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Abstract. The growing integration of renewable energy production and important loads such as electric vehicles bring a lot of 
challenges to today’s electric systems. Demand-side management strategies are often presented as one of the solutions to these 
problems. In this study, a fuzzy logic supervision system is proposed to minimize energy transmission costs in distribution grids 
by controlling electric vehicle charging and electric water heater activation. The supervision system takes into account the 
production of renewable energy within the grid, the load consumption and other parameters including user’s constraints. A 
genetic algorithm is used to optimize the supervisor’s parameters. Finally, the system’s performance is confirmed through 
simulation by testing it on real distribution grid data. 
Keywords: Demand-side management; Electric vehicles; Electric water heaters; Renewable energy; Distribution grids. 

Nomenclature 

DSM   Demand-Side Management 
DSO  Distribution System Operator 
ETC   Energy Transmission Cost  
EV   Electric Vehicle 
EWH   Electric Water Heater 
GA   Genetic Algorithm  
PV   Photovoltaic 

1. Introduction 

Due to recent energy transition policies trying to limit the 
alarming effects of global warming, the use of renewable 
energy instead of fossil fuels is very encouraged alongside 
other green technologies such as electric vehicles.  

According to the French General Commissariat for 
Sustainable Development, renewable energy constitutes 
16.3% of the gross final energy consumption in France in 
2017 [1]. These numbers have been growing steadily in the 
past ten years, and significant growth of 62% in primary 
renewable energy production has been recorded between 
2005 and 2017. This growth is mainly related to the growth of 
biofuels, heat pumps and the wind energy sector. 

On the other hand, the global stock of electric cars 
surpassed the 3 million mark in 2017 [2] according to the 
International Energy Agency, with a similar growth of the 
charging infrastructure worldwide. This massive EV 
integration aggravates the electricity peak loads noticed 
during the day, leaving night hours with relatively low 
electricity demand. 

This significant increase in renewable energy production 
on one side, and the growing integration of EVs on the other 
side can cause many problems on the distribution network 
mainly because of their stochastic nature. The electrical grid 
will have a higher risk of having overloading problems for 
example, which may require expensive reinforcements for 
equipment such as transformers and cables. The impact of EV 

integration has been broadly studied in the literature, showing 
that problems like congestions and voltage problems may 
appear [3] if there is no proper charging strategy for EVs and 
that the reliability of distribution systems may become 
compromised [4] [5]. However, the author of [6] showed that 
the use of decentralized photovoltaic generation in 
distribution networks could alleviate the impacts of 
uncontrolled EV charging on transformer and cable loading, 
the voltage profile and daily energy losses. 

Another way to remedy previous problems is to use 
demand-side management strategies. A review of the DSM 
framework and methods is presented in [7]. Among previous 
studies involving EV load control, [8] used a multi-energy 
scheduling strategy to minimize the grid power fluctuation, 
[9] used an optimal load management strategy based on 
quadratic programming to schedule EV charging, and [10] 
used dynamic programming to reduce power losses and 
improve the voltage profile within the grid. 

DSM strategies for home applications also control electric 
water heaters, heating, air conditioning, and other home 
appliances generally using dynamic pricing strategies [11]. 
These methods try to encourage users to avoid using all their 
appliances in peak times and shift demand towards less busy 
hours or periods when renewable energy production is 
abundant. The acceptance and involvement of consumers and 
energy producers to participate in these DSM methods were 
also studied recently in [12]. 

In this paper, an energy management strategy is proposed 
to monitor EVs and EWHs within the distribution network, 
with a primary goal of minimizing the energy transmission 
cost for the distribution system operator. A fuzzy logic 
supervision system is used to generate reference power 
signals for EV charging and EWH activation. Fuzzy logic was 
particularly chosen for its effectiveness in managing complex 
systems such as electrical distributions grids without the 
necessity to model all their components. The proposed 
supervisor’s parameters are determined first empirically and 
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then optimized using a genetic algorithm for better 
performance. The paper is structured as follows: First, the 
adopted EV and EWH load models are presented. Then, the 
proposed energy management strategy is explained, starting 
with ETC calculation since it’s the objective to minimize, and 
going through the different components of the supervision 
system that are presented alongside the operating rules. The 
system’s performance is finally evaluated through simulation 
results, and some perspectives are given in the last section. 

2. Load Modeling 

This section presents the proposed load models for EVs and 
EWHs that are used in the distribution grid’s energy 
management system. 

Electric Vehicles. The load profile and energy 
requirements of EVs are determined using deterministic and 
probabilistic parameters that define their charging process: 
- Battery specifications: especially the battery capacity 

(kWh) and the standard consumption (kWh/km) of the 
EV. In this study, all EVs are considered to have the same 
characteristics as the Renault ZOE [13]. 

- Charging mode: since the EVs can charge at home and at 
the workplace, the normal charging mode (16A/230V) is 
considered for its versatility. Faster charging modes could 
be considered in places where the necessary infrastructure 
(charging stations) is available. 

- Daily travel distance: the average travel distance recorded 
in France in 2017 is around 35km per day [14]. 

- Arrival/departure times: based on the traffic habits of 
French department Deux-Sèvres [15] in which this study 
is conducted, the home to office journey takes place 
around 08:00 and the return journey is around 17:00. 

The heterogeneity between EV users is represented by a 
normal distribution, which characterizes a random variable x 
by its average value µ and its standard deviation σ, as 
expressed in (1). The chosen values in this study are given in 
Table 1. 

𝑓(𝑥) =
1

𝜎√2 ∙ 𝜋
𝑒

ି
(௫ିఓ)మ

ଶఙమ  . (1) 

Table 1. Arrival/departure times to home/office. 

 

Daily 
travel 

distance, 
km 

Office 
arrival, 
hh:mm 

Office 
departure, 

hh:mm 

Home 
arrival, 
hh:mm 

Home 
departure, 

hh:mm 

µ 35 08:15 16:45 17:15 07:45 
σ 5 00:30 00:30 00:30 00:30 

These arrival/departure times vary on weekends since 
people have different dynamics. Traffic-based modeling of 
working days and weekends was proposed in [16], where 
probability distribution functions were fitted to real traffic 
data through a linear optimization problem. In this study, 
simpler assumptions are used: the office charging is not 
considered on weekends, and the home arrival and departure 
times are shifted two hours forward since people do not wake 
up early for work and return home later in the evening. 

Electric Water Heaters. The load profile and energy 
requirements of EWHs are determined using a single element 
thermal model inspired by [17] and depend mainly on the 
users’ hot water demand which is determined statistically. 

The incoming cold water enters the EWH at the 
temperature Tin = 15°C, is heated through an electric 
resistance, and the outgoing hot water is delivered at the 
temperature Tout = 60°C as explained in Fig. 1. The water 
temperature is considered uniform in the entire EWH. 

 
Fig. 1. Operating diagram of an EWH 

The energy exchanges in the EWH are expressed in the 
equations (2-5). The energy given by the heating element 
(Pelectric) is used to raise the temperature T of the water (Pheat), 
a part is lost due to the consumption of hot water (Pwater flow), 
and another one is lost as heat exchanges with the outside 
environment through the tank (Ploss). 
𝑃௘௟௘௖௧௥௜௖(𝑡) = 𝑃௛௘௔௧(𝑡) + 𝑃௪௔௧௘௥ ௙௟௢௪(𝑡) + 𝑃௟௢௦௦(𝑡) . (2) 

𝑃௛௘௔௧(𝑡) = 𝜌𝑐௣𝑉
𝑑𝑇(𝑡)

𝑑𝑡
 . (3) 

𝑃௪௔௧௘௥ ௙௟௢௪(𝑡) = 𝜌𝑐௣𝑊௙௟௢௪(𝑡)(𝑇(𝑡) − 𝑇௜௡) .  (4) 

𝑃௟௢௦௦(𝑡) =
𝑆

𝑅
(𝑇(𝑡) − 𝑇௢௨௧) . (5) 

where: 
- ρ and cp are respectively the mass density (kg/m3) and the 

specific heat (J/(kg.°C)) of water. 
- V, S, and R are respectively the volume (m3), the surface 

(m2) and the thermal resistance (m2.°C/W) of the tank. 
- Wflow is the outgoing water flow (m3/s). 

The EWH is switched on or off by a thermostat, which 
means Pelectric is either null or equal to the nominal power Pnom 
of the EWH. The only remaining parameter that varies 
through time is the hot water demand (Wflow). 

The hot water usage in France has been determined with a 
one-hour step by a study [18] conducted by the French 
environmental and energy efficiency agency (ADEME). An 
average household of three people consumes around 150±50 
L of water at 40°C daily, which corresponds to 83±28 L at 
60°C. The hot water consumption profile is then obtained by 
modulating this average daily consumption (Wcons day average) 
with hourly (αhour), daily (αday) and monthly (αmonth) 
coefficients, as expressed in (6). The water flow is considered 
constant within every hour as it is suggested in Fig. 2. 
𝑊௙௟௢௪ = 𝑊௖௢௡௦ ௗ௔௬ ௔௩௘௥௔௚௘ ∗ 𝛼௛௢௨௥ ∗ 𝛼ௗ௔௬ ∗ 𝛼௠௢௡௧௛  . (6) 

Finally, taking into account all the elements of (2) and 
knowing that Pelectric and Wflow are considered constant during 
every hour, the temperature evolution is calculated in (7). 
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Fig. 2. Hourly hot water demand of 100 EWHs 

 

𝑇(𝑡) = 𝐾 + (𝑇(𝑡଴) − 𝐾)𝑒ି
೟ష೟బ

ഓ  , where: (7) 

𝜏 =
𝜌𝑐௣𝑉𝑅

𝑆 + 𝜌𝑐௣𝑊௙௟௢௪𝑅
 . (8) 

𝐾 =
𝑃𝑅 + 𝑆𝑇௢௨௧ + 𝜌𝑐௣𝑊௙௟௢௪𝑅𝑇௜௡

𝑆 + 𝜌𝑐௣𝑊௙௟௢௪𝑅
 . (9) 

To obtain the temperature evolution on a long period, t0 is 
reset every hour, T(t0) gets the final value of the previous 
hour, and the temperature evolution within the hour is 
determined using (7).  

3. Energy management strategy 

This section starts by presenting the computation of the 
energy transmission cost aimed to be minimized in this study, 
then describes the specifications of the proposed energy 
management system, its structure, and implementation. 

Energy transmission cost computation. As users of the 
electricity transport network operated by RTE, the French 
Transport System Operator, Distribution System Operators 
like GEREDIS pay an annual Energy Transmission Cost that 
represents an important financial expense. The computation 
of this cost is set by the public electricity network user tariff 
(TURPE 5) [19], which is regulated by CRE, the French 
energy regulatory commission, to guarantee economic and 
secure access to electricity within the network. The 
considered components of the energy transmission cost are 
mainly related to the energy extracted by the DSO, and the 
periods where the subscribed power with the TSO is 
exceeded. The cost computation (10) is done for each High 
Voltage / Medium Voltage (HV/MV) substation. 

𝐸𝑇𝐶 = 𝑏ଵ 𝑃௦௖ ଵ + ෍ 𝑏௜  (𝑃௦௖ ௜ − 𝑃௦௖ ௜ିଵ)

ହ

௜ୀଶ

+ ෍ 𝑐௜  𝐸௜

ହ

௜ୀଵ

+ ෍ ෍ 𝛼 𝑏௜  ඨ෍൫𝑃௝ − 𝑃௦௖ ௜൯
ଶ

௝

ହ

௜ୀଵଵଶ ௠௢௜௦

 . 

(10) 

where: 
- Psc i is the subscribed power (in kW) at the ith time frame 

(each time frame corresponds to peak or off-peak hours 
during different seasons, as defined in [19]). 

- Ei is the extracted energy (in kWh) during the ith time 
frame. 

- Pj is the measured power (in kW) exceeding the 
subscribed power. 

- bi and ci are weighting coefficients for power and energy 
respectively. They depend on the voltage range on the 
substation and tariff version considered. 

- α is a weighting coefficient for the exceeding power that 
also depends on the voltage range on the substation. 

System specifications. The supervision system aims to 
control EV charging and EWH activation within a distribution 
network. Its objectives, constraints, means of actions and 
performance indicators are presented in Table 2. 

Table 2. Supervision system specifications. 

Objectives 

Reduce the DSO’s energy transmission bill 
by promoting local consumption of 
renewable energy through EV charging and 
EWH activation. 

Constraints 

- Renewable power intermittency. 
- Availability of EVs at home/office. 
- Full charging of EVs before departure. 
- Complete heating of EWHs before the 

end of the day. 
Means of 

action 
Load shifting. 

Performance 
indicators 

Energy transmission cost reduction. 

Supervisor structure. The energy management strategy 
aims to supervise EV charging and EWH activation in a real 
distribution network operated by GEREDIS. Real power flow 
data is collected every 10 minutes from HV/MV substations 
through telemetry devices. 

As shown in Fig. 3, the supervision system takes two main 
inputs. First, there is the measured power at the substation 
(Psub) expressed in (11) that includes PV and wind energy 
producers (PPV, Pwind), EVs and EWHs, and other consumers 
(Pcons) connected to the HV/MV substation. 

𝑃௦௨௕ = (𝑃ா௏ + 𝑃ாௐு + 𝑃௖௢௡௦) − (𝑃௉௏ + 𝑃௪௜௡ௗ) .  (11) 

 
Fig. 3. Structure of the supervision system 

The measured power can be positive in case the 
consumption within the substation is greater than the local 
production and can be negative in the opposite case.  
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The second input is the State of Charge (SoC) of EVs and 
EWHs, which is estimated at each time step within the 
system. The system output is the global power reference for 
charging EVs and EWHs, which is finally distributed into 
individual references for EVs and EWHs. It should be noted 
that in the entire supervision strategy, EWHs are treated the 
same way as EVs by reasoning on their daily energetic needs 
instead of thermodynamic parameters such as temperature. 

Supervision strategy. The supervision system includes 
two stages, as illustrated in the functional graph in Fig. 4 [20]: 
- A "Fuzzy Mode" that aims to maximize EV and EWH 

charging during the periods of excess PV/Wind 
production, and limit it in the opposite case. 

- A "Boolean Mode" that guarantees the fulfillment of EVs 
and EWHs daily energy requirements by forcing the 
charging power reference if necessary. 

 
Fig. 4. Functional graph of the supervision system 

The supervision system generates the charging power 
references for EVs at home/office and EWHs depending on 
Psub, which can be Negative (N) or Positive (P), and the SoC 
of EVs and EWHs, which can be Small (S), Mean (M) or Big 
(B). The proposed operating rules are illustrated in Fig. 5. 

 
Fig. 5. Operational graph of the supervision system [20] 

The Fuzzy Mode’s inputs and outputs are described using 
membership functions (Fig. 6) that are determined empirically 
at first. On the other hand, the Boolean Mode duration was 
also fixed empirically at 3 hours for EVs and EWHs. 

 
Fig. 6. Membership functions of the empirical fuzzy supervisor 

Optimization of supervisor parameters. The 
supervision system’s performance depends directly on the 
parameters of the Fuzzy Mode and the Boolean Mode. In this 
study, these parameters are optimized using a Genetic 
Algorithm (GA) as presented in [21]. The objective function 
to minimize is the annual energy transmission cost and the 
parameters are the membership functions (MF) limits and the 
duration of the Boolean Mode for EVs and EWHs. The 
optimized MFs are represented in Fig. 7, and the optimized 
Boolean Mode durations for EVs at home/office and EWHs 
are ∆tBM EV office = ∆tBM EV home = 3h10 and ∆tBM EWH = 4h30.  

 
Fig. 7. Membership functions of the optimized fuzzy supervisor 
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4. Results and Discussion 

The energy management strategy is tested using data from an 
HV/MV substation operated by GEREDIS that contains 2 
90/20 kV transformers of 36 MVA and a 225/20 kV 
transformer of 40 MVA. Around 5000 customers and six 
energy producers (PV and wind) with a total power of 83 
MW are connected to this substation. The controllable loads 
considered in this study are 2700 EVs (according to the 2030 
scenario in the department of Deux-Sèvres [22]), and 
approximately 3400 EWHs that are identified from the global 
load profile in the substation. The total energy flow is 
recorded every 10min using telemetry devices and 
communicated to the supervision system. 

The load profile of EVs and EWHs, as well as the 
resulting power profile at the HV/MV substation, are 
represented in Fig. 8 and 9 respectively for a day where 
renewable energy is available and another one when it is not. 

 

 
Fig. 8. Simulation results on a day with available renewable energy  

In the first case illustrated in Fig. 8, the supervisor shifts 
most of the EV and EWH load to the time when an excess of 
renewable energy is detected in the substation (Psub < 0). In 
the second case illustrated in Fig. 9, there is no excess 
production that appears throughout the day, therefore EVs are 
activated only by the Boolean Mode in the last hours before 
their departure, and the same thing happens for EWHs at the 
end of the day. 

 
Fig. 9. Simulation results on a day with no available renewable 

energy 

The annual results of the simulation are used to calculate 
the optimal subscribed power with the TSO and the resulting 
annual energy transmission cost shown in Table 3. The 
introduction of EVs and EWHs into the grid without any 
supervision increases the ETC by approximately 13.1%. The 
energy management system reduces this percentage to only 
8.6% of the original cost. 

Table 3. Performance indicators. 

 
Subscribed 
Power, kW 

Energy 
Transmission 

Cost, k€ 

Energy 
Transmission 

Cost, pu 
No 

EVs/EWHs 
21738 786 1.000 

Unsupervised 
EVs/EWHs 

24351 889 1.131 

Supervised 
EVs/EWHs 

22438 853 1.086 

5. Conclusion and Perspectives 

This paper proposed a supervision strategy to manage EV 
charging and EWH activation in a distribution grid, with a 
particular goal of minimizing the energy transmission cost. 
The performance of the system was confirmed through 
simulation by testing it on real power flow data from an 
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HV/MV substation and showed that proper supervision of 
EVs and EWHs leads to an important reduction of the energy 
transmission cost. However, some additional improvements 
are expected to be introduced in future work. The integration 
of production and consumption forecasting into the 
supervision strategy can greatly improve the system since it 
adds the possibility to use optimization methods to calculate 
the best load profile for EVs and EWHs one day ahead. 
Another phenomenon to be considered is the impact of these 
strategies on electrical grid parameters like voltage and 
loading. Therefore, another important perspective of this 
work is to integrate the electrical constraints in the 
supervision strategy and modify the outputs accordingly. 
Finally, these strategies will be implemented in a real 
supervision system to test their performance and evaluate 
their acceptability by users that are participating in a 
demonstrator project in the Nouvelle-Aquitaine region in 
France. 
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