residual method [6]) and MRTR (Min- v
imized Residual method based on the three-term recurrermeg matrix )/ must be chosen nonsingular and in such a way
formula of CG type [1]) are Krylov subspace methods fothat the systemMz = y is much easier to solve than the
solving large symmetric systems, these methods are wetlginal system for every vectay on the right hand side of
adapted for the indefinite systems. they are based on the equation, and also, so that the mattix ' A has a more

The CG attempt to solve this system by applying th
Cholesky decomposition t@}. If A is positive definite then
so isT}, and hence the Cholesky decomposition

Lanczos process to construct a basis@{ 4, o). 'favorable’ spectrum of eigenvalues thah
MINRES, SQMR and MRTR replace the Galerkin condition Let us note that both CG and MINRES require a symmetric
by the residual minimisation : positive definite preconditioners while with MRTR and SQMR
. one can use symmetric indefinite preconditioners for symmet
rell; = vezotKr(Aro) 16— Azl ric but indefinite systems.

There are several technique to construct a preconditioners
for the symmetric system. The incomplete Cholesky decom-
rp=b— Axy =b— Axg — AVizp = 1o — Vier1 T2k pos?t@on (IC)[7]is a good c_hoicg i_f4 is s_ymm_eﬁc definite

- S positive. But whenA is semi-definite or indefinite, IC may

= Bvr = Vk*{Tkzk = Vi1 (Brey™ — Tiozr) not exist. The SSOR is also a good choice and exist if the

= |Irell2 = [|Bref ™ — Tezxll2 diagonal ofA is nonzero.

By using (11) and (13), we can write

SinceV; has orthonormal columns. With.||5 the related
kel 2 IV. APPLICATIONS

Euklidean norms and
Ty, = { 0.. .g’cﬁ with A formulation a Three-phase transformer which the mesh
k1 is presented on the figure (1.a). A current density is apjtied
Therefore, MINRES and SQMR characterize ik approxi- only one winding. To ensure the divergence free a facet tree
mate solution as;, = z, + Vi.z, Wherez; € IRF is a solution technique is used [8]. The flux density in the iron core is show
of the least-squares problem on the figure (1.b). In the case of non-gauged formulation,
. we obtain a singular system which have 49558 unknowns.
= Tryll, We solve this system with CG, MINRES, SQMR and MRTR.
In figure (2.a), we remark that all these methods converge
Next, for solving this problem, we use a QR-decompositiaup to the 5000 iterations where the residual norme is around
of T}, by means of plane rotations called Givens rotations. 10~1°, and after that, the CG method diverge while the SQMR,
Let us note that the SQMR is an adaptation of the generdlBNRES and MRTR stay with there convergence level. In
nonsymmetric QMR method to exploit the symmetric of thégure 2.b, the SSOR preconditioner is introduced; we can see

] As example of magnetostatic problem, we propose to study

Irklla = |Bref*t = Trzill, = mlilg’“ | Brei Tt

ye
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the convergence acceleration for all methods up to the 20(60;
iterations. In this figure we can see that their behaviour is the €
o

same as in the case without preconditioner.
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Fig. 1. (a): Mesh of the transformer
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Fig. 2. (a):Without preconditioner (b): SSOR preconditioner

As example of eddy current problem, the Workshof8BN [3]

(Non Destructive Testing problem) is modeled with thep

formulation. The mesh and eddy current density are presenteg

respectively on figures (3.a) and (3.b)

Fig. 3. (a): Mesh of NDT problem (b):Current Density in the conductor

Here we solve a singular system with 212545 unknowns.
Without preconditioner, the CG method does not conver§e!
even after 5000 iterations. The MRTR, SQMR and MINRE& 3
converge slowly, and reache)=¢ at the 5000 iterations
(figure 4.a). With SSOR preconditioner, the convergence B
all these methods accelerate to about 200 iterations wijih,
Il ~ 0,5 10-13, and after that, the CG method diverge

\ll‘\/rﬁ)“e other methods stagne, see figure (4.b).
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Fig. 4. (a):Without preconditioner (b): SSOR preconditioner

We note that in this two examplesthe MRTR, MINRES
and SQMR methodshave the samebehaviour,and give the
sameresultz s gr. Howeverthesolutionz g associatedo the

(b): The flux density in the irofNiNimal residualof CG, is differentthan xy;r, and xpyr —

zoc is in the Kernel of the systemmatrix.
V. CONCLUSION

In the caseof the singular systemswhich have the right
hand side in the range of the matrix; there exist several
solutions.Theminimizationprincipleof MINRES, SQMRand
MRTR guarantees regularand smootherconvergencehan
CG. Thisresultis still availablewhenwe adda preconditioner
to acceleratethe convergenceThese methodsbecomemore
interestingthanthe CG method.
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