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Log versus linear timing in human temporal bisection: Bringing the right answer to the wrong 

question 

Interval timing is the ability of organisms to perceive duration in the second to minute 

range between two events. It is thought to be critical to adaptive behavior as it allows animals 

to learn the temporal structure of their environment (when does something happen relative to 

something else?).  

Many computational models have been proposed to account for interval timing. The 

dominant model is the scalar expectancy theory (SET. Gibbon, Church, & Meck, 1984). The 

model assumes that timing the interval between two stimulus events relies on an internal 

pacemaker. The pacemaker starts emitting pulses at the onset of the first stimulus event 

(called the time marker), which will accumulate in short-term memory (STM). When the 

second event occurs, the number of pulses accumulated is stored in long-term memory (LTM) 

to serve as reference. To decide whether it is time for the second event to occur, the model 

compares its STM representation of the time elapsed since the onset of the time marker and its 

LTM representation of the time at which the second event occurs relative to the time-marker. 

 A fundamental assumption of SET is that time is represented linearly: Both the STM 

and the LTM representation of an interval t units of time long is a linear function of t. More 

precisely, SET assumes that the representation x of an interval t is random variable drawn 

from a Gaussian distribution with mean proportional to t and standard deviation proportional 

to the mean. This assumption regarding the standard deviation is necessary in order for the 

model to account for Weber’s law, which is ubiquitous in interval timing (Lejeune & 

Wearden, 2006; Wearden & Lejeune, 2008).  

An alternative compatible with Weber’s law (for instance, see Falmagne, 2002) would 

be to assume that time is encoded logarithmically, that is to say that the representation of x of 

an interval t is random variable drawn from a Gaussian distribution with mean proportional to 
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ln t and constant standard deviation. Such a representation scheme is not consistent with a 

pacemaker-driven mechanism, which entails a linear representation. It is, for instance, used by 

the Behavioral Economic Model (BEM. Jozefowiez, Staddon, & Cerutti, 2009). BEM is an 

associative model assuming that timing relies on associations which build between time-

dependent states and responding. 

Because of the critical importance of the linear timing assumption to SET, many 

attempts have been made to test whether time is indeed represented linearly but no definitive 

conclusion has been reached. For instance, Church and Deluty (1977) concluded in favor of 

log timing but Gibbon (1981) showed that their data could be accounted by SET. The same 

way, while Gibbon and Church (1981) concluded in favor of linear timing, several authors 

have shown that their results could also be explained by a model assuming log timing (for 

instance, Jozefowiez & Machado, 2013).  

 Yi (2009) proposed a new approach to that problem based on an analysis of bisection 

procedures with signal detection theory (SDT. See Wickens, 2002 for an introduction to 

SDT). A bisection procedure (Church & Deluty, 1977; Stubbs, 1968) is a temporal 

discrimination task where the subject is taught to emit response r1 following a stimulus 

lasting d1 units of time and response r2 following a stimulus lasting d2 units of time (d1<d2). 

A SDT analysis of this type of task assumes that the subject emits r2 when x, its perception of 

the stimulus duration (what could be called the subjective stimulus duration), falls above a 

critical value (threshold) 𝜆. When a stimulus lasting d1 units of time is shown, x is drawn 

from a Gaussian distribution with mean 𝜇# and standard deviation 𝜎#. When a stimulus lasting 

d2 units of time is shown, x is drawn from a Gaussian distribution with mean 𝜇% and standard 

deviation 𝜎%. Various techniques allow to retrieve allow to retrieve the parameters  𝜇#, 𝜇%, 𝜎#, 

and 𝜎% of the SDT model from the data (see Wickens, 2002). Applying those data to data 

obtained from rats performing a bisection procedure, Yi (2009) concluded that the standard 
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deviation of subjective time did not increase with its mean but rather seemed to remain 

constant, a result more consistent with log timing than with SET.  

The implications of Yi's (2009) results for SET are not as straightforward as one might 

think. She did not demonstrate that rats encode time logarithmically. What she showed is that, 

if a model was mathematically equivalent to a Gaussian SDT model, it would be a better fit to 

her data if it assumes a constant standard deviation of the subjective stimulus duration than if 

it assumes that it is a linear function of the duration represented. An associative model like 

BEM is mathematically equivalent to a Gaussian SDT model (Jozefowiez & Machado, 2013). 

As it uses a log representation of time with constant variance, it is consistent with Yi’s (2009) 

data. The case of SET is a bit more complicated, mainly because SET is not really a model, 

but more a general framework within which several models can be designed, which is why it 

has been so difficult to refute. Notably, different versions of SET can be built depending on 

whether noise is assumed in STM, LTM or in both and depending on the response rule used to 

generate behavior based on STM and LTM representations of stimulus durations.  

When applied to a bisection task, all versions of SET assume that the participant 

compares a STM representation f(t) of the stimulus duration to LTM representations f(S) and 

f(L) of the duration of the short-duration stimulus and of the long-duration stimulus, 

respectively. The original version of the model (Gibbon, 1981) assumes a ratio response rule. 

The stimulus duration is categorized as long if  

𝑓(𝑡)
𝑓(𝑆) > 𝜃

𝑓(𝐿)
𝑓(𝑡) 										 (1) 

where 𝜃 is a bias parameter. This version of SET predicts a bisection point at the geometric 

mean. The full model assumes noise in both STM and LTM representations, but is rarely used 

because it is difficult to track computationally (Jozefowiez & Machado, 2013. See also 

Appendix I). It cannot be reduced to a Gaussian SDT model and simulations by Jozefowiez & 

Machado (2013) shows that it is actually mimics a SDT model with constant standard 
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deviation. If noise is assumed only in STM, as it is often the case (for instance, see Allan, 

2002a), the model can be reduced to a Gaussian SDT model and cannot account for Yi’s 

(2009) data as it assumes that the noise in the representation of a duration increases with the 

value of that duration (see Jozefowiez & Machado, 2013).  

Other versions of SET can be built if we change assumption regarding the response 

rule. Of particular note is a version of SET proposed by Wearden (1991) and which a 

difference decision rule. The stimulus duration is categorized as long if  

𝑓(𝑡) − 𝑓(𝑆) > 𝜃[𝑓(𝐿) − 𝑓(𝑡)]									(2) 

As Appendix II shows, if noise is assumed only in STM, this version of SET can be reduced 

to a Gaussian SDT model. Hence, this version is not compatible with Yi’s (2009) data neither 

but, for reasons explained below, it is rarely used to fit non-human data. Surprisingly, as 

shown in Appendix II, the version assuming noise in both STM and LTM is fatally flawed 

and cannot account for performance in a bisection procedure. 

Usually, in a bisection task, once the d1 vs. d2 discrimination is mastered, the subject 

is presented with durations ranging between d1 and d2 to see if they are subjectively closer to 

d1 (in this case, the subject would emit r1) or to d2 (in this case, the subject will emit r2). Of 

special interest is the so-called bisection point, which is the duration for which the subject is 

indifferent between r1 and r2. This duration is supposed to be psychologically equidistant 

from d1 and d2, which is why the subject cannot make up his mind. An intriguing difference 

between human and non-human animals is the location of the bisection point: It is located at 

the geometric mean between d1 and d2 in non-human animals (i.e. Church & Deluty, 1977; 

Stubbs, 1968), such as rats or pigeons, and at the arithmetic mean between d1 and d2 in 

humans (Allan, 2002b; Allan & Gerhardt, 2001; Wearden, 1991; Wearden & Ferrara, 1995, 

1996. A few study reports a bisection point at the geometric mean, i.e. Allan & Gibbon, 1991; 

Provasi, Rattat, & Droit-Volet, 2011). 
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A bisection point at the geometric mean of the two anchor durations d1 and d2 is a 

fundamental prediction of a model like BEM, which assumes log timing. It is very difficult to 

see how such models could be modified in order to account for a bisection point at the 

arithmetic mean, except by invoking response bias. This is also true of the versions of SET, 

which use a ratio decision rule. This is why Wearden (1991) introduced his version of SET, 

which uses a difference decision rule. This version predicts a bisection point at the arithmetic 

mean of the anchor durations. 

Hence, at this point, Wearden’s (1991) variant of SET seems to be the best model we 

have of human performance in a bisection task. If so, then, one predicts that, if Yi’s (2009) 

SDT analysis were replicated with human participants, the results would be very different 

from the one obtained in rats. Instead of remaining constant with stimulus duration, we should 

find that the standard deviation of subjective time increases linearly with the duration 

represented. Moreover, the mean of subjective time should also be a linear function the 

duration represented. We aim to test these two predictions in this study. 

Method 

In this study, participants are exposed to a 1-s vs. 1.5-s bisection procedure. After 

being shown a 1-s stimulus and taught to categorize such stimulus as “short” and a 1.5-s 

stimulus and taught to categorize such stimulus as “long”, they are exposed to trials where the 

actual stimulus duration will range from 1s to 1.5 s. 

In order to be able to retrieve the parameters of the SDT model for each participant, 

the decision criterion 𝜆 has to be manipulated (see Wickens, 2002 for the basic theory). 

Though this can be done explicitly e.g. by using differential payoffs for each response, it is 

more often manipulated implicitly by using the confidence rating technique. Participants are 

asked how confident they are about their choice after categorizing a stimulus. The idea is that 

each confidence rating corresponds to its own decision criterion. A change in 𝜆 can then be 
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simulated through the confidence rating data (see Wickens, 2002 for more details). Hence, in 

the present study, after having categorized the stimulus as “short” or “long”, the participant 

will have to indicate how sure he is in his judgment: “not sure”, “sure”, or “very sure”.  

Participants and apparatus 

42 participants (11 males, 31 females), aged between 18 and 26 years old were 

recruited for this study. The study had been reviewed and approved by the local ethical 

committee. The experiment was conducted on a PC equipped with an AZERTY keyboard, in 

a room at the laboratory of affective and cognitive sciences (SCALab) of the university of 

Lille. A custom MATLAB program controlled the whole procedure.  

Procedure 

Training. The participant initially read instructions telling them that they would be 

shown a short-duration and a long-duration stimulus that they will have to categorize as either 

“short” or “long” (by pressing the left “Ctrl” key for half of the participants, the right “Ctrl” 

key for the other half) before providing a confidence rating (“not sure”, “sure”, “very sure”) 

for their categorization.  

The experiment proper then started. Sitting 60 cm from the screen, the participant was 

shown an instruction screen, appearing on white background, informing him that, as soon as 

he presses a key he would be presented with the short stimuli 4 times. This was followed, 

after the participant pressed a key, by 4 presentations of 1-s purple rectangle appearing in the 

center of the screen on a dark background. Each stimulus presentation was separated from the 

other by a 1-s dark screen. Another instruction screen then informed the participant that he 

would be presented with the long-duration stimulus 4 times once he pressed a key on the 

keyboard. Once he did, he was presented with the same purple rectangle appearing 4 times 1 s 

apart. The only difference was that it was now lasting 1.5 s. 
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 Testing I. The first testing phase started immediately once the training phase was 

completed. After being prompted by an instruction screen, the participant was exposed to 300 

trials. A trial was composed of 3 phases: (a) The stimulus presentation phase: Following a 1-s 

dark screen, the purple square was shown in the center of the screen for either 1, 1.1, 1.2, 1.3, 

1.4 or 1.5 s. Each stimulus duration was shown 50 times. The order of presentation of the 

stimulus duration was determined randomly. (b) The duration judgment phase: The question 

“Was this the short-duration or the long-duration stimulus?” appeared on the screen. 22 of the 

participant answered “short” by pressing the left  “Ctrl” key and “long” by pressing the right  

“Ctrl” key. This was reverse for the remaining participants. Pressing the key caused the 

question to disappear and the next phase in the trial to start. (c) The confidence judgment 

phase: The question “How sure are you in your answer?” appeared on the screen with the 

three possible answers appearing below: “Not sure” on the left, “Sure” in the center, and 

“Very sure” on the right. Below each answer, the participant was reminded of which key to 

press in order to select it. The participant chose “Not sure” by pressing the “1” key located the 

upper left corner of the AZERTY keyboard; “Sure” by pressing the “6” key located in the 

upper center part of the AZERTY keyboard and “Very Sure” by pressing the “0” key located 

in the upper right corner of the AZERTY keyboard.  

 Testing II. For the convenience of the participant, a break took place mid-session to 

allow him to relax and rest while staying inside the room where the study took place. Once he 

was ready, the second testing phase began. It was identical to the first one. As they were 

separated by just a few minutes, they are treated as a single 600-trial session as far as data 

analysis is concerned. 

Data analysis 

The data analysis followed steps similar the one used by Maia, Lefèvre, & Jozefowiez 

(in press). For each participant, the 17 parameters of the SDT model (the mean and standard 
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deviation of the six subjective time distributions corresponding to the six stimulus duration 

plus the Yes/No response threshold and the four confidence rating criteria) were retrieved 

from the confidence rating data using an iterative maximum-likelihood algorithm (MLA), as 

recommended by Wickens (2002) and Macmillan & Creelman (2005). We used the MLA 

implemented by Harvey’s (2013) RscorePlus program. The program “uses singular value 

decomposition, combined with a variation of the Marquardt method for nonlinear least-

squares regression (Marquardt, 1963; Press, Teukolsky, Vetterling, & Flannery, 2002, 2007), 

to find the maximum likelihood fit of the multiple distribution, a variable-criterion signal 

detection model to confidence rating-scale data” (Harvey, 2013). Parameters of an SDT 

model are always expressed relative to a reference condition the mean of which is set to 0 and 

standard deviation to 1. We chose the 1-s stimulus duration to be that reference. As ratings 

with a frequency of 0 could prevent the MLA from converging on a solution, a loglinear 

correction was used, where 1/m (m being the number of possible responses given by the 

participant, in our case, m = 6) is added to all the data (See Hautus & Lee, 1998). 

 Based on the likelihood computed by the program that the data could have been 

generated by the SDT model, a 𝜒% (with 15 degrees of freedom) was computed to quantify the 

fit between the model and the data. A significant 𝜒% at the conventional threshold of 0.05 was 

interpreted as indicating a potential discrepancy between the model and the data.  

 In the following, we focus on the estimates of the mean and standard deviation of the 

subjective contingency. We do not report the decision and confidence thresholds as they were 

of no particular interest to us but we used 𝜆, the criterion which marks the border between 

“short” and “long” response to compute one of the conventional measure of response bias in 

SDT. Let’s assume that, for a given participant, the SDT analysis has found that when 

presented with a 1.5-s stimulus, the subjective stimulus duration is drawn from a Gaussian 

distribution with mean 𝜇 and standard deviation 𝜎. By convention, when presented with 1-s 
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stimulus, the subjective stimulus duration is drawn from a standard Gaussian distribution 

(mean 0 and standard deviation 1). Then, it can be shown that if hits (correctly identifying a 

1.5-s stimulus) and false alarms (wrongly identifying a 1-s stimulus) have the same payoff 

and frequency, the optimal location for the criterion 𝜆 is be at the point where the two 

Gaussian densities cross (Wickens, 2002). If we note 𝛽 the likelihood ratio of the two 

Gaussian densities at the criterion, then, if the criterion is placed optimally, 𝛽 should be equal 

to 1. That’s why a conventional measure of response bias is the logarithm of the likelihood 

ratio of the densities at the criterion 

ln 𝛽 = ln 9
𝐹(𝜆, 𝜇, 𝜎)
𝐹(𝜆, 0,1)= = ln𝐹(𝜆, 𝜇, 𝜎) − ln𝐹(𝜆, 0,1) 

where 𝐹(𝑥,𝑚, 𝑑) is the equation for the Gaussian density with mean m and standard deviation 

d. ln 𝛽 is equal to 0 when the participant is not biased. In the context of our study, it will be 

below 0 when the participant is biased toward the “long” response (the criterion has shifted 

left relative to its optimal location, resulting in more “long” responses) and above 0 when the 

participant is biased toward the “short” response (the criterion has shifted right relative to its 

optimal location, resulting in more “short” responses).  

 The analysis below fits a second-order polynomial equation to the function mapping 

objective stimulus onto either the mean of the subjective stimulus duration distribution or its 

standard deviation. To allow for a meaningful interpretation of the parameters of the 

polynomial equation, each objective duration t was transformed using the equation 

(𝑡 − 1.25) 0.25⁄ , creating new recoded values ranging from -1 to 1. These recoded values 

were used to perform the polynomial regression. This recoding made the quadratic and the 

linear terms of the polynomial equation independent from each other. In these conditions, the 

linear term corresponds to the slope of the least-mean square linear equation that could have 

been fitted to the data while the quadratic term reflect the deviation from that straight line 

(Pagès, 2010).  
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All parameters based on an averaging of individual performance are reported along 

with their 95% confidence interval (CI), computed using Student’s t distribution. All numbers 

are rounded to the nearest second decimal. Averages for the percentage of variance explained 

by a regression (𝑟%)	and their 95% CI were computed based on the Fisher transform of the 

individual 𝑟%. The inverse of the Fisher transform was then used to express them in terms of 

percentage of variance explained. 

Results 

Fit of the Gaussian SDT model 

Psychometric function and bisection point 

Parameters of the SDT model: Mean of the subjective duration distribution 

Parameters of the SDT model: Standard deviation of the subjective duration distribution 

General discussion 
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