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Abstract— The driving range of electric vehicles is a complex 

issue. In simulation, this range is determined by coupling a battery 

model and a traction model of the vehicle. But most of the battery 

models used for such studies do not take into account the 

interaction between the temperature of the battery (impacting its 

electrical parameters) and the traction model of a studied EV. In 

this paper, a battery electro-thermal model (with all electrical 

parameters dependent upon the temperature) is dynamically 

coupled with the traction model of an electric vehicle. Simulation 

results are provided to show the impact of the temperature on the 

driving range. The initial battery model (without temperature 

dependence) leads to an overestimation of the driving range of 

3.3% at -5°C and an underestimation of 2.5% at 40°C. 

 
Index Terms— Electric Vehicle; System Modelling; Li-ion 

Battery; Characterization; Electro-Thermal Modelling.  

I. INTRODUCTION 

Electric vehicles (EVs) are a solution for managing 

petroleum depletion and reducing global carbon emissions. 

Nevertheless, charging time and driving range are frequent 

worries for future EV owners [2]. 

Characterization studies have shown that a cold temperature 

has a strong impact on the electrochemical energy storage in a 

battery [3]-[5]. Battery capacity fades and internal resistance 

increases at low temperature. In addition, the temperature 

affects the aging of the battery [6], [7]. 

As a consequence, many studies focus on the thermal 

behaviour of batteries for use in electric vehicles.  

Some prior works use battery electro-thermal models with 

constant electrical parameters (no coupling between the 

temperature and the battery electrical parameters) [8][9].  

Other researches have been focused on the characterization 

of electrical parameters at different temperature, but do not 

attempt coupling with a traction chain [10]-[13]. An interesting 

approach has recently been developed for battery modelling in 

cold weather [10]. 
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Table 1 Parameters and symbols 

 Parameter Name Value Unit 

C
el

l 

Cell capacity  cAhCell >160  A.h 

Cell nominal voltage uCellNom 3.3 V 

Maximal cell discharge current iCell 480 A 
Cell interconnection resistance RCon 505 µΩ 

Cell weight --- 5.6 kg 

Cell thermal resistance RThCell 2.63 K/W 
Cell thermal capacitance CThCell 2430 J/K 

B
at

te
ry

 

Battery config. (series x parallel) nSCells x nPCells 24 x 

1 

cells 

Battery nominal voltage uBatNom 79.2 V 
Battery nominal power pBat 38.0 kW 

Battery mass mBat 134 kg 

E
V

 t
ra

ct
io

n
 

Aerodynamic drag coefficient cX 0.35 --- 

Front surface  S 1.55 m² 

Air volumic mass φEq 1.3 kg/m3 

Road friction f0 150 N 

Wheel radius rWheel 0.26 m 

Reduction coefficient kRed 5.84 --- 
Mechanical efficiency ηMech 0.85 --- 

Electric drive peak power PDriveMax 25 kW 

Electric drive efficiency ηDrive [1] --- 

In that work, a battery electro-thermal model has been 

developed based on multi-temperature characterizations of 

electrical parameters.  

Other works couple the traction model of the vehicle with an 

electric model of the battery that is partly temperature 

dependent. For example, in [14], the OCV and SOC are directly 

dependent on the temperature, whereas impedence parameters 

are not. 

The novelty of this paper is to propose a dynamical electro-

thermal model (full SOC and temperature dependence for all 

the electrical parameters of the battery) in dynamical interaction 

with the traction model of the vehicle.   

First, a thermal model is dynamically coupled with the 

electrical part of the battery model. This coupling leads to 

temperature dependence on the electrical parameters and 

electrical parameters dependent on the temperature. Thus, for a 

specified battery current, the battery voltage is affected by the 

temperature evolution. Second, this electro-thermal dynamical 

battery model is coupled to a dynamical model of the traction 

subsystem of the EV. The traction current is then updated from 

the battery voltage evolution, which is itself affected by the 

battery temperature evolution.  

The battery model is organized using EMR (Energetic 

Macroscopic Representation) [15] to provide easy 

interconnection with a complete traction model. EMR is a 

graphical formalism to organize models and control of 

multiphysical energy conversion systems. It has been used in 
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Driving Range Simulation 
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the field of electric and hybrid vehicles for its ability to develop 

control structures in a systematic way although other 

formalisms also exist for vehicle model organization [16]. A 

first paper has already proposed an electro-thermal model of a 

battery using EMR [17], but with fixed electrical parameters 

(characterized at 25 °C). This new model is temperature 

dependent. Thus, it enables the study of driving range at several 

temperatures. 

This paper is limited to the impact of the battery temperature 

on the driving range. Ancillary systems supplied by the battery 

are known to significantly increase the battery current (i.e., 

heating [18] [19] and air conditioning [20][21]). They are not 

considered in this paper.  

In section II the coupled electro-thermal battery model is 

organized using EMR and then linked with the traction 

subsystem model. In section III, a cell from an actual EV is 

characterized at several temperatures. In section IV, the battery 

model is validated at the system level with on-board 

measurements in the vehicle. In section V, the impact of the 

temperature on the driving range is studied by simulation.  

II. CAUSAL ORGANIZATION OF THE EV MODEL 

A. Electro-thermal model for one cell 

The electric model (Fig. 1) is a classical equivalent circuit 

model composed of 3 parts [4]: 

 The Open Circuit Voltage (OCVCell) is linked to the 

energy stored by electrochemical mechanisms 

(OCVCell increases with the state of charge SoC).  

 The series resistance (RSCell) represents the sum of the 

conduction, the ionic transport in electrolyte and the 

charge transfer resistances. The double-layer 

capacitance is neglected given the time constants 

considered (greater than few seconds). 

 The phenomena related to the insertion and diffusion 

of the ions in the battery nanostructure is represented 

by a RDiffCell//CDiffCell parallel equivalent circuit instead 

of a Warburg impedance as in [22]. This model is a 

compromise between accuracy and computation time 

for embedded systems [10].  

The chosen electrical model (Fig. 1) includes full SOC and 

temperature dependence of all the electrical parameters, unlike 

prior related work [17].  

The Peukert effect (i.e. the dependence of the battery 

recoverable capacity with discharge current) can be neglected 

for the LFP battery technology (Peukert constant between 0.99 

and 1.04) [23]. LFP stability with current rate is confirmed by 

previous works [24].  

The thermal model of the battery (Fig. 2) is a standard 

averaged thermal model built with the following hypothesis 

[25]:  

 The thermal capacitance of the cell core (the inside part of 

the cell) CThCell is taken into account. The thermal 

capacitance of the cell surface is neglected as its package 

is very lightweight compared to the core. 

 The equivalent thermal resistance rThCell represents the 

heat transfer between the core to the surface (conduction) 

and the surface to the air (convection). 

The heat power (PHeat) is assumed to come only from the 

joule effect in RSCell and RDiffCell  (1).  

𝑃𝐻𝑒𝑎𝑡 = 𝑅𝑆𝐶𝑒𝑙𝑙 . 𝑖𝐶𝑒𝑙𝑙
2 + 𝑅𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙 . 𝑖𝑅𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙

2  (1) 

As in [10], the electrical and thermal part of the model are 

coupled by the internal temperature and the heat power (Fig. 3). 

B. EMR of the cell electro-thermal model 

In order to highlight the coupling of the electrical and 

thermal parts of the cell model, the EMR (Energetic 

Macroscopic Representation) formalism is used. It will later 

enable an easy coupling of the battery model with the traction 

subsystem model. 

EMR [15] is a functional and graphical description using 

pictograms (see Annex A). EMR highlights the power exchange 

between different multi-domain elements by the action-reaction 

variables. In that way, the product of the action and reaction 

variables leads to the instantaneous power. Moreover, EMR is 

based on the causality principle. With causality, the output can 

only be an integral function of the inputs (see Fig. 4), i.e. the 

output can only be a consequence of the inputs, obtained after a 

delay from the input changes. 

In [10], the electro-thermal model is not organized 

according to the causality principle. In order to better 

understand the interaction between the thermal and electrical 

parts, this model is reorganized in a causal way using EMR 

(Fig. 5). This new organization will enable an easy coupling 

with the traction subsystem model later. 
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Fig. 1 Structure of the electric model for one cell 
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Fig. 2 Structure of the thermal model for one cell [17] 
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Fig. 4 From classical representation to EMR 
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Fig. 5 EMR of the dynamical electro-thermal model [17] 

The SoC is calculated from the integration of the current, 

the initial SoC and the discharge capacity of the cell (2).  

𝑆𝑜𝐶(%) = 𝑆𝑜𝐶𝐼𝑛𝑖𝑡

−
100

3600. 𝐶𝐴ℎ𝐶𝑒𝑙𝑙
. ∫ 𝑖𝐶𝑒𝑙𝑙  𝑑𝑡

𝑡𝐶ℎ/𝐷𝑐ℎ

0

 
(2) 

OCVCell is represented as a source of voltage in EMR (green 

oval). The resistance RSCell is represented as a conversion 

element as there is no delay (integral) between inputs and 

outputs (3). 

𝑂𝐶𝑉𝐶𝑒𝑙𝑙 − 𝑅𝑆𝐶𝑒𝑙𝑙 . 𝑖𝐶𝑒𝑙𝑙 = 𝑢′ (3) 

The series connection is a coupling element i.e. a 

distribution of energy (4). 

𝑢′ − 𝑢𝑅𝐶 = 𝑢𝐶𝑒𝑙𝑙  (4) 

The parallel connection (current node) is also a coupling 

element (5). 

𝑖𝐶𝑒𝑙𝑙 − 𝑖𝑅𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙 = 𝑖𝐶𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙  (5) 

CDiffCell is an accumulation element i.e. storage of energy (6). 

𝑢𝑅𝐶 =
1

𝐶𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙
∫ 𝑖𝐶𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙  𝑑𝑡
𝑡

0

 (6) 

RDiffCell is a conversion element i.e. an energy conversion 

without storage (7). 

𝑖𝑅𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙 =
𝑢𝑅𝐶

𝑅𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙
 (7) 

The thermal part is reorganized to represent the effort and 

the flow variables (Fig. 6). 
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Fig. 6 Flow and effort variables for thermal model [17] 

For thermal modelling, the effort variable is the temperature 

(K) and the flow variable is the entropy flow qS (in W/K). The 

power P is achieved by multiplying those two variables (8): 

𝑃 = 𝑞𝑆. 𝑇 (8) 

The entropy flows coming from RSCell (9) and RDiffCell (10) 

are summed with a coupling pictogram (11): 

𝑞𝑆𝑅𝑆𝐶𝑒𝑙𝑙 =
𝑅𝑆𝐶𝑒𝑙𝑙 . 𝑖𝐶𝑒𝑙𝑙

2

𝑇𝐼𝑛𝑡
 (9) 

𝑞𝑆𝑅𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙 =
𝑅𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙 . 𝑖𝑅𝑑𝑖𝑓𝑓𝐶𝑒𝑙𝑙

2

𝑇𝐼𝑛𝑡
 (10) 

𝑞𝑆𝑇𝑜𝑡 = 𝑞𝑆𝑅𝑆𝐶𝑒𝑙𝑙 + 𝑞𝑅𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙  (11) 

In EMR, the thermal capacitance is an accumulation 

element, as there is a differential equation (12). This equation 

has been reorganized for EMR in [18]. Variables are the 

temperature, T (K), and the entropy flow, qS (W/K) (13). The 

equation is described in an integral form (14). 

TIntInit is the initial internal temperature of the cell. 

 
𝑑𝑇𝐼𝑛𝑡
𝑑𝑡

=
𝑃𝐼𝑛𝑡
𝐶𝑇ℎ𝐶𝑒𝑙𝑙

  (12) 

⇔
𝑑𝑇𝐼𝑛𝑡
𝑑𝑡

=
(𝑞𝑆𝑇𝑜𝑡𝐶𝑒𝑙𝑙 − 𝑞𝑆3). 𝑇𝑖𝑛𝑡

𝐶𝑇ℎ𝐶𝑒𝑙𝑙
 (13) 

⇔ 𝑇𝐼𝑛𝑡 = 𝑇𝐼𝑛𝑡𝐼𝑛𝑖𝑡 . 𝑒
 

1
𝐶𝑇ℎ𝐶𝑒𝑙𝑙

∫ (𝑞𝑆𝑇𝑜𝑡𝐶𝑒𝑙𝑙−𝑞𝑆3
𝑡
0 )𝑑𝑡

 (14) 

The ambient air is considered as a source of temperature. 

The thermal resistance is a conversion element (15), (16). 

𝑞𝑆3 =
𝑇𝐼𝑛𝑡 − 𝑇𝐴𝑚𝑏
(𝑅𝑇ℎ𝐶𝑒𝑙𝑙). 𝑇𝐼𝑛𝑡

 (15) 

𝑞𝑆4 =
𝑇𝐼𝑛𝑡 − 𝑇𝐴𝑚𝑏
(𝑅𝑇ℎ𝐶𝑒𝑙𝑙). 𝑇𝐴𝑚𝑏

 (16) 

As RSCell and RDiffCell are present in the thermal and electrical 

parts, they are represented as multi-physical (electro-thermal) 

converters. 

All of the electrical parameters (OCVCell, RsCell, RDiffCell, 

CDiffCell) are dependent on both the internal temperature and the 

SoC of the cell. The thermal parameters are constant, as they 

are related to geometry and mass of the cell. 

C. Building the battery model  

The battery of the studied EV is composed of 24 cells in 

series. For mass repartition purpose, the battery is divided into 

3 modules (7/10/7 cells). They are placed at different locations 

(2 under the seats and one under the front hood). In a module, 

the cells are placed in line and separated by cooling holes (Fig. 

7).  
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Fig. 7 Module 1 setup in the studied EV 

The corresponding battery model is built with the two 

following assumptions: 

 There is no parameters variation between the cells. 

 The cooling holes make the thermal interactions between 

the cells negligible. As a consequence, the thermal part of 

the cell model is considered unchanged in this particular 

EV battery. 

These strong assumptions will be validated by comparisons 

between simulation and experimental measurement in the 

vehicle (see section IV). 

The connection resistance between cells has been estimated at 

RCon=505 µΩ by measurements in the vehicle during driving 

tests. It is considered as a constant for simulation. A conversion 

pictogram (17) is added to the cell EMR (Fig 8). 

𝑢𝐶𝑒𝑙𝑙 − 𝑅𝐶𝑜𝑛 . 𝑖𝐶𝑒𝑙𝑙 = 𝑢𝐶𝑒𝑙𝑙𝐶𝑜𝑛 (17) 

where uCellCon is the voltage for one cell with connections. The 

electrical model is deduced from the cell model (18). In EMR, 

it corresponds to an adaptation element i.e. power 

amplification: 

{
 𝑢𝐶𝑒𝑙𝑙𝐶𝑜𝑛 . 7 = 𝑢𝑀𝑜𝑑1

𝑖𝐶𝑒𝑙𝑙 = 𝑖𝑀𝑜𝑑1
 (18) 

where uMod1 and iMod1 are the module voltage and current. Then 

a second adaptation element is added (see Fig. 8) to build up to 

the battery model (19). 

{
 𝑢𝑀𝑜𝑑1.

24

7
= 𝑢𝐵𝑎𝑡

𝑖𝑀𝑜𝑑1 = 𝑖𝐵𝑎𝑡

 (19) 

where uBat and iBat are the battery voltage and current. 

D. Integration of the battery model and the EV model 

The EV used for the test is a Tazzari Zero [26]. This is a 

two-seat urban electric car. Its parameters can be found in  

Table 1. A global efficiency map has been derived from 

measurements [1], including the electric drive efficiency 

(nDrive). Equations (20)-(23) are organized in a causal way to be 

included in the global EMR (see Fig. 8).  

 

Electric 
Drive 

𝑖𝐵𝑎𝑡 = 𝜂𝐷𝑟𝑖𝑣𝑒
𝑘 𝛺𝑑𝑟𝑖𝑣𝑒 . 𝑇𝑑𝑟𝑖𝑣𝑒

𝑢𝐵𝑎𝑡
 

k=1 if traction mode 

k=-1 if regenerative braking 

(20) 

Transmission 

{
 

 𝑇𝐷𝑟𝑖𝑣𝑒 . 𝑘𝐷𝑟𝑖𝑣𝑒 .
1

𝑟𝑊ℎ𝑒𝑒𝑙
. = 𝑓𝑇𝑟𝑎𝑐𝑡

𝛺𝐷𝑟𝑖𝑣𝑒 =
1

𝑟𝑊ℎ𝑒𝑒𝑙
. 𝑘𝐷𝑟𝑖𝑣𝑒 . 𝑣

 (21) 

Chassis 𝑣 =
1

𝑀𝑇𝑜𝑡
∫ 𝑓𝑇𝑟𝑎𝑐𝑡 − 𝑓𝑅𝑒𝑠𝑑𝑡
𝑡

0

 (22) 

Road 𝑓𝑅𝑒𝑠 = 𝑓0 +
1

2
𝑐𝑥𝑆𝜑𝐴𝑖𝑟𝑣

2 (23) 

 

where ΩDrive and TDrive are the electric drive speed, and torque. 

ΩWheel and TWheel are the speed and torque at the wheel. fTract and 

fRes are the traction and resistive forces. vVeh is the velocity of the 

vehicle. Other parameters are defined in  

Table 1. 

The electric drive is a multi-physical (electro-mechanical) 

converter (20), the mechanical transmission is a mono-physical 

converter (21) and the chassis is an accumulation element (22). 

The road is a source of resistive forces (23). EMR allows us to 

determine the control structure by a mirror effect (24), (25). 

The velocity control is achieved by the inversion of the 

chassis and the transmission in order to provide the right 

reference torque to the electric drive (TDriveRef) in order to follow 

the velocity reference (vRef). The control pictograms are 

represented in blue in Fig. 8.  

 
Inv. 

Chassis 𝑓𝑇𝑟𝑎𝑐𝑡𝑅𝑒𝑓 = 𝑓𝑅𝑒𝑠𝑀𝑒𝑠+𝐶(𝑠). (𝑣𝑅𝑒𝑓 − 𝑣𝑀𝑒𝑠) (24) 

Inv.  
Transmission 

𝑇𝐷𝑟𝑖𝑣𝑒𝑅𝑒𝑓 =
𝑟𝑊ℎ𝑒𝑒𝑙
𝑘𝐷𝑟𝑖𝑣𝑒

. 𝑓𝑇𝑟𝑎𝑐𝑡𝑅𝑒𝑓  (25) 
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Fig. 8 EMR of the Tazzari Zero with control 
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III. CHARACTERIZATION OF ONE CELL 

A. Electrical Characterization 

The electrical parameters of the cell are dependent on 

temperature. Consequently, they are characterized every 15 °C. 

The characterization temperature range (-5 °C, 55 °C) is an 

acceptable range of temperature for EV batteries in temperate 

countries [27]. The characterization protocol is composed of 4 

steps and repeated for all of the characterized temperatures.  

1. Recharge @ 25 °C: in order to begin systematically with 

the same amount of stored energy, the initial charge is made 

after a minimal rest (i.e. iCell= 0A) of 8h at 25°C. The recharge 

method is a constant-current-constant-voltage with a cut-off 

voltage of 4V. The cut-off current is 8A (C/20). This provides 

a reproducible reference SoC (100 %) at the end of this step. 

2. Characterization temperature stabilisation: the cell is put 

at rest and the temperature is settled at the characterization 

temperature for at least 8h to equalize the cell internal 

temperature with the characterization temperature. 

3. Pseudo OCV characterization: the discharge/ charge is 

achieved at low C-rate (C/10 = 16 A).  

4. Pulse characterization: the impedance parameters of the 

electrical model are characterized at different SoC levels with 

current pulses (+/-1C). The SoC selected levels are 90 %, 70 %, 

50 %, 30 % and 10 %.  

With the pseudo-OCV characterization, the charge and 

discharge capacity can be extracted (26): 

𝐶𝐴ℎ𝐶𝑒𝑙𝑙 =
1

3600
∫ |𝑖𝐶𝑒𝑙𝑙|𝑑𝑡
𝑡𝐶ℎ/𝐷𝑐ℎ

0

 (26) 

CAhCell is the cell capacity (A.h). tCh/Dch is the total charge or 

discharge time to achieve the full charge or discharge (from 

2.8 V to 4.0 V). The capacity CAhCell versus temperature 

evolution is presented in Fig. 9. The capacity increases with the 

temperature as in [5]. Above 25 °C, the maximal measured 

capacity (192 A.h) is reached. This value is 20% higher than the 

rated one (160 A.h). It might correspond to the margin of the 

manufacturer to provide at least 160 A.h capacity during the 

whole lifespan of the cell [28]. 

OCVCell = f (SoC) is also characterized during the pseudo-

OCV characterization . Indeed, at low current the measured cell 

voltage uCell is near to the OCVCell. A small difference is 

noticeable for OCVCell during charge and discharge (Fig. 10). 

This phenomenon is due to the battery OCV hysteresis [29].  

During the pulse characterization (Fig. 11), a double 

characterization pulse inspired from the HPPC method [30] is 

applied (Fig. 11). Although the chosen characterisation method 

is leading to uncertainties on parameters, it has benefits of 

simplicity, reproducibility and because the current rates used 

are close to the actual use of the cells in the EV. For the sake of 

simplification, the extracted parameters (27)-(29) are an 

average between charge and discharge characterization pulses. 

The parameters for calculation are defined in Fig. 11. 

 

𝑅𝑆𝐶𝑒𝑙𝑙 =
∆𝑈𝐶𝑒𝑙𝑙1𝑠
∆𝑖𝐶𝑒𝑙𝑙

 (27) 

𝑅𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙 = |
∆𝑈𝐶𝑒𝑙𝑙1𝑠 − ∆𝑈𝐶𝑒𝑙𝑙𝑟

∆𝑖𝐶𝑒𝑙𝑙
| (28) 

𝐶𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙 =
𝜏𝐷𝑖𝑓𝑓

𝑅𝐷𝑖𝑓𝑓𝐶𝑒𝑙𝑙
 (29) 

∆𝑈𝑅𝐶 = |∆𝑈𝐶𝑒𝑙𝑙𝑟 − ∆𝑈𝐶𝑒𝑙𝑙1𝑠| (30) 

Fig. 12 shows the evolution of the impedance parameters as 

a function of ambient temperature and SoC. For 0 % and 100 % 

SoC, the parameters are extrapolated. The series resistance 

RSCell represents the equivalent effect of the terminals, the 

transports of ions in the electrolyte and the charge transfer 

mechanisms. When the temperature increases, the electrolyte 

viscosity decreases and the ion movement is easier [31].  

Thus, RSCell is decreasing with increasing temperature and it 

is independent of the SoC (see Fig. 12). 

At low SoC, the positive electrode is nearly saturated with 

lithium. Thus, the insertion and diffusion of ions is more 

difficult, causing greater concentration gradient (increase of 

RDiffCell). The diffusion capacitance CDiffCell increases with SoC 

and temperature.  
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Fig. 9 Evolution of capacity with ambient temperature 
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Fig. 10 OCV vs. SoC and temperature 
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Fig. 12 Impedance parameters with SoC and temperature 

B. Thermal characterization 

The thermal parameters are characterized at 25 °C (Fig. 13). 

They are mainly related to the mass of the cell and the thermal 

exchange surface (independent from the ambient temperature). 

The internal temperature of the tested cell is estimated at the 

terminals with thermocouples (closest accessible points to the 

averaged internal cell temperature [25]).  
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Fig. 13 Thermal characterization protocol 

Indeed, terminals are linked to the core of the cell by 

metallic foils with high thermal conductivity. The ambient 

temperature of the air around the cell is recorded by a 

supplementary thermocouple. The cell is placed in a thermal 

chamber. The temperature is settled at 25 °C for 8h in order to 

equalize the cell internal temperature (TInt) with the ambient 

temperature. Then the characterization process presented in Fig. 

13 is applied. 

At first, a characterization current (+/- 160 A) is applied 

until the temperature TInt is stabilized (self-heating step) [25].  

The stabilised temperature difference (∆TStab) can be 

measured. This step is used to identify the value of RThCell. 

𝑅𝑇ℎ𝐶𝑒𝑙𝑙 =
∆𝑇𝑠𝑡𝑎𝑏
𝑃𝐻𝑒𝑎𝑡

= 2.60 𝐾.𝑊−1 (31) 

Then the characterization current is turned off and the 

temperature TInt is decreasing (cooling step). The extraction of 

the thermal time constant τTh is achieved (see Fig. 13). The 

thermal capacitance is extracted with (4): 

𝐶𝑇ℎ𝐶𝑒𝑙𝑙 =
𝜏𝑇ℎ
𝑟𝑇ℎ𝐶𝑒𝑙𝑙

= 2.43 103 𝐽. 𝐾−1 (32) 

IV. VALIDATION OF THE MODEL 

A. Validation at the cell level (subsystem level in laboratory) 

The tested EV has been instrumented with voltage sensors, 

current sensors and thermocouples. The cell current is recorded 

during a real driving cycle on a campus [32]. As the velocity is 

limited to 30 km/h on the campus, the current as a function of 

time is moderate (Fig.14.a).  

Additionally, in a laboratory, the real current cycle is 

applied to one cell with a high-power programmable supply (0-

30 V -200/+200A) until the minimal cell voltage (i.e. 2.8 V) is 

reached (Fig.14.b). The experimental cell voltage (uCell) and 

temperature (TInt) are recorded. The test is performed for 4 

ambient temperatures (-5 °C, 10 °C, 25 °C, 40 °C) in a thermal 

chamber. 

The experimental results (uCellExp, TIntExp) are compared to 

the simulation outputs (uCellSim, TIntSim) for the same input, i.e. 

the current of the cycle.  

Two models are considered: 
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 the classical model with the parameters characterized at 

25°C (Param @25°C), 

 The second model with the characterizations at different 

temperatures to update the electrical parameters. 

 

Contrary to [33], no adaptive observer is used to adapt the 

value of parameters. For illustration purpose, the cell voltage 

evolution is presented as a function of time for an ambient 

temperature of - 5 °C (Fig. 14.b). The red curve corresponds to 

the experimental data, the black one to the classical model and 

the blue one to the temperature-dependent model. Taking into 

account the impact of temperature on electrical parameters 

brings more accuracy for cell voltage dynamical and static 

behaviour at low temperature.  

The mean absolute error on voltage is then quantified with 

(33) for different temperatures. 

𝐸𝑟𝑟𝑜𝑟 =
1

𝑁𝑆
∑|𝑢𝐶𝑒𝑙𝑙𝐸𝑥𝑝 − 𝑢𝐶𝑒𝑙𝑙𝑆𝑖𝑚|

𝑁𝑆

1

 (33) 

where NS is the number of samples during the test. 

The model that includes temperature dependence leads to an 

average error on uCell (~1%) relative to uCellNom (3.3V) at any 

temperature (Fig. 14.b). The use of a, HPPC-type 

characterisation without correction leads to uncertainty in the 

impedance parameters. As a consequence, most of the average 

error occurs when the current peaks (thus voltage drops) are 

high (see zoom in Fig. 14.b). When the current is near zero 

(from 2.54 h to 2.58 h), the experimental voltage of the cell and 

the voltage of the coupled electro-thermal model are the same. 

That means that the pseudo OCV is estimated with lower error 

than uCell by the model. On the contrary, using the parameters 

characterized at 25 °C induces a 124 mV (3.8% compared to the 

3.3 V nominal voltage) error at -5 °C. The error is increasing 

when temperature is decreasing because of the decrease in the 

capacity and the increase of the series and diffusion resistances. 

Fig. 14.c presents the evolution of cell temperature for 

different ambient temperatures.  

The mean absolute error (34) is also presented:  

 

𝐸𝑟𝑟𝑜𝑟 =
1

𝑁𝑆
∑|𝑇𝐼𝑛𝑡𝐸𝑥𝑝 − 𝑇𝐼𝑛𝑡𝑆𝑖𝑚|

𝑁𝑆

1

 (34) 

 

For low temperatures (up to 10 °C) the temperature effect 

on electrical parameters changes the accuracy of the 

temperature estimation (Fig. 14.c). The maximal error is 1.7 °C 

at – 5°C. For temperatures higher than 25 °C, the effect of the 

temperature on the electrical parameters is lower.  
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Fig. 14 Real EV current (a) used for electrical (b) and thermal (c) validation of cell model
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B. Validation at the system level  

This section validates the battery electro-thermal model at 

the system level (on-board tests on the real EV). The battery 

model and the traction models are thus coupled in dynamic 

interaction (see Fig. 8).  

The tested EV is instrumented for the following 

measurements during driving: 

 the battery current (iBatExp), 

 the ambient temperature around the battery (TAmbExp) and 

the battery voltage (uBatExp), 

 the temperature on one terminal of one cell in the battery 

(TTermExp). 

 the vehicle velocity (used as a reference for the model). 

The EV is driven for 6000s. A new velocity cycle is 

recorded (Fig. 15) outside the campus. This cycle is applied as 

a reference for the simulation (Fig. 8). 

The experimental results and the proposed dynamically 

coupled EV model simulation results are compared for thermal 

(Fig. 16) and electrical (Fig. 17) behaviors. The measured 

temperature (TTermExp) is influenced by the internal temperature 

of the cell. Indeed, the terminals are linked to the core of the 

cell by aluminium foils (high thermal conductivity). The 

connection temperature also influences TTermExp. As the cell 

mass is much higher than the connection mass, the cell thermal 

dynamics are assumed to be slow compared to the connection 

one. As a consequence, the internal temperature (TIntEst) is 

estimated by a low pass filter on on the measured terminal 

temperature. 

The comparison shows weak errors on the battery thermal 

and electrical behaviors. Of course, the chosen assumptions of 

the battery electro-thermal model depend on the pack 

architectures, the cells, the studied vehicle and the driving 

cycle. For the chosen vehicle, all cells are assumed identical and 

not thermally influenced by the surrounding cells. However, 

acceptable simulation results are obtained with averaged errors 

of about 1°C for internal temperature and 2 % on battery 

voltage. More accurate models should be studied in future 

work. 

 

0 2000 4000 6000
0

20

40

60

80

100 

velocity (km/h) 

time (s)  
Fig. 15 Recorded velocity of the tested EV 
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Fig. 16 Experimental and simulated battery temperature  
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Fig. 17 Experimental and simulated battery voltage  

V. APPLICATION OF THE ELECTRO-THERMAL-TRACTION 

DYNAMICAL COUPLED MODEL 

The driving range of a vehicle is obtained by coupling the 

battery model with the traction model (simulation at the system 

level). Simulation is preferred to experiments in this section 

because it allows to exactly reproduce the same driving cycle, 

which is not possible when driving because of traffic 

conditions, driver variability, climatic conditions, etc. The 

battery model has been experimentally validated in the previous 

section and the traction model in [1]. The reference cycle is a 

velocity cycle (see Fig 8).  

Thus, two battery models are studied: 

 For the classical battery electrical model, the electrical 

parameters are fixed to their values at 25°C. 

 For the electro-thermal coupled model, the electrical 

parameters are dependent on the battery internal 

temperature (TInt).  

The WLTC driving cycle (Fig. 18) is applied to the full EV 

model including its velocity control (see Fig. 8).  

When the EV traction is coupled, the current is adapted from 

the battery voltage in order to achieve the same velocity cycle. 

The resistive parts of the model are influenced by cold 

temperatures (Fig. 12).  

As a consequence, the current consumption is higher at low 

temperature for the proposed model (Fig. 19). The driving range 

is increased by 5.9 % between -5 °C and 45°C of ambient 

temperature (Fig. 20). The classic electrical battery model 

overestimates the driving range by 3.3% at -5 °C and 

underestimates it by 2.5% at 40°C.  
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Fig. 18 WLTC driving cycle 
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Fig. 20 Driving range as a function of ambient temperature  

VI. CONCLUSION 

The developed battery model aims to study the impact of 

ambient temperature on the driving range of an EV. In that 

objective, a battery model has been developed with a dynamical 

coupling between the thermal and electrical elements. A 

dynamic coupling of this battery model with the dynamic model 

of the traction subsystem has also been achieved. The electrical 

part of the battery model is fully dependent on the battery 

internal temperature and the SOC.  

Characterization tests have been performed on one cell used 

in the studied EV. The battery parameters are thus obtained over 

a large temperature range (-5°C to 55 °C). This range 

corresponds to EV use in temperate countries. The coupled 

electro-thermal model for one cell is validated at the component 

level in a thermal chamber with a programmable current supply. 

It is also compared with an electro-thermal model with fixed 

electrical parameters characterized at 25°C (though any other 

characterization temperature can be used). The electro-thermal 

dynamical coupling influences the cell behaviour at low 

temperature. Then, the battery electro-thermal model is 

validated at the system level by comparison of the full EV 

simulation and on-board measurements during driving.  

Finally, a driving range study is realized using the electro-

thermal model integrated in EV simulation. Neglecting the 

electro-thermal coupling of the battery model (using a pure 

electrical battery model) overestimates the driving range by 

2.5% at -5 °C ambient temperature and underestimates it by 

2.5% at 40 °C. These values depend on the EV and the chosen 

driving cycle but they indicate a relevant trend in the driving 

range. 

This battery model could be also coupled to models of the 

heating system in winter or air conditioning in summer for more 

global energy consumption study. This model could be also 

used for study of the impact of battery preheating or any other 

thermal management [13] before driving. Future work could 

improve the accuracy of this model (e.g. more complex 

Thevenin models, thermal interactions between cells, cell 

parameters dispersion, variable contact resistance, efficiency 

map for machines, etc). 
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