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Abstract10

The aim of the paper is to propose an approach for statistical assessment of the potential of plug-in11

electric vehicles (PEV) for vehicle-to-grid (V2G) ancillary services, where it focuses on PEVs doing daily12

home-work commuting. In this approach, the possible ancillary services (A/S) for each PEV fleet in terms of13

its available V2G power (AVP) and flexible intervals are identified. The flexible interval is calculated using14

a powerful stochastic global optimization technique so-called ”Free Pattern Search” (FPS). A probabilistic15

method is also proposed to quantify the impacts of PEV’s availability uncertainty using the Gaussian mixture16

model (GMM), and interdependency of stochastic variables on AVP of each fleet thanks to a multivariate17

modeling with Copula function. Each fleet is analyzed based on its aggregated PEV numbers at different18

level of distribution grid, in order to satisfy the ancillary services localization limitation. A case study using19

the proposed approach evaluates the real potential in Niort, a city in west of France. In fact, by using the20

proposed approach an aggregator can analyze the V2G potential of PEVs under its contract.21

Keywords: Vehicle-to-grid, Ancillary services, Distribution grid, Gaussian Mixture model, Copula22

function, Free Pattern Search23

1. Introduction24

Massive production perspective of plug-in electric vehicles (PEVs) causes serious challenges and grid25

congestion for the utility grids. The researches have shown that electricity distribution grid can be highly af-26

fected by arbitrary charging demand of electric vehicles [1–3]. However, vehicle-to-grid (V2G) technology and27

charging coordination during off-peak hours of local distribution grids have been proposed as solutions [4–7].28

In addition, V2G enabled PEVs, which have the ability to inject power to the grid, have been presented as29

grid supporters [8] and potential ancillary service (A/S) providers, where eventually make the transportation30

electrification beneficial for the grids [9].31
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Nomenclature

PEV Plug-in Electric Vehicle

V2G Vehicle-to-Grid

G2V Grid-to-Vehicle

A/S Ancillary Service

AVP Available V2G Power

FPS Free Pattern Search

GMM Gaussian Mixture Model

HV High Voltage

MV Medium Voltage

LV Low Voltage

TSO Transmission System Operator

DSO Distribution System Operator

SOC State Of Charge

pdf probability distribution function

FIS Fuzzy Inference System

NEDC New European Driving Cycle

DoD Depth of Discharge

BC1 Bidding Capacity 1

BC2 Bidding Capacity 2

BC3 Bidding Capacity 3

MLE Maximum Likelihood Estimation

MCS Monte Carlo Simulation

RF Reliability Factor

BS Bidding Start time

HJPS Hooke and Jeeves Pattern Search

FS Free Search

DLP Daily Load Profile

BM Balancing Mechanism

PPSMV Peak Power Shaving - Medium Voltage

PPSLV Peak Power Shaving - Low Voltage

VRMV Voltage Regulation - Medium Voltage

VRLV Voltage Regulation - Low Voltage

LM Losses Minimization

ETCM Energy Transmission Cost Minimization

FR Frequency Regulation

DUR Duration, input for Fuzzy system

In the literature, the economic [10–13] and technical [14, 15] feasibilities of PEV fleet as the energy storage32

and service providers are discussed. They are considered in different services markets such as, regulation,33

spinning reserve [16], peak power support [17] and power quality [18] and more from economic point of34

view. While, technical analyses are mainly limited to capacity estimation, optimal coordination, aggregator35

communication architectures and battery degradation impacts [15, 17, 19, 20]. The points related to aggre-36

gator volume requirements, grid/services localization limitations and PEVs availability uncertainty impacts37

on bidding capacities are not discussed or less explored. In addition, the aggregator volume in terms of the38

required number of vehicles for providing each ancillary service is not analyzed up to now.39
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Email address: siyamak.sarabi@hei.fr (Siyamak Sarabi)

2



In term of the energy management systems for plug-in electric vehicles and V2G technologies, different40

scheduling and management schemes are developed. An adaptive intelligent system using fuzzy logic con-41

troller and adaptive neuro-fuzzy inference system (ANFIS) is developed in [21]. In [22] an intelligent energy42

management using cloud computing network is proposed. These technics reduce operation of electric vehicle,43

grid and parking lot as well as the load demand prediction. A large scale fuzzy logic based intelligent control44

for V2G is also proposed in [23] which provides different services such as, peak power, balancing control, load45

levelling and voltage regulation. For specific services, different control strategies are developed. For instance,46

a preventive control strategy for controlling static voltage stability is proposed in [24, 25] which maintains the47

static voltage stability of power system under the V2G concept and evaluates the V2G response capability48

with different charging strategies during a whole day.49

The innovative aspects of this paper compared to the aforementioned papers is considering the uncer-50

tainty impact on the V2G capacity, and scalability of the flexible V2G power capacity for different level of51

distribution grid by considering localization limitation of different services. Hence the service assessment52

can be applicable up to the low voltage (LV) distribution grid services such as voltage regulation and load53

levelling at LV grid. Interdependency of stochastic variables such as arrival time, departure time and driving54

distance are also modelled and their impacts on the contracted power are analyzed.55

The novelty of the paper is that it has provided a multi-level methodological approach in order to assess the56

V2G potential, suitable for regional distribution system operators. In this approach, the PEVs’ availability57

uncertainty and localization/limitation are considered as the main factors affecting the potential of V2G for58

grid ancillary service participation. A probabilistic model is developed in order to estimate the availability59

uncertainty using only daily trips probability data. The interdependency of the stochastic variables are also60

modeled using a copula function. This modeling approach, takes into account the impact of uncertainty61

on the bidding capacities and improve the reliability of the contracted bidding. In addition, in order to62

be realistic, the distribution of electric vehicles in the distribution grid is estimated using real customers’63

distribution data to estimate the real potential of PEV fleet for different ancillary services.64

A/S providers at the distribution grid level are faced with the localization limitation for each type of65

service. Such limitations make difficult to achieve the services’ requirements for PEV aggregators, as the66

aggregated number of PEVs at the different level of the grid is not always sufficient. Moreover, the aggregators67

need to have sufficient information for offering a reliable bidding capacity, which depend upon the type of68

services for which they would be the candidate. However, the general requirements are the amount of energy69

in form of power and time interval. These are predefined by grid actors based on the grid characteristics in70

different countries1. The constraints related to PEVs aggregation such as, available aggregated power and71

PEVs availability uncertainty should be taken into account in order to be competitive in the markets. These72

1From August 2014, RTE, the French transmission system operator (TSO), announced that industrial consumers henceforth

could be reserve service providers with a minimum power of 2 MW [26]. This is also estimated for the distributed energy storage

systems at the distribution grid level with a minimum of 1 to 2 MW power [27].
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constraints are the main concerns of this paper, where the effort is to propose an approach for potential73

assessment of a candidate PEV fleet under an aggregation contract, particularly at the level of distribution74

grid by considering; 1) Available V2G power of the fleet, 2) Availability uncertainty of the fleet and its75

impacts on the bidding capacities’ reliability, 3) The flexibility of the available power interval under bidding76

capacity contracts and 4) Distribution grid services/localization limitations.77

In this paper, at first the general approach for ancillary service assessment of V2G enabled PEVs at the78

distribution grid level is introduced. Afterwards, all necessary input data for the assessment are identified.79

The methodology is applied on Niort, a city in west of France, considering its mobility statistics and distribu-80

tion grid topology. The methodologies for available V2G power modeling, availability uncertainty modeling,81

the flexibility of the bidding capacities’ calculation and the service assessment system will be explained thor-82

oughly in the next sections. A general research background is presented to show actual solutions and the83

main contribution of paper for V2G ancillary service assessment.84

2. Research background85

Different methods have been proposed for capacity estimation of PEV fleet, but none of them consider86

the localization limitation of the services. Reference [15] calculates achievable power capacity by binomial87

distribution of clustered PEVs. Reference [28] uses the survey data to identify the location of PEVs during88

the day. In [29] Monte Carlo simulation is used to estimate the probability of transition between different89

states, e.g. parked or movement for different parking location. A non-homogeneous semi-Markov process is90

used in [30] for PEV availability and identifying the charging load, while in [31] a continuous time non-Markov91

chain is chosen as the mobility patterns do not fulfill the Markov property (memorylessness). Reference [32]92

uses the trip chains for mobility modeling of PEV fleet and concluded that the home and office car parks93

have maximum availability among other place parkings. Among all of these researches backgrounds and our94

case study mobility survey, we concluded that the PEVs are parked in home and office parkings mostly a95

day and their service providing potential at these time intervals is relatively higher than other places, such96

as parking lots of shopping centers or the streets, which are highly stochastic and periodically short.97

The second limitation is the uncertainties associated with availability of the PEVs for service providing.98

Reference [33] defines the uncertainty sources as the model based uncertainties and forecasting based uncer-99

tainties. The model-based uncertainties come from the aggregated battery model instead of the individual100

battery model 2. The second source is related to forecasting data such as arrival, departure time, driving101

behavior and arrival state of charge (SOC) of PEVs. In [34], the driving behavior uncertainty is modeled102

with individual driving behavior with the non-Markov chain process by the states’ transition probabilities103

defined based on mobility survey data. In [35], a two-state single node Monte Carlo simulation is used to104

represent the uncertainty in driving behavior by concentrating on stochastic variables with the independent105

2In modeling large number of PEVs it would be impractical to model all batteries’ dynamics in detail.
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sampling process. While in this paper, interdependency of stochastic variables are modeled in a multivariate106

manner using copula function.107

The predictable sources of uncertainties are normally following a particular probability distribution. These108

are known as arrival time, departure time and driving distance distribution. In addition, in the future smart109

grid, the communication infrastructures will facilitate accessibility and predictability of such information.110

Therefore, considering highly enough accurate prediction system, the uncertainties associated with prediction111

errors can be negligible. In the other side, there are some sources of uncertainty, which are not predictable112

at all, like the unforeseen departure of PEVs during their stationing time (plug-in time). Considering that,113

a probabilistic approach is proposed for this study, that can provide the probability distribution function114

(pdf) of availability uncertainty. The advantage with this approach is the ability to quantify the availability115

uncertainty impact on the bidding capacities by only knowing the daily trips percentage, arrival and departure116

time probability of the fleet.117

3. General Approach118

The general approach consists of 6 sub-blocks, each doing a particular task for the final objective (Fig.119

1):120

Available V2G power modeling (AVPM) is designed to model the available V2G power for PEVs121

arriving at office in the morning and PEVS arriving at home in the afternoon. Fundamental parameters for122

modeling the available V2G power are calculated in Fundamental parameters estimation FPE block,123

which contain arrival SOC, V2G energy, G2V energy and plug-in interval. These parameters which are124

the indirect parameters will be calculated using the output parameters of MMSV block and averaged PEV125

characteristic parameters such as, driving efficiency, charging, discharging efficiency, NEDC autonomy and126

averaged battery capacity of the fleet. In Multivariate modeling of stochastic variables (MMSV)127

block, correlation between arrival time, departure time and driving distance is explored for PEVs doing daily128

home-work commuting using copula function. This issue is considered as one of the possible uncertainty on the129

contracted V2G power. A novel approach is proposed in Probabilistic availability uncertainty modeling130

(PAUM) block, which uses only the daily trips percentage data in order to associate a probability density131

function to the availability uncertainty phenomena. Afterwards, the flexibility of each bidding capacity will be132

calculated in Bidding flexibility calculation (BFC) block using a global stochastic optimization method133

so-called ”Free Pattern Search”, which is chosen for its robustness and convergence quality for high dimension134

stochastic problems. Finally, in Fuzzy inference system service assessment (FISSA) block, a fuzzy135

inference system (FIS) is designed for service assessment of each PEV fleet based on the PEVs population136

provision of the city under study. This system uses the AVP of each bidding and its flexibility as FIS inputs137

and will generate a potential factor of 0 to 1 in order to evaluate the fleet potential for each service. In138

addition, a grid service/localization limit factor is considered to evaluate the aggregated number of PEVs at139

the appropriate location of the grid.140
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Fig. 1: General framework of V2G ancillary service assessment approach.

4. Case study and Input data141

It is assumed, the statistical information about the place under study is available, where the approach will142

be applicable when the data can be available via the smart grid communication. This approach is practical143

for local DSO, managing the middle cities’ grid operations. The statistical data of Niort city in France are144

considered as case study [36]. The two evolution scenarios of EVs in France up to 2030 are considered in this145

study [37, 38] (Table 1). Having the vehicle fleet statistics of Niort and its population, the PEV evolution can146

be calculated for this city. The cars-per-capita quota is used in order to transfer the unit from population to147

the car number [39]. The PEV case study scenarios are brought in Table. 2.148

Table 1: PEV evolution scenarios in France (PEV numbers in Million).

Evolution horizon 2013 2015 2020 2025 2030

Low Scenario 0.042 0.05 0.8 1.7 2.5

High Scenario 0.05 0.3 0.2 5.5 9
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Table 2: PEV evolution scenarios for Niort city.

Evolution horizon 2020 2025 2030

Low Scenario (PEV number) 851 1808 2659

High Scenario (PEV number) 2127 5849 9572

The input data are divided in two main natures; averaged data and stochastic data. Averaged data149

are containing the vehicle characteristics, which help to estimate the available and consumed energy of the150

vehicle’s battery. For this study, based on the actual French electric vehicles market, the values are considered151

as in Table. 3. The stochastic variables sampled from statistical survey are; Arrival time distribution,152

Departure time distribution, Daily Driving distance distribution and Daily trips percentage.153

Table 3: Averaged PEV characteristics in French market.

Parameter Symbol Value

Battery Capacity Eev 22 kWh

Charging/Discharging efficiency ηcd 97.5%

Charging/Discharging power Pch 3.7 kW

NEDC autonomy A 210 km

Driving efficiency ηev 97% (9.2 km/kWh)

Admissible depth of discharge DoD 80%

The arrival and departure time’s distribution of both home and office scenario are following approximately154

a Gaussian distribution with the parameters as follows; Home departure (µ=07h45), Home arrival (µ=17h15),155

Office Arrival (µ=08h15), Office departure (µ=16h45), Home-work trips (µ=08h00) and Work-home trips156

(µ=17h00) and the σ=30 min for all cases. The daily driving distance distribution of home scenario takes into157

account a daily round trip and for office scenario, a single way trip to the office and both are approximated158

to follow the same distribution (Fig. 2).159

Daily trips percentage data show the hourly percentage of the trips for a working day done by personal160

vehicles for the Niort city. This distribution is used in order to model the availability uncertainty of the161

PEVs (Fig. 3).162

5. Available V2G power modeling (AVPM)163

In this study, AVP of home-work commuting PEV fleet has been evaluated in two potential intervals.164

First V2G at work only and second V2G at home only. The main assumptions behind the work are as follows:165

• Charging/discharging rate at normal level (16A, 230 V, 3.7 kW).166

• The PEV will provide V2G service once in a day and will be fully charged once in a day.167
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Fig. 3: Daily trips percentage in Niort city [40].

• 2 scenarios for V2G service assessment have been considered:168

– V2G at home (the PEV will make a round trip and then provide V2G at home only).169

– V2G at work (the PEV after arrival to the office will provide V2G at work, considering energy170

need for its return and minimum energy of 20% as constraint to reduce the degradation impact of171

V2G, i.e. 80% Depth of Discharge (DoD)).172

For home scenario, PEVs will be fully charged at departure time, while at the office scenario, PEVs have173
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sufficient energy for the return trip plus 20% energy in battery. These assumptions were made to evaluate the174

maximum possible potential for aggregated V2G power during each interval. The fact is that, if we consider175

that PEVs will provide V2G services both at home and office, leading to portioned aggregated V2G power176

between home and office intervals.177

5.1. Fundamental parameter estimation (FPE)178

AVP modeling flowchart is provided in Fig. 4. Availability of each PEV in the V2G enabled parking,179

and its stored battery energy at arrival time are the key information in defining the AVP. Availability of180

PEVs will be identified by their arrival time to home/work parking and departure time from home/work for181

home/work V2G scenarios. Assuming N PEVs with full-charged battery at home departure moment, the182

arrival state of charge (SOCiarrival) of the ith PEV battery can be estimated as follows:183

Arrival SOC 
estimation

Battery 
capacity (   )

Autonomy

Driving 
distance

Driving 
efficiency

Available V2G 
energy (     )

Energy need
(      )

C/D 
efficiency

Equation (3) ? Equation (4)No

V2G and G2V 
time calculation

Yes

Is PEV inside 
uncertainty list ?

  and      
calculation

Yes

No
Uncertain 
PEV list

Arrival time

Departure 
time

 and  
calculation

Start

         ?

EndYes

No

Ev 2g  

Eg 2v  

i 1  

Eev  

    

i  i1  i  N  

equation (10) 
& (16)

equation  (9) 
& (15)

 

UV 2Gi (t)

 

UG2Vi (t)

 

V 2Gi (t) G2Vi (t)  

Fig. 4: The flowchart of AVPM.
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SOCiarrival = (1− Di
d

Ai
)× 100% (1)

This is under the assumption of linear SOC drop with travel distance [41]. Di
d denotes the driving184

distance of ith PEV from home to work for work scenario and round trip for home scenario. The probability185

densities of arrival time (Tarrival), departure time (Tdeparture) and driving distance (Dd) have been presented186

in the previous section. In this section, the steps to model AVP are presented. The interdependency of187

these stochastic variables and their impacts on AVP will be analyzed afterwards. In current calculation, the188

averaged correlation coefficients are considered, where their calculations will be explained in MMSV block189

section. After the SOC estimation, Available V2G energy should be estimated for each V2G scenario.190

Eiv2g = (DoD × Eev −
Di
d

ηev
)ηcd (2)

For estimated V2G energy the following constraint should be satisfied:191

2Eiv2g +
Dd
i

ηev
≤ T iplug−in × Pch (3)

Where Tplug−in, is the plug-in interval of the PEV. If constraint (3) is not satisfied, the V2G energy192

should be recalculated as follows:193

Eiv2g =
(T iplug−in × Pch)

2
− Eig2v (4)

For office scenario, we consider the vehicle needs to have the same amount of energy as it has already194

consumed for arrival at work, plus 20% SOC to limit DOD at 80%.195

Eiv2g−work = (DoD × Eev −
2Di

d−work
ηev

)ηcd (5)

The duration of V2G and G2V action can be easily calculated by dividing the energy by charging/discharging196

rate:197

T iv2g =
Eiv2g
Pch

(6)

T ig2v =
Eig2v
Pch

(7)

After identifying the V2G and G2V energy, the planning should be applied. The charging and discharging198

planning should be done in a way to have maximum difference and minimum overlap between V2G and G2V199

power curves. The reason behind this choice is to be able to estimate the maximum achievable V2G power200

capacity of the fleet. This leads to analyze the potential services with respect to the maximum achievable201

V2G power of each bidding capacity, which will be presented afterwards. Overlapping of V2G and G2V202

power or mixed planning, i.e. charging/discharging at the same time horizon, leads to reduced V2G capacity203
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of the fleet from aggregator capacity point of view. For home V2G planning, the plug-in interval (PIi(t))204

and V2G interval (V 2Gi(t)) are defined as follows:205

PIi(t) =

1, T iarrival < t < T ideparture

0, elsewhere
(8)

V 2Gi(t) =

1, T iarrival < t < T iarrival + T iv2g

0, elsewhere
(9)

It means that, the PEVs are asked to be discharged upon their arrival, to have time to be fully charged206

up to departure time. In fact, after discharging period the PEV has time to recharge its battery and being207

full-charged for departure.208

We define here the uncertain V2G time vector to complete formulation, where the complete approach to209

the uncertainty modeling is explained in the next section. Uncertain V2G time vector is:210

UV 2Gi(t) = UAi(t)× PIi(t)× V 2Gi(t) (10)

Where UAi(t), is the unavailability vector and the output of PAUM block. We define γ as the uncertainty211

coefficient, the portion of PEVs fleet, which have uncertain behavior potential.212

K = γ ×N, ∀K ∈ Q (11)

M = N −K, ∀M ∈ E (12)

Where Q is the integer set of uncertain PEVs numbers, and E is the integer set of certain PEVs, where213

the following law is consistent:214

E ∪Q = N (13)

Finally, the V2G power called AVP for home scenario is as follows:215

Pv2g(t) =

K∑
i=1

(UV 2Gi(t)× Pch) +

M∑
i=1

(V 2Gi(t)× Pch) (14)

The G2V interval for calculation of G2V power should be defined as follows:216

G2Vi(t) =

1, T ideparture − (T ig2v + T iv2g) < t < T ideparture

0, elsewhere
(15)

Uncertain G2V time vector is necessary for uncertain PEV and is obtained using:217

UG2Vi(t) = UAi(t)× PIi(t)×G2Vi(t) (16)
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Using uncertain G2V vector and G2V vector, the G2V power of the fleet is estimated by using equation218

(17):219

Pg2v(t) =

K∑
i=1

(UG2Vi(t)× Pch) +

M∑
i=1

(G2Vi(t)× Pch) (17)

The final output of this block for a case of 1000 PEV fleet is depicted in Fig. 5 and 6. The potential220

bidding capacities from AVP at home and office are explained afterwards.221

5.2. Bidding capacities (BC)222

Based on the distribution function of arrival time, we have proposed three indicative intervals, so-called223

”potential interval (pi)”, where there is a considerable cumulated number of PEVs and the V2G capacity224

of the fleet can be contracted. These three capacities, proportional with the number of available PEVs, are225

called bidding capacity for service market participation. We define the bidding capacity z, (1 ≤ z ≤ 3 ∈ N)226

and its function, BCz(t), with its capacity value, Capz during its interval from t1 to t2.227

BCz(t) =

Capz, t1 < t < t2

0, elsewhere
(18)

The three indicative times have been chosen in order to propose biding start times BSz for each bid as228

follows:229

BSz =


µ− σ, z = 1

µ, z = 2

µ+ σ, z = 3

(19)

The potential interval for each bid will be started from bidding start time until the power capacity equals230

to BCz(BSz) as it is shown in the figures for both scenarios. In the Fig. 5, the V2G power called AVP, is231

starting right after the availability of the fleet shown in form of the arrival time histogram. It increases up to232

its maximum value corresponding to the whole fleet available PEVs, which is 3.7 MW active power. Due to233

the constraints of the PEVs such as, maximum battery DoD and their availability interval, the AVP decreases234

to zero until around 22:00 PM. The G2V power which corresponds to PEVs charging is completely separated235

from V2G power starting from 2:00 AM ending by the departure of the whole fleet at around 9:00 AM. From236

the modeled AVP, three candidates bidding capacities are extracted with the characteristics represented in237

Table. 4. In Fig. 6, the AVP is modeled with the same strategy while the constraints are minimum required238

energy for return trip and minimum battery DoD. These two modeled AVPs will be analyzed for V2G A/S239

potential assessment.240

6. Multivariate Modeling of stochastic variables (MMSV)241

In the probabilistic analysis with stochastic variables, the correlation between the variables should be242

taken into account even by knowing the marginal distribution of each single variable to avoid inconsistent243
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Fig. 5: The output of AVPM algorithm for home scenario, a fleet of 1000 PEV.
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Fig. 6: The output of AVPM algorithm for office scenario, a fleet of 1000 PEV.

and unreliable estimation [42]. For the PEV fleet of daily home-work commuting, dependency of their244

departure times, arrival times and driving distances should be taken into consideration as they have key roles245

in modeling AVP and V2G energy capacity. However, the correlation between these stochastic variables can246

be estimated through statistical data as in [43] but their dependency impact on AVP and V2G energy should247

also be considered to provide a reliable marginal power capacity for aggregators. The latter is the case of this248

section. These dependencies can be analyzed with copula function. The approach of generating correlated249

samples using t copula sampling process is used in this paper where the notion and copula-based sample250

generation are explained thoroughly in [43]. t copula is used as it has tailed dependence modeling ability251

and is more suitable for real data modeling [43].252

6.1. The t copula253

A d-dimensional copula C is a d-dimensional distribution function on [0, 1]d with standard uniform254

marginal distributions [44]. For each random variable x, copula functions are used to correlate univariate255
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Table 4: Bidding capacities’ characteristics for home and office scenarios.

Scenario
BC1 BC2 BC3

pi (h) Power (kW) pi (h) Power (kW) pi (h) Power (kW)

Home Scenario 5.5 550 4.2 1750 3 3050

Office Scenario 5.2 550 4 1750 2.9 3050

marginal cumulative distribution functions (CDF), F1(x1), F2(x2), ..., Fd(xd), to their joint CDF, F (x1, x2, , xd)256

[43]:257

C(F1(x1), F2(x2), ..., Fd(xd)) = F (x1, x2, ..., xd) (20)

Conversely, any copula C can be used to join any type of marginal distribution and construct a multivariate258

distribution function with the same marginal. The unique t copula for any uniform random variable u =259

(u1, u2, ..., ud) ∈ [0, 1]d is given by:260

Ctν,P (u) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞
· · ·
∫ t−1

ν (ud)

−∞

Γ(ν+d2 )

Γ(ν2 )
√

(πν)d |P |
(1 +

x′P−1x
ν

)−
ν+d
2 dx (21)

Where t−1ν denotes the inverse CDF function of a standard univariate tν distribution with degree of261

freedom ν and symmetric positive definite correlation matrix P with unity diagonal elements.262

6.2. AVP variation calculation263

Generally, using the historical data or datasets gathered from statistical surveys, the correlation between264

arrival/departure time and driving distance can be easily estimated by fitting the multivariate distribution265

function to the datasets. This approach leads to the extraction of correlation matrix elements, which are266

representative of correlation degree between each two single marginal distribution [43]. In this study, an267

approach is proposed to quantify the impact of stochastic variable’s dependencies on AVP. Afterwards,268

the correlation matrix elements associated with average AVP variation are considered as the case study. We269

assume that the working hours are fixed for whole fleet. In this case the dependency of the variables rationally270

should be either blue or red transition lines between possible linguistic correlations’ states defined in Fig.271

7. While, the other transitions will not provide reliable samples to take into account for daily home-work272

driving pattern estimation. It means that, for a PEV departing soon from home and arriving late to home,273

the driving distance should have been long and vice versa.274

These correlations frame, present a linear direct correlation between driving distance and arrival time and275

a linear indirect correlation between departure and arrival time. Using a t copula function, the univariate276

marginal distribution of departure, arrival and driving distance can be related to their joint distribution as277

follows:278

C(F1(Tdeparture), F2(Tarrival), Fd(Dd)) = F (Tdeparture, Tarrival, Dd) (22)
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Considering the possible mentioned transitions, the elements of correlation matrix P will vary as follows:279

P3×3 =


1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1

 (23)

where,

ρ12 = ρ21 ∈ [−1, 0]

ρ13 = ρ31 ∈ [−1, 0]

ρ23 = ρ32 ∈ [0, 1]

(24)

Where ρ12 indicates the correlation between departure time and arrival time, ρ23 indicates the correlation280

between arrival time and driving distance and ρ13 denotes the correlation between departure time and driving281

distance. In order to measure the sensitivity of AVP to the different possible correlation, an optimization282

approach is proposed where the variables will be the correlation matrix elements associated with maximum283

variation of AVP;284

min
ρ12,ρ23,ρ32
ρ′12,ρ

′
23,ρ

′
32

(
∑∣∣Pwv2g(t)− P vv2g(t)∣∣)−1 (25)

Subject to:

{ρ12, ρ13, ρ′12, ρ′13} ∈ [−1, 0]

{ρ23, ρ′23} ∈ [0, 1]

xTPx ≥ 0

(26)

Where w and v are the two extreme cases of AVP affected by possible correlation between variables. The285

last constraint checks if the correlation matrix is positive definite or not for any possible x. This approach286

is tested on home V2G scenario as the case study where it is applicable on work V2G scenario as well. The287

results of optimization are brought in Table. 5.288

Using the obtained results, the AVP of the two extreme cases is calculated where these two cases will289

never happen (Fig. 8). Considering the realistic case, there is always a correlation between three variables.290
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Table 5: Results of optimization for effect of correlation coefficients

Parameter ρ12 ρ13 ρ23 ρ′12 ρ′13 ρ′23

Optimum value -0.3960 -0.4950 0.99 -0.5940 -0.6930 0

The average value considered as the case study while in real case, the statistic’s data or smart metering291

communication data can help to estimate the best correlation coefficients. The results show that the peak of292

AVP during its pi is the same for all three cases and there is only a negligible variation in power descending293

period.294
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Fig. 8: Effect of various possible correlation between stochastic variables on the AVP.

In this paper, the parameters for average variation of AVP are considered as the case study, where the295

impacts of correlation between variables are illustrated in Fig. 9. As it is shown, the marginal distributions296

for both non-correlated and correlated variables are approximately the same, while the orientation patterns297

in 2D copula surface between each pair of stochastic variables are different. The orientation differences are298

justifiable considering the correlation states transitions shown in Fig. 7. In other word, the vehicles departing299

soon in the morning have potential to arrive late as they have had longer driving distance and vice versa.300

This effect is considered in AVP modeling procedure. The other effect, coming from unpredictable availability301

uncertainties, which is modeled using a probabilistic model, is explained in the next section.302

7. Probabilistic availability uncertainty modeling (PAUM)303

Availability uncertainty can have different reasons: Later arrival or sooner departure compared to the304

estimated or declared arrival and departure time, sudden departure in case of an urgent during the plug-in305

interval or any partial unavailability due to the leisure motives. Whatever the case, the PEV’s unavailability306

from the aggregator point of view will be considered as V2G power unavailability and will impose negative307

impacts on contracted bidding capacity. Therefore, it is necessary to take into account the availability308

uncertainty factor prior to the capacity announcement.309

The PEVs unavailability during their plug-in interval is highly stochastic and difficult to model. How-310
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Fig. 9: Upper subplots: non-correlated stochastic variables, Lower subplots: correlated stochastic variables with averaged

coefficients (Considered as the case study for AVP calculation).

ever, its stochastic nature follows a particular probability distribution which can be detected in daily trips311

percentage data. In this paper, an approach is proposed to model availability uncertainty knowing only the312

daily trips percentage and the fact that the trips leading to unavailability are included in trips probability313

distribution. Two parameters have been considered for each PEV in order to model its unavailability:314

1. Departure moment as Tdepstart315

2. Unavailability period as DURUN316

In addition, an uncertainty coefficient has been introduced as, γ = [0, 1] ∈ R, which is the portion of PEVs317

fleet, that have potential of availability uncertainty. In another word, γ = 1, means that all of the PEVs inside318

the fleet will experience at least a short departure during the plug-in time. Monte-Carlo simulation (MCS) is319

used to generate samples with given trips percentage and prepare inputs for Gaussian mixture model (GMM)320

with a given number of components. Two major Gaussian components will be considered as trips related to321

departure from home to work in the morning and departure from work to home in the afternoon. By filtering322

these two components, the probability of the other motives’ trips leading to availability uncertainty can be323

detected. In the second step, using a uniform distribution by lower bound as home arrival time and upper324

bound as V2G interval, the sampling process of Tdepstart will be bounded over V2G interval and conducted325

by filtered GMM probability distribution. For DURUN , sampling a uniform distribution between 30 minutes326

to 3 hours is used. This is the maximum time length a PEV will be unavailable based on the mobility327

survey information. In this approach, we assume that the amount of PEV battery energy used during the328

unavailability interval is the same as the energy amount that would be provided as V2G, if PEV was available329
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in the parking. In the following, the formulation of different steps of the approach is provided along with the330

modeling framework in Fig. 10.331

GMM 
with MLE 
method

Arrival time

V2G interval

DURUN_min

DURUN_max

Availability 
uncertainty 
modelingg (%)

Uniform distribution

product 
distribution

Components number

MCS
Trips daily 
percentage

Filtering arrival 
and departure PDF

Samples

unavailability vector 
ua(i)

MCS

Tdepstart

Fig. 10: The PAUM framework.

7.1. Gaussian mixture model332

In this study Mixture model is used to find the sub-populations of daily trips percentage to associate333

an availability uncertainty probability distribution to the unknown sub-populations. These sub-populations334

are modeled as Gaussian components in GMM. For this reason, MCS is used to provide samples based on335

daily trips percentage and their probability distribution is estimated using kernel density estimation. The336

estimated probability density is used in MLE in order to estimates the parameters of GMM components with337

maximum likelihood percentage (Fig. 11).338

One-dimensional GMM density function for a set of C components and their parameter sets as Θ =339

(α1, α2, ..., αc, σ1, σ2, ..., σc, µ1, µ2, ..., µc) is represented as follows [45];340

f(xs|Θ) =

c∑
j=1

αj
1√

2πσ2
j

exp(− (xs − µj)2
2σ2

j

) (27)

We assume that αj ≥ 0, for j ∈ [1, ..., c] and
∑C
j=1 αj = 1. xs represents the samples. The best likelihood341

is obtained with 6 components with parameters shown in Table. 6.342

The last two components can be considered as trips related to departure from home to work in the morning343

and departure from work to home in the afternoon since their parameters are near to the ones which have344
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Fig. 11: Kernel density fitted to trips percentage along with best GMM fit with 6 components.

Table 6: parameters of GMM components.

Component j C1 C2 C3 C4 C5 C6

µj(hh : mm) 14:27 14:13 02:55 12:25 17:08 08:00

σj(minutes) 217 202 63 92 45 36

been considered in the previous section. By filtering these two components from GMM, the density function345

of other motives trips can be found (Fig. 12).346

7.2. Uniform distribution347

Using a uniform distribution, the sampling process for parameter Tdepstart can be bounded on the V2G348

time interval in order to emphasize uncertainty over AVP. In flexibility study in the next section, the interval349

will be adapted by a flexibility interval. The filled intervals in Fig. 12 show the products of uniform350

distribution and filtered GMM density function, which will be considered as uncertainty density function351

for uncertainty sampling process. In other words, the sampling process will be done randomly considering352

the obtained uncertainty density as the probability of selection. This density function can be represented as353

follows:354

gun(xs|Θ) =


∑4
j=1 αj

1√
2πσ2

j

exp(− (xs−µj)2
2σ2
j

) Tarrival < xs < Tarrival + Tv2g

0 elsewhere
(28)

Where Tarrival will be arrival time of first PEV at work for work V2G scenario and at home for home355

V2G scenario. For the unavailability period, a uniform distribution is considered with cumulative distribution356

function as follows:357

F (DURUN ; a(i), b(i)) =
DURUN (i)− a(i) + 1

b(i)− a(i) + 1
(29)
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Where a(i) = 30min , b(i) = 3hours and DURUN (i) ∈ [a(i), b(i)]. The outputs of the model for two scenarios358

are depicted in Fig. 12. This density function will be used as inputs for uncertainty sampling process, and359

it will affect the V2G vector as in (10). The impact of modeled uncertainty on each bidding capacity during360

its pi is studied using a reliability factor (RF), which is the ratio of available V2G energy with uncertainty361

divided by V2G energy without uncertainty. The results depicted in Fig. 13, show intensive impacts on BC3,362

particularly for home scenario. The BC1 remains mostly reliable even with the highest γ value. This analysis363

helps to choose the most reliable BCs where the procedure will be completed by assessing the flexibility of364

each BC in next section.365
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Fig. 13: Impact of uncertainty on reliability factor for, (a) home scenario, (b) work scenario.
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8. Bidding flexibility calculation (BFC)366

As we modeled the AVP upon the arrival of the PEVs, it would also be possible to coordinate the367

discharging time in order to prolong the bidding capacity interval. This so-called ”bidding capacity flexibility”368

is analyzed in this section under a stochastic global optimization problem approach. Considering the BCs369

defined in previous sections by (18) and (19), the only way to maximize these capacities is to maximize the370

potential interval and for this goal, the only degree of freedom is to coordinate the V2G time of PEVs.371

8.1. Flexibility problem formulation372

The purpose of this optimization is to maximize the BC time interval, starting from its availability. For373

instance, for bidding 1 starting at 16h45, the objective is to maximize the capacity interval using V2G start374

time coordination of PEVs. This maximization is under constraints of respecting the G2V capacity of the375

fleet (for home scenario) and possible flexible range of V2G start time. In order to simplify the calculation376

one parameter per PEV is considered, and it is the V2G start time which varies between arrival time and377

G2V start time minus V2G time interval. We define the k(t) function as the counter of sample times having378

a capacity more than each BC.379

K(t) =

1 Pv2g(t) ≥ BCz(t)
0 elsewhere

(30)

Objective function:

max
TV S(i,i+1,...,N)

t2∑
t1

K(t) (31)

Subject to:

Pv2g(t) ≥ BCz(t),∀t ∈ [t1, t2]

Tarrival(i) ≤ TV S(i) ≤ Tdeparture(i)− Tg2v(i)− 2× Tv2g(i)
(32)

Where TV S(i) is the V2G start time of PEVs arriving after BSz that should be coordinated in order to380

maximize the available interval of BCz(t). Considering the normal distribution empirical rule (three sigma)381

and number of PEVs per fleet, the number of parameters that has to be optimized can be calculated as382

follows for a fleet with N PEV, P1 = 0.6827 and P2 = 0.997:383

Paramnum =


P1+P2

2 ×N z = 1

0.5×N z = 2

P2−P1

2 ×N z = 3

(33)

For instance, for a fleet with 1000 PEV, in order to calculate flexibility of bidding z = 1, 838 parameters384

correspond to the PEVs arriving after BS1 should be optimized. This expression shows that we face with a385

relatively large optimization problem which needs a powerful algorithm.386
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8.2. Methodology387

The major challenge for this optimization problem is finding the best feasible solutions (global optimum),388

knowing the potential of high dimension problem and stochastic nature of the problem, which makes difficult389

to use deterministic and gradient based optimization algorithms. The latter using derivative free algorithms390

seem effective. In [46], it is shown that Free Pattern Search (FPS) algorithm is scalable to the dimension391

increasing and performs better compared to the other evolutionary algorithms. This algorithm employs the392

HJPS method as a local search algorithm and two operators from FS to guarantee the diversity of search393

in order to inherit the global search. Long et al. showed that FPS has very fast convergence speed, better394

solution accuracy, swarm management ability and robustness to the dimension compared to the similar395

evolutionary algorithms.396

In this paper, we have implemented FPS algorithm on bidding flexibility problem, and its functionality397

is assessed in both quality of result and dimension increment.398

8.3. Free Pattern search399

FPS is a population-based global optimization algorithm with three main parts; initialization, exploration400

and termination. In exploration part, there are three operators: search operator for local search based on401

HJPS, acceleration operator to avoid trapping in local optimums and a throw operator, which ensures the402

diversity of population. A single individual, Xj , {1 ≤ j ≤ m ∈ N}, will do the search based on HJPS algorithm403

in all of its dimensions, 1 ≤ i ≤ n ∈ N, bounded between lower and upper limits, Lowi and Upi. The flowchart404

of the FPS algorithm is illustrated in Fig. 14 and the different operators are explained afterwards.405

Search operator uses the HJPS algorithm to find local optimum for each individual. HJPS is a single-406

point search method which uses a pattern to search around the base point. There are three types of points in407

HJPS; the current point Ψ, the base point φ, and previous point θ. The current point is the actual solution408

of algorithm.The base point is for finding the better solution, and the previous point is the last current point.409

The HJPS contains two parts: exploration move (EMove) and pattern move (PMove). EMove will search410

in all dimensions of the base point to find the best trial. If the best trial is better than current point, the411

PMove will be implemented.412

Acceleration operator separates the population in two groups. The first group are the individuals413

trapped in local optimum and need to be accelerated. Using a sensibility factor S, the individuals will be414

polarized into two groups and the first group individuals X1
j will be accelerated thanks to the randomly415

selected second group individuals X2
r .416

Throw operator detects the individuals that would gather and search in the same small space. It417

scatters them by adding or subtracting a ∆i,init length to every dimension of the start position Xistart of418

gathered individuals. Throw operator keeps the population diversity in the search space. After finishing419

all operations the algorithm will be terminated facing with maximum step or maximum function call and420

accuracy of the solution.421
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Fig. 14: FPS algorithm flowchart.

8.3.1. Results422

The method is implemented on different PEV fleet numbers. Fig. 15 shows the function evaluation per all423

individuals for the fleet of 50, 200 and 500 PEVs. The result shows a complete convergence of all individuals424

for all cases. This shows the robustness of the algorithm to the dimension increment. The convergence and425

exploration intervals are indicated on the function evaluation windows. By increasing the dimension, the426

exploration is also prolonged. The optimization is stopped when all the individuals in each evaluation are427

converged to a single value and there is no further improvement in term of optimum result. The best value is428

obtained 10.5 hours. In fact, as the problem is stochastic, the optimization is repeated to have all cases with429

the same optimum values while the final results for bidding capacity 1 is almost around 10 hours for all the430

PEV fleet cases. This optimization is done in presence of different values of uncertainty coefficient, and the431

results are presented in Fig. 16. The impact of uncertainty shows a linearly drop on the flexibility interval432
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and more important on home scenario biddings. The BC3 for both scenarios has a flexibility less than 3433

hours after 20% uncertainty (γ = 0.2). It shows that BC3 compared to BC1 and BC2 has less reliability in434

terms of interval flexibility even by having a power more than them. Since the minimum time requirement435

for ancillary services discussed in this paper is 3 hours, the BC3 will not be considered in further analysis.436

Fig. 17 shows the flexibility of BC1 and BC2 with the uncertainty coefficient of γ = 0. In BC1, the flexibility437

algorithm reaches to prolong the potential interval of BC1 from 5 hours up to 10.5 hours. In BC2, the438

flexibility reaches 8 hours.439

The flexible interval (fi) of each BC will be used for service assessment in the next section. The availability440

uncertainty is considered with γ = 0.1 in the further analysis. This value is estimated for the PEV fleet in441

Niort.442
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Fig. 17: Left plot: BC1 flexible interval, Right plot: BC2 flexible interval.

9. Ancillary service assessment443

9.1. Ancillary services444

In [27], a possible list of ancillary services for storage systems at the distribution grid level under the445

confirmation of main French DSOs is proposed. These services’ feasibilities are analyzed also for PEVs in446

previous work of the authors [47]. In this paper, these services are evaluated for PEVs under an aggregation447

contract considering each service constraints. The active power based services presented in Table. 7 are448

chosen for this study. The first constraint for each service is the minimum amount of power, and minimum449

required time interval. These limits are used in order to design the fuzzy inference system for each service.450

Thanks to a service/localization matrix available in [27], the localization limitation of each service is also451

taken into account as another constraint. The utilization frequencies of the services, which depends on the452

nature of the service and the activation signals, are considered as the last constraint. In this study, three453

activation signals in form of a probability function are considered (Fig. 18). Annual averaged daily load454

profile (DLP) is considered as probability function for services sensitive to DLP variations. Annual averaged455

daily frequency regulation up signal is used for regulation services and finally, annual averaged daily balancing456

mechanism (BM) demand is chosen for BM service assessment. In the Table 8, the analyzed services in this457
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study are introduced.458
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Fig. 18: Probability of activation signals for, (a) Daily load profile (DLP), (b) Frequency regulation up (RU), (c) Balancing

mechanism up (BM).

Table 7: Ancillary services requirements for distribution grid [27, 48].

Service Loc. limit Min. Power (kW) Max. Power (kW) Min. time(h) Activation signal

PPSMV A 500 2000 3 DLP

PPSLV C 100 500 3 DLP

VRMV B,D 500 2000 3 DLP

VRLV C 50 500 3 DLP

LM A 100 2000 3 DLP

ETCM A 2000 5000 3 DLP

FR A 1000 5000 3 RU

BM A 10000 15000 3 BM

9.2. Distribution grid service/localization limitation459

At the distribution grid level, the effective potential place for each type of ancillary service is different.460

Reference [27], under the consultation of major French DSOs, proposes the different candidate locations for461

installing energy storage systems. These places are considered as the limit for the aggregated number of462

PEVs in order to assess the service potential. In this study, based on the chosen services, 4 candidate points463

are considered as the limits for each type of service (Fig. 19). Point A is at the topmost level of distribution464

grid in border of distribution and transmission grid. This point is considered as a HV/MV substation for465
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Table 8: Ancillary services characteristics for distribution grid.

Service Characteristics

PPS

Peak Power Shaving is evaluated at both MV and LV grid. PEVs are charged during off-peak

hours and discharged via V2G at peak hours. It provides economic interests for PEV owners,

aggregators and DSO.

VR

Maintaining voltage in acceptable contractual/regulatory boundaries [49]. At MV feeder a few

% of regulations needs at least 500 kW to 2 MW [48]. It is based on typical value of MV feeder

impedance in French distribution grid. This study is only focused on the active power

contribution on voltage regulation.

LM
Peak load should be avoided to minimize the losses. The line length, active and reactive power

of the connected consumers are important for dimensioning the storage units.

ETCM
The DSO has to pay to TSO an annual bill related to energy transmission. Minimizing the bill with

local produced renewable energy consumption and PEV charging coordination can be possible [38].

FR
Primary frequency regulation for French grid is 600 MW. A Minimum of 1 MW at the distribution

grid level is required [50].

BM
Balancing Mechanism is a part of tertiary frequency control. The French producers and consumers

having 10 MW available Power can participate in BM market [50]

the range of 63 to 225 kV for HV side and 15 to 20 kV for MV side. Point B is considered as the MV466

feeder level for feeders with 15 or 20 kV voltage level. Point C is considered as the LV bus bar inside the467

MV/LV substation for the range of 400 V in LV side. Finally, for industrial/professional customers possessing468

a private MV/LV substation, Point D is considered, which will be the case for office charging scenarios.469

In fact, for each service, based on its localization limitation mentioned in the Table. 7 the aggregated470

number of PEVs fleet will be evaluated at that limit.471

For our case study in Niort, a statistical analysis is done in order to discover the distribution of residential472

customers inside the distribution grid and for the 4 candidate locations. In point A, the possible number473

of PEVs for home scenarios are brought in Table. 9. For office scenario, 2841 PEVs can be aggregated up474

to the point A. The possible number of PEVs in Niort for each provision scenario are distributed between475

all MV/LV substations based on the residential consumers’ distribution, inside the MV/LV substation (Fig.476

20.a). Distributions of PEVs at the level of MV feeder for home scenario are brought in Fig. 20.b. The477

residential consumers are considered as the charging locations at home and for office scenario, the professional478

consumers are taken into account. For both scenarios, the maximum number of PEVs at each level of the479

grid are calculated considering the actual subscribed power for each consumer. It means that the capacities480

of the grid for hosting the PEVs are taken into consideration as constraints. For both evolution scenarios481

at home scenario, there is no case exceeding the subscription limitation. For office scenario, the maximum482

possible number of PEV before limitation violation are considered for study, as there is no evidence to justify483
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Fig. 19: Distribution grid schematic with location limitation for ancillary services.

the exact number of PEVs for office scenarios. It is due to the combination of traffic flow between Niort and484

its neighbor cities during the day. Their distribution at point B, C and D are brought in Fig. 20.c along with485

mean values considered in potential calculation.486

Table 9: Aggregated number of PEVs up to HV/MV substation (point A) for home scenario.

Evolution horizon 2020 2025 2030

Low Scenario 681 1446 2127

High Scenario 1702 4680 7657

9.3. Fuzzy inference system service assessment487

In order to assess the potential of PEV fleets for V2G ancillary services, a methodology is proposed.488

This method considers the bidding capacities characteristics of each fleet and compares it with potential489

probability of each service. A fuzzy inference reasoning system is designed to quantify the potential of each490

fleet and each bidding capacity for each particular ancillary service. As the services’ requirements are defined491

by power and time in form of an interval, the assessment procedure seems to be in a fuzzy form as the exact492

evaluation also needs accurate requirement. For each service, minimum and maximum power need and time493

are identified in Table. 7. Two inputs are considered for this system. The first one is dedicated to time494
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20 40 60 80 100 120 140 160
0

10

20

30

40 Mean = 24 EV

EV number

N
o.

of
M
V
/L

V
su
b
.

100 200 300 400 500 600 700 800 900 1,000
0

1

2

3

Mean = 316 EV

EV number

N
o.

of
M
V

fe
ed

er

c) Distribution of PEVs at point B (MV feeder) and C/D (MV/LV substation) for office scenario.

Fig. 20: Distribution of PEVs at different points for home/office scenarios.

interval of each service that can be provided by that particular bidding capacity of the fleet. By considering495

the probability of the service as ST (t) and probability of bidding capacity as FT (t) the first input is defined496

as:497

DUR =

24∑
t=1

FT (t)× ST (t) (34)

Probability of bidding is a vector with value 1 during the flexible interval (fi) of each bidding and 0 for498

other intervals of the day.499

FT (t) =

1, BSz ≤ t ≤ BSz + fiz

0, elswhere
(35)

This input is normalized using g factor as, g = 1/
∑24
t=1 ST (t). The second input is the power that should500

be provided for each service. The membership function of this input will be made based on minimum and501

maximum required power for each service provided in the Table. 7. The example of inputs and output for502

service PPSMV is brought in Fig. 21.503
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Fig. 21: FISSA algorithm, inputs and output example for service PPSMV.

10. Results and discussion504

A graphical indicator is designed for potential comparison of different services and bidding capacities505

represented in Fig. 22 for home and Fig. 23 for office scenarios. For each BC a minimum potential factor506

called BC limit is calculated using minimum power of the services and flexible interval of the BC. This factor507

is considered as minimum requirement for each BC of the services and is represented in form of a dotted-508

dashed line with filled upward area. Based on this indicator, every fleet evolution scenario should be inside509

the BC filled area in order to be competitive for that service. Afterwards, the potential of the different fleets’510

evolution scenarios is assessed using their provided power associated with their aggregated number of PEVs511

at each service’s candidate point.512

For home scenario, the services PPSLV and BM are not competitive up to 2030 horizon unless for high513

scenario of BC2. However, the services PPSMV, LM and FR are mostly well adapted with the provisions.514

In FR service, the low scenario BC1 can be possible from 2030. For PPSMV, the low scenario BC1 is also515

possible from 2025. In ETCM service, low scenario BC1 is not at all competitive up to 2030. This is the516

same case for low scenarios BC1 and BC2 in VRLV and VRMV services.517

For office scenario in Fig. 23, the services PPSLV, VRMV and BM are impossible. The services FR, LM518

and PPSMV are inside the area, so they can be competitive for the office fleet. The actual study shows that519

for BC1 the services VRLV and ETCM cannot be competitive. It should be taken into account that in this520

study, the numbers of PEVs at work are estimated based on actual grid capacity, and the studied volume521

availability is not at all guaranteed.522

The results for both scenarios show that the services in the low voltage grid have not enough potential due523

to the non-sufficient number of aggregated PEVs at LV grid, i.e. mostly less than 30 PEVs in all provision524

scenarios. In addition, for service BM, due to its huge power capacity requirement, the fleets’ provisions are525
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Fig. 22: Potential evaluation for home scenario under all evolution scenarios.

mostly not competitive as the available aggregated number of PEVs at point A cannot cover the BM service526

power capacity requirement.527

The proposed approach provides the potential evaluation of V2G ancillary services for distribution grids.528

This approach is useful in V2G energy management modeling by concentrating on the main requirements529

and limitations of each particular case study. By utilizing the proposed approach, the V2G management530

system will be efficient and scalable to that specific case study. Furthermore, the real potential services can531

be listed based on their priorities, which would be practical in the energy management scheming’s step. By532

knowing the flexible capacity of each V2G fleet, in the context of renewable energies’ intermittent mitigation,533

the management systems can be efficiently dimensioned to the real capacity of the V2G fleet as well. The534
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Fig. 23: Potential evaluation for office scenario with PEV number estimated upto the grid capacity (subscribed power limit).

proposed approach facilitates the choice of the proper ancillary services for V2G energy management and535

also increases the benefits from the services’ mutualization for the aggregators.536

11. Conclusion537

V2G ancillary services potential assessment was discussed in this paper. The available V2G power of538

the PEV fleets doing daily home-work commuting was modeled. This modeling is based on stochastic data539

such as arrival/departure time and driving distance and averaged data, containing vehicle’s characteristics.540

The interdependency of stochastic variables was analyzed using copula function. Two rarely discussed im-541

portant factors affecting the AVP were also modeled and their impacts on AVP were identified. Availability542

uncertainty of the PEVs during their plug-in interval was modeled using only daily trips percentage and543

its decomposition thanks to the Gaussian mixture model. Secondly, the service localization limitation was544

considered in the procedure of V2G service assessment of the PEVs fleet.545

The impacts of availability uncertainty were studied on three potential bidding capacities for both home546

and work scenario. The results indicated that the biddings in work places are more reliable than biddings547

at home as the probability of uncertainty has less concentration during the work plug-in time compared to548

the one at home. The flexibility of each bidding capacity was calculated using a robust global optimization549

technic. The impacts of uncertainty also showed linearly drops on flexibility intervals and generally fewer550

negative impacts on work biddings’ flexibility intervals compared to home scenario. Using the obtained551

flexible interval for each bidding capacity and V2G power of each PEV fleet, the potential of ancillary service552

participation of the fleets was studied thanks to a fuzzy inference system. The fuzzy system lets to quantify553

the potential of each fleet considering the requirement of the services such as minimum power and time and554
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localization limitation of the services inside the different point of distribution grid. This methodology, using555

the statistical mobility data of Niort, a city in west of France, was applied and possible services for this city556

were identified.557

This study showed that based on the actual provision of PEV evolution in France, the services peak power558

shaving in MV grid, frequency regulation, losses minimization and energy transmission cost minimization are559

more competitive compared to balancing mechanism, voltage regulation and peak power shaving in LV grid.560

It should be taken into account that, the impact of V2G infrastructure development and availability of V2G561

per individual vehicle are also another important factor that may affect the presented results. The general562

approach presented in this paper is sufficiently discussed, and it has potential to be applied on other similar563

case studies.564
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