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Abstract

Most cell types living in a stable environment tend to keep a constant characteristic size over
successive generations. Size homeostasis requires that cells exert a tight control over the size
at which they divide. Cell size control is not only robust against various noises, but also highly
flexible since cell sizes can vary tremendously, notably as a function of nutrient levels. We
formulated a minimal mathematical model of the eukaryotic cell cycle in which the cell size
control operates through a cell growth-dependent bifurcation in the cell cycle dynamics. Such
a bifurcation mechanism can readily explain the occurrence of a minimum critical size at
division under limiting growth conditions. However, it also predicts that cells should become
progressively larger and larger under prolific growth conditions. We argue that the cell size
control can be reinforced at fast growth rates by adding a new cell cycle inhibitory activity
whose strength would increase with the cell growth rate. We further show that various sources
of noise may also generate a large variability in cell size at division and interdivision time that
exhibit characteristic exponential tail distributions, without compromising the robustness of

the cell size control.

1. Introduction

Most proliferating cell types that grow in a stable environment
tend to display a constant characteristic size over successive
generations. Size homeostasis requires that cells born with
a standard size double their size during interdivision time
while daughter cells born with a size above (or below) average
would divide before (or after) they reach twice their size. By
inference, interdivision time should be shorter for oversized
newborn cells than for small newborn cells. Size homeostasis
is observed in a wide variety of cells including bacteria
[1], budding yeast [2], fission yeast [3], Xenopus laevis [4],
Amoeba [5], Chlamydomonas [6] and mammalian cells [7]. In
order for cell size homeostasis to be achieved, a mechanism
of coordination between the cell growth and cell division is
necessary. Such a coordination process appears to primarily
rely on the requirement that cells should not commit to divide
before they attain a rate of macromolecular synthesis, reflected
by a certain size, that is sufficient to perform quickly, safely and
autonomously the major cell cycle (CC) events [8]. Therefore,
the CC can be divided into two successive phases: (i) a
sizer phase that corresponds to the time period necessary to

1478-3975/07/030194+11$30.00 © 2007 IOP Publishing Ltd Printed in the UK

reach the critical cell size meeting the above requirement and
that depends on the cell size at birth, and (ii) a timer phase
that corresponds to the time period necessary to initiate the
duplication process and that is nearly independent of the birth
size [3, 9, 10].

Cell size control, however, is not rigidly programmed.
It is rather flexible since the cell sizes can vary over a
wide range, notably as a function of nutrient levels [11-14].
Furthermore, cells growing under the same nutrient conditions
generally display a significant though limited size variation
[15-17].  Strikingly, interdivision time distributions are
broader than critical cell size distributions and typically display
an exponential tail [3, 16—18]. Various sources of noise could
give rise to the experimentally observed variability in cell size
and interdivision time in steady state populations of wild-type
cells: e.g., noise in the molecular dynamics [19], occurrence
of asymmetric divisions [20] and heterogeneity in the growth
rate of co-living cells [19].

Mathematical modeling and nonlinear dynamics have
been essential tools to gain insights into the dynamics of
the CC molecular network [21-23]. Regarding cell size
homeostasis, cell size checkpoints are viewed as bifurcations
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Robustness of cell size control

in the dynamics of the CC molecular network, in which the
size (referring to either the cell volume or the cell mass) is
the main bifurcation parameter [10, 21]. It can be questioned,
however, to which extent the cell size control in these models
is robust in the presence of noises or against environmental
changes. In these models, indeed, the cell size at division
could be sensitive to the cell growth rate [24] and to a variety
of noises [25].

Since most cells share similar cell size control features
despite the expected disparities between their intracellular
biochemical reaction networks, it can be anticipated that the
mechanisms of coordination between their growth and division
processes share the same core dynamics. Here, we formulate a
minimal mathematical model of the eukaryotic CC that could
serve as a framework to study the generic properties of the
cell size control. The model postulates an exponential growth
dynamics coupled with a two-variable CC network dynamics.
Combining analytical and numerical approaches, we have
investigated how cell sizes at division and interdivision times
depend on (i) kinetics of the biochemical reactions, (ii) cell
sizes at birth, (iii) cell growth rates and (iv) noise levels. One of
the dynamical scenarios that could give rise to cell size control
is based on the hypothesis that increasing the cell volume
triggers a saddle-node infinite period bifurcation (SNIPER)
in the dynamics of the CC network [24]. As stressed by the
authors, however, such dynamical behavior would lead to an
increase in cell size at division with increasing growth rates
and a concomitant weakening of cell size control. We show
here that the cell size control can be reinforced at fast growth
rates by adding a new growth-rate-dependent mechanism of
CC regulation. We further analyze how stochastic processes in
the dynamics of the CC molecular network and of cell growth
affect the variability in critical cell size and interdivision time.
We show that both sources of noise account for the exponential-
like distributions of these variables that are actually
observed.

2. Mathematical modeling

During its division cycle, a cell must sequentially replicate its
genome and segregate its two sets of chromosomes during
mitosis before splitting into two and giving birth to twin
sisters. These events that are triggered by an interacting set
of specific molecular components define the CC dynamics. At
the same time, proliferating cells need most of the time to
synthesize a diversity of cell components other than the CC
regulatory components, especially the central building units
of the protein-synthesis apparatus, i.e. the ribosomal proteins.
This parallel activity that is reflected by an overall cell growth
defines the cell growth dynamics. We propose here a minimal
mathematical model that couples the dynamics of cell growth
and of the CC regulatory components (figure 1).

2.1. Cell growth dynamics

Individual cell growth (i.e., cell volume or cell mass expansion)
principally results from the intracellular biosynthetic activity
sustained by resources harvested from the cell environment.

Growth —@ Positive regulation
_l Negative regulation
g
Division
® sV d ()

Figure 1. Schematic representation of the model. The model links
the dynamics of cell volume growth, V, to the dynamics of two sets
of interacting CC regulatory components, X and Y.

Therefore, its dynamics depends on specific characteristics
of both the cell and its environment and may exhibit various
patterns (e.g., linear or exponential ones) depending on the
particular setting. Different cell growth patterns can even be
obtained depending on the method of measure (cell volume
or dry mass measurement) [26]. In addition, it is extremely
difficult to distinguish between linear and exponential growth
over a single doubling time [27, 28]. Thus, it has been reported
that the fission yeast displays a bilinear growth pattern [3, 27]
while the budding yeast grows exponentially [19, 29, 30]. In
this work, we choose to assume that cell growth is exponential
essentially because (i) this approximation appears to be a
reasonable one in many cases; (ii) it is easy to rationalize
(mass synthesis is proportional to the cell mass) and (iii) it is
often used in modeling studies:

av; Vi 1

o sV ()
We postulate that different cells i may have different growth
rates, g;, normally distributed with a mean, g, and a standard
deviation, oy.

2.2. Cell cycle dynamics and division

Dynamical models of eukaryotic CC require at least two
variables [31-33]. The first variable is a set of components
(called X) involved in initiating a cascade of reactions that
trigger the major CC events. Examples of X-components are
the activated cyclin-Cdk (Cyclin-dependent kinase) complexes
in eukaryotic cells [34]. The second variable is a set of
components (called Y) that inhibit the activity of X-components
and trigger the physical process of division (cytokinesis).
The APC (anaphase promoting complex) in conjunction
with Cdc20 and Cdhl is supposed to fulfil this function in
eukaryotic cells [35].

The detailed dynamics of a two-variable system can take
various mathematical forms. For the sake of simplicity, we
focus on the dynamics of protein synthesis and degradation
rather than of phosphorylation and dephosphorylation
[33, 36]. The concentrations of the X- and Y- components
vary with time as follows:

dXx 2

— =5, — (di +c, V)X +a, X"+ 0,8 (2)

dr )
dy

=Y sy X% +0,¢,(2).
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The X-components activate the Y-components (with a rate
constant s,) and possess an autocatalytic activity (with a rate
constant a,), which is likely to result from positive feedback
loops caused by the mutual inhibition with other components.
The Y-components, in turn, repress the activity of the
X-components with a rate constant c,,. The concentrations
of the X- and Y-components decrease with a rate constant d,
or dy (through either degradation, inactivation or dilution).
The stochastic nature of the biochemical reactions leading
to the statistical fluctuations in the concentration of molecular
components is modeled by a Gaussian white noise ¢, (?)
with a zero mean and standard deviation o, (¢ = x or y)
which depends on the concentrations of X- and Y-components.
Indeed, if the number of components is much larger than unity
and chemical reaction events take place in time as Poisson
processes, the noise amplitudes o, are given by [37]

ol ="M d: X +cry Y X +a, X? +5y)

3
o2 =n7'(d,Y +syX?). )

The prefactor n corresponds to the number of molecular
components whose concentration is equal to 1 in a cell volume
V = 1 in our dimensionless units.

In the model, we assume that cytokinesis takes place at
time point T when the Y-component concentration reaches
a critical value 6. The size of daughter cells is normally
distributed with a mean, V(t)/2, a standard deviation, oy,
and a coefficient of variation, ¢, ; = 204/ V (7). We further
assume that, along successive cell divisions, ¢, 4 is kept fixed
but not o,. Hereafter, the variables V,, and V; will refer
to the cell volumes at birth and at division, respectively, of
different cells. The variable T" will refer to the interdivision
time between cell birth and cell division.

2.3. Coupling between growth and division

The dynamics of the CC regulatory components and of cell
growth can be coupled in two opposite ways. For the sake
of simplicity, we solely consider the case where the cell
growth can modify the rate of accumulation and/or activation
of the CC regulatory components. Importantly however,
we postulate that the cell size and cell growth rate exert a
differential effect on CC dynamics. First, the cell growth
leads to a dilution of the chemical concentrations within cells.
Hence, the activity of CC regulatory components decreases
at a speed, d,, equal to the sum of their overall rate of
disappearance, d,_ i, and of the rate of cell growth g:

o= (x,y). “

It is generally assumed that the rate of appearance of the active
cyclin-Cdk complexes is an increasing function of the cell
size. Because cyclins are synthesized and bind to their Cdk
partner in the cytoplasm before the complexes are transported
and activated in the nucleus [38], the rate of cytoplasmic—
nuclear transport of the cyclin-Cdk complexes is likely to be
a limiting factor in the rate of appearance of the active cyclin-
Cdk complexes [39]. Such a transport rate, which depends on
the ratio between the cytoplasmic volume and nuclear surface
and, thereby, on the cell size, can be qualitatively modeled by

da =dg1 14,

196

considering that the rate of appearance of the X-components
increases linearly with the cell volume:

Sy =Sy +5:2V. 5)

2.4. Model parameters

Since we are interested in qualitative properties of the CC
dynamics, it is convenient to use dimensionless variables and
parameters. d, ; = d, ; = | indicates that the timescale unit of
the system coincides with the rate of disappearance of the CC
regulatory components. The parameters ¢, = 2 and s, = 0.5
are kept constant throughout the work. Changing these
parameters does not significantly affect the qualitative results.
Nevertheless, the ratio of these parameters is tuned to balance
the feedforward excitation and the feedback inhibition and to
obtain similar oscillation amplitudes for both X and Y variables
in the limit cycle regime. The threshold concentration of the
Y-components for division is set to & = 2 (unless otherwise
stated). We focus on how the CC dynamics depends on the
parameters g, dy, Sx,1, Sx,2, 1, 0 and ¢, 4.

3. Results

3.1. Cell cycle dynamics at a fixed cell volume

A preliminary step before studying the coupling between the
dynamics of the CC network and of cell growth consists of
analyzing the dynamics of the CC regulatory components
separately, at a fixed cell volume and with the standard
deviation of noise set to zero. We focus on the solutions
of the dynamical system (2), either a fixed point or a limit
cycle (i.e., periodic behavior). The fixed points { X, Yy} of the
CC dynamics satisfies the following equations:

—C’Z—Syxgmxxg—dxxoﬂx =0 6)
:

Yo —sy/dy X5 = 0. (7)

The linear stability of the fixed points is evaluated by
calculating the eigenvalues of the Jacobian matrix of the
dynamics. The stability of the fixed point is obtained by the
sign of the real parts of the two eigenvalues. A fixed point
can be either stable or unstable if both eigenvalues are positive
or negative. If one eigenvalue is positive and the other is
negative, the fixed point is a saddle point. In a two-dimensional
dynamical system, a limit cycle can coexist with fixed points.
The existence of a limit cycle is checked numerically.

Figure 2(a) displays the phase diagram depicting the
stability of fixed points as a function of the synthesis rate
s, and the autocatalytic rate a,. The unique fixed point is
stable for small enough a, and s,. In contrast, when both a,
and s, are sufficiently large, the unique fixed point is unstable
where a stable limit cycle exists. For small enough s, but
sufficiently large a,, there is an intermediate parameter region
in which three fixed points (stable, unstable and a saddle) are
present.

The lines that separate the different dynamical regimes
define the parameter values at which a bifurcation occurs. Two
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Figure 2. Steady states of the CC dynamics. (a) Bifurcation diagram of the dynamics of CC regulatory components (2) as a function of the
rate of appearance of the X-components s,, and of the autocatalytic rate a,. F' P refers to a fixed point. (b) Change in frequency (upper
panel) or in amplitude (lower panel) of the concentration of the X-components as a function of s,. Depending on the value of a,, a SNIPER

bifurcation (a, = 1.8: ®) or a supercritical Hopf bifurcation (a, = 1.7

types of CC bifurcation, which coincide with the appearance
of a stable limit cycle, have been found: (i) a supercritical
Hopf bifurcation occurring between a stable and unstable fixed
point (open squares) and (ii) a saddle-node infinite period
bifurcation (SNIPER) at which two fixed points coalesce
on an invariant circle, giving rise to a limit cycle (black
squares). The frequency and the amplitude of the limit cycle
exhibit properties that are specific to each type of bifurcation.
This is illustrated in figure 2(b) in which the amplitude and
the frequency of the emerging limit cycle are plotted as a
function of s,: the SNIPER bifurcation is associated with a
continuous increase in frequency and a discontinuous increase
in amplitude; in contrast, the supercritical Hopf bifurcation is
associated with a discontinuous increase in frequency and a
continuous increase in amplitude. The CC dynamics at a fixed
cell volume will serve as a reference to interpret how the cell
growth influences the CC dynamics.

3.2. Failure of cell size control in the absence of coupling
between growth and division

Because cells grow exponentially, they fail to obey the size
homeostasis rule through successive division cycles if there
is no coupling between their growth and division processes
(sx,Z =0).

Let us consider the case where the CC dynamics displays
periodic behavior associated with the existence of a stable
limit cycle. When the rate of appearance of the X-components
is sufficiently large, the concentration of the CC regulatory
components oscillates with a period 7. (figure 2(b)). The
ratio between the cell volume at the division of cells generated
during two successive cycles n and n + 1 is given by

Va(n + 1)/ Vy(n) = €87 /2. (8)

If their growth rate g is smaller (or larger) than 7j./In(2), the
cells progressively shrink (or swell).

3.3. How does the coupling between growth and division
lead to cell size control

In order for size homeostasis to occur, it is necessary, although
not sufficient, that, through cell volume expansion, the cell

: O) arises.

growth dynamics modulates the CC dynamics and, thereby,
controls CC progression. Figure 3 illustrates how the cell
size control occurs in two distinct ranges of parameters. An
asymmetry in cell division with a coefficient of variation of
0.2 has been introduced as an estimate of the strength of the
cell size control. The growth rate is kept fixed to g = 0.02.

Figure 3(a) depicts a first situation in which s, varies
in proportion to the cell volume (s,; = 0,s,, = 0.1)
and a, = 1.8. The concentration of the CC regulatory
components displays periodic behavior while the cell volume
remains bounded along successive divisions (figure 3(a)i). The
cell volume at division remains roughly constant as the cell
volume at birth increases. Consistently, the interdivision time
decreases as the cell volume at birth increases (figure 3(a)ii).
The dynamical mechanism of cell size control that operates
in this case is visualized by plotting the concentration of the
X-components as a function of the cell volume (figure 3(a)iii).
The change in the X-component concentration between
cell birth and cell division is compared with their steady
state concentration, X,, computed at fixed volumes from
equations (5) and (6). The CC dynamics in cells with
different birth volumes (thin full lines) is attracted to the same
stable fixed point (thick full line) before crossing a SNIPER
bifurcation at identical cell volumes and undergoing similar
oscillations around an unstable fixed point (thick broken line).
In this case, therefore, cells that display different volumes
at birth divide when they reach the same volume. It should
be noted that cells in a slightly different situation, where a,
is reduced such that the CC dynamics crosses a supercritical
Hopf bifurcation instead of a SNIPER bifurcation, exhibit a
strong size control as well (not shown).

Figure 3(b) depicts a very different situation where the
CC dynamics is periodic, regardless of cell volume. This
occurs when the rate of appearance of the X-components
exceeds the critical rate at which a SNIPER bifurcation in the
underlying CC dynamics arises (see figure 2). For instance, for
sy.1 = 0.18 and s, » = 0.005, a cell size control still operates
because oversized newborn cells exhibit shorter interdivision
times than small-sized newborn cells. The cell volume at
division, however, is not constant but increases with the cell
volume at birth. In this case, the dynamical mechanism of cell
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Figure 3. Strong and weak cell size control. Results from
simulations of cell proliferation with g = 0.02 in the presence of a
random asymmetry in cell division (¢, 4 = 0.2). Upper panels:
plots of the cell volume and of the concentrations of the
X-/Y-components over successive generation times. Middle panels:
plots of the cell volume at division, V,, and of the interdivision time,
T, as a function of the cell volume at birth, V,,. Bottom panels:
change in the X-component concentration in a few cells as a function
of the cell volume V (thin lines), as compared to their steady state
concentration, X (computed at fixed volumes). The steady state can
be stable ( ), unstable (———) or a saddle (-« ---- ). Parameter
values selected: (a) a, = 1.8, 5,1 =0, 5, = 0.1: the CC dynamics
exhibits a SNIPER bifurcation. (b) a, = 1.8, s, = 0.18,

sy2 = 0.005: the CC dynamics exclusively operates in the limit
cycle regime.

size control relies on the fact that the concentrations of CC
regulatory components oscillate with an increasing frequency
when the cell volume expands. Such a mechanism works on
the condition that the change in frequency with cell volume
occurs quickly as is the case here because the system stands
close to a SNIPER bifurcation.

3.4. Fast-growing cells are oversized and display a weak or
deficient size control

The growth rate of individual cells can vary over a wide range
depending on a multiplicity of factors, notably the availability
of nutrients, the genetic background, the exposure to stresses
and to chemical signals from other cells, all of which could
impinge on the cell size control mechanism.

Figure 4 illustrates the properties of cell size control in a
situation similar to that of figure 3(a), except that the growth
rate has been raised up from g = 0.02 to g = 0.08. As
compared to slow-growing cells, fast-growing cells are much
larger and their cell size control is correspondingly weaker. A
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Figure 4. A weak cell size control at fast cell growth rates. Results
from simulations of cell proliferation. The model parameters are
g=0.08,s5,,=0,5,0=0.1,a, = 1.8, ¢, s = 0.2. (a) Plots of the
cell volume over successive generation times. (b) Plots of the cell
volume at division as a function of the cell volume at birth for 100
cells. (¢) Change in the concentration of the X-components in a few
cells as a function of the cell volume V (thin lines), as compared to
their steady state concentration, X, (computed at fixed volumes).
The steady states can be stable (——), unstable (———) or a saddle
[CEREEE ). The CC dynamics of cells operates in the limit cycle
regime which account for the observed weak cell size control.
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Figure 5. The effects of varying the cell growth rate on cell size
control. Results from simulation of cell proliferation where
parameters of CC dynamics are the same as in figure 4. (a) Left bars
represent the change in the mean interdivision times (7') with the
respective contribution of the sizer phase (dots) and the timer phase
(lines). Right empty bars represent the change in the mean cell
volume at division (V;). (b) Change in the coefficient of variation of
the cell volume at division (O) and of the interdivision time (@®).

strong positive correlation between the cell volumes at division
and at birth indeed reflects a weak size control. The situation is
reminiscent of that occurring when the CC dynamics operates
in the limit cycle regime during the full cell cycle (compare
with figure 3(b)). In slow growth conditions, the volume
is a slow variable as compared to the concentrations of the
CC regulatory components and can be regarded, then, as
a bifurcation parameter. This is no longer the case in fast
growth conditions in which the cell growth dynamics and CC
progression interfere because of their similar timescales.

In figure 5, the effect of varying the cell growth rate
on the cell size control is investigated in a systematic way.
Figure 5(a) shows that there is an inverse relationship between
the cell growth rates and the interdivision times. The
requirement that exponentially growing cells, on average,
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double their mass between birth and division imposes the
relation (T) = In(2)/g. Moreover, it is clear that time spent
in the sizer phase (i.e., between birth and the CC bifurcation)
decays faster than time spent in the timer phase (i.e., between
the CC bifurcation and cell division). Because the timer
phase has an intrinsic timescale determined by the limit cycle
period of the underlying CC dynamics, the sizer phase is
preferentially reduced to match the interdivision time with
the doubling mass time, whereby cell size homeostasis is
maintained. As a result, the mean cell volume at division
increases with the cell growth rate. In the slow growth regime,
the cell volume growth during the timer phase is negligible
so that the cell volume at division is nearly equal to the cell
volume at which the CC bifurcation occurs. However, as the
cell growth rate increases, cell volume expansion during the
timer phase itself augments and its contribution to the cell
volume at division becomes increasingly large.

The increase in the cell growth rate reduces the relative
time spent in the sizer phase and in the timer phase. This
suggests that the regulation of cell size homeostasis becomes
less and less efficient with increasing growth rates. This is
corroborated by the data presented in figure 5(b) showing that
¢, of the cell volume at division and of the interdivision time
increases and decreases, respectively, with increasing growth
rates. Further, the cell size control breaks down when the cell
growth rate becomes larger than 0.11 since the cell volume
keeps diverging during continuous cell proliferation.

3.5. A putative mechanism to reinforce cell size control in
fast-growing cells

Although fast-growing cells display larger sizes than slow-
growing cells, the weakening of cell size control at high growth
rates, predicted by our model, has not been observed after
measurement of the standard deviations of cell division at
various growth rates [16]. It appears therefore that living cells
would have developed strategies to improve their mechanism
of size control under fast-growing conditions. A possible
strategy would be to preserve a sizer phase at large growth
rates. This could be achieved in our model by adding to d, a
new term, that is proportional to the cell growth rate (with a
proportionality factor 8). Then relation (4) is replaced by

do = do,1 + (1 +B)g, o= (x,y). ©))
Figure 6 illustrates how the introduction of this term could
improve the cell size control in fast-growing cells. An increase
ind, modifies the phase diagram of CC dynamics (figure 6(a)):
(i) the SNIPER bifurcation occurs for a larger rate of synthesis,
sy, and (ii) the frequency of the following limit cycle augments
faster for a larger degradation rate d,,. The cell cycle trajectory
for different values of 8 and g can be projected on the phase
diagram (see lines). In agreement with the data shown in
figure 4, the sizer phase of cells with 8 = 0 vanishes when
g increases from 0.01 to 0.08 (broken lines). In contrast, for
B = 7, the sizer phase is preserved when g increases (full
lines).
The preservation of a sizer phase at elevated growth
rates considerably reduces the coefficient of variation of the
cell volume at division in the presence of asymmetric cell

(@) Frequency
0.2
=t 0.1
0
SX
(b) c (V)%
0.1 28
0.08 21
0.06 14
e
0.04 7
0.02 0

10 3.0 5.0 7.0 9.0 1.0

B

Figure 6. A growth-rate-dependent CC inhibitory activity
reinforces the cell size control in fast growing cells. (¢) Change in
the frequency of the CC oscillatory dynamics as a function of s, and
d,, which are proportional to the cell volume and the growth rate,
respectively. The grayscale denotes the frequency of oscillations
within regions of the stable limit cycle. The white region
corresponds to the presence of a stable steady state. The lines
correspond to the projection of the cell cycle trajectory for different
values of d, associated with two values of § (——: B =7;———:

B = 0) and with three values of the cell growth rate (g = 0.01, 0.04
and 0.08). (b) Change in the coefficient of variation of V, (in gray
code) as a function of § and g.

division (¢, 4 = 0.2) as illustrated in figure 6(b): ¢, decays
with increasing values of B, especially when cells grow
rapidly, which underscores that increasing f reinforces cell
size control.

3.6. The effect of noises on cell cycle statistical features

Although there is clear evidence that living cells are equipped
with a mechanism enabling them to monitor their size and keep
it constant over multiple generations, there is still a significant
cell size and interdivision time variation among descendants
from the same parent cell. Such variability could have several
origins, including the stochasticity in the CC dynamics, the
occurrence of asymmetric cell division and heterogeneity in
the cell growth rate. In this section, we investigate how these
various sources of noise could influence cell size at division
and interdivision times and, more generally, affect cell size
homeostasis.

In the following, cell cycle progression is coupled with
cell size through s, ; = 0.1 and with cell growth, only through
the dilution effect (8 = 0). The cell growth rate is assumed
to be low enough (g = 0.02) such that the cells spend a
sufficient time in the sizer phase before they commit to divide.
Numerical simulations are performed over 10 000 cell cycles
in the presence of various sources of noise. These simulations
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Figure 7. The effect of various sources of noise on the cell cycle
variability. Simulations of cell proliferation were performed in the
presence of one specific source of noise while other sources were set
to zero. The mean cell growth rate is g = 0.02. (@) A random
asymmetry in cell division with ¢, ; = 0.2. (b) A growth rate
heterogeneity among cells with o, = 0.005. (c¢) Noises in the
dynamics of X-/Y-components with = 200. For each type of noise
are plotted: the concentration of the X-components as a function of
the cell volume for two daughter cells (upper panels); the probability
density function, D(x) (stairs), and the hazard rate function, H (x)
(@), of the cell volume at division V, (middle panels); the
probability density function, D(x) (stairs), and the hazard rate
function, H (x) (®), of the interdivision times, T (lower panels).

allow us to compute the probability density function D(x) of
the cell volume at division (x = V) and of the interdivision
time (x = T) and, then, to derive the hazard rate function
H (x), which is equal to the ratio of the probability density
function to the survival function (i.e., the probability that a
cell with a volume or interdivision time ©# > x would divide):

H(x) = D(x)/ <1 — /X D(u)du).
0

The use of the hazard rate function to describe variable
distributions is convenient to detect exponential-like decays on
the right side of the distribution D (x), for which it is constant.

Figure 7(a) depicts the impact of a random asymmetry
in cell division with ¢, 4 of 0.2. Even though their birth size
differs, the two sister cells divide at the same size (figure 7(a)i).
Therefore, the distribution of the cell volume at division is very
sharp (¢, = 0.01) (figure 7(a)ii). Conversely, since newborn
cells of different sizes divide at the same size, the interdivision
time distribution is broad (¢, &~ 0.28). Interestingly, we
find that the hazard rate function saturates, which indicates
an exponential-like distribution for half of the cell population
that exhibits the longest interdivision time (figure 7(a)iii). It
should be noted that the interdivision time variability stems
from the variability of the sizer phase.

Figure 7(b) depicts the situation in which the growth rate
of individual cells is distributed with o, = 0.005, which is
about 25% of the mean growth rate [19]. If two equally sized
sister cells have different growth rates, the one with the higher
rate divides at a larger size (figure 7(b)i), consistently with the
data shown in figure 5(b). Therefore, the distribution of the cell

(10)

200

volume at division displays a significant coefficient of variation
(cy & 0.06) (figure 7(b)ii). Since the interdivision time and
the growth rate are inversely correlated, the interdivision time
displays a broad distribution with ¢, =~ 0.26 (figure 7(b)iii).
The saturation followed by the slow decrease of the hazard
rate function of the interdivision time indicates that the D(T)
distribution decays almost exponentially. It is also worthy
noting that rising 8 increases the variability of the cell volume
at division since the critical value of s, for the CC bifurcation
itself increases (data not shown).

The effect of molecular noise within the CC dynamics
is presented in figure 7(c). The standard deviation depends
on the concentration of each species and on the absolute
number of molecular components through the parameter 7.
We set n equal to 200, which corresponds to the number of
components whose concentration is equal to unity in a unit
cell volume (in our dimensionless units). For such a value, our
simulations give a typical number of X-components at the CC
bifurcation (V ~ 2 and X ~ 0.5) of the order of 200. In the
presence of this molecular noise, the cell volume at which the
X-components trigger a positive feedback in the underlying
CC dynamics is not the same in two sister cells of equal size at
birth (figure 7(c)i). The variation in the cell volume at division
(cy &~ 0.12) is much larger than in the above-described cases
of asymmetric cell divisions or heterogeneity in the cell growth
rate (for B = 0), while the variation in the interdivision time
(cy =~ 0.24) is of the same order. Another specific feature
associated with molecular noise is that the hazard rate function
of the cell volume at division saturates.

When the three preceding sources of noise are combined,
each one contributes to specific facets of the CC statistics
(figure 8). Thus, two sister cells might have been born
with a different size following an asymmetric division and,
afterwards, their size at the CC bifurcation and at division
might have been affected by the occurrence of molecular
noise or of dissimilar growth rates (figure 8(a)). The
lack of correlation between the cell volumes at division
and at birth suggests that the mechanism of the cell size
control is still operational (figure 8(b)), which underscores
that a wide distribution of cell volume at division does not
necessarily imply a deficient cell size control. The distribution
of cell volume at division displays an exponential tail,
which is corroborated by saturating the hazard rate function
(figure 8(c)). In comparison, the distribution of interdivision
time is broader (¢, ~ 0.45 instead 0.13) but it also exhibits an
exponential decay (figure 8(d)). A comparison of figures 8(c),
(d) and 7 clearly points out that the distribution of cell volume
at division in the presence of the three sources of noise mirrors
that observed in the presence of molecular noise alone. This
is not true, however, for the interdivision time distribution
whose shape in the presence of the three sources of noise
rather mirrors that observed in the presence of an asymmetric
cell division and of heterogeneity in the cell growth rate. It is
worth noting at last that the exponential-like decay observed
in the probability density distribution of both V,; and T is
experimentally observed in many measurements of the CC
variability.
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Figure 8. A strong size control in the presence of various sources of
noise. Simulations of cell proliferation were performed in the
presence of the three sources of noise considered separately in
figure 7 (an asymmetric cell division with ¢, ; = 0.2; a
heterogeneity in the cell growth rate among cells with o, = 0.005
and noises in the dynamics of X-/Y-components with = 200).

(a) Change in the concentration of the X-components as a function
of the volume of two daughter cells. (b) Plots of the cell volume at
division and interdivision times as a function of the cell volume at
birth for 100 cells. (c), (d) Probability density function, D (x) and
hazard rate function, H (x), of the cell volume at division, V,, and of
the interdivision time, 7.

4. Discussion

4.1. Strong, weak or deficient size control

The observation that two sister cells born with a different size
divide at the same size underscores the existence of a strong
cell size control. Expectedly, such a strong cell size control
could readily be achieved if cells, during a sizer phase, first
grow to a same critical size before they complete events that are
required to reach the onset of division, during a timer phase
[3, 9]. The transition between sizer phase and timer phase
can be viewed as the result of a bifurcation in the underlying
CC dynamics. For a given cell volume, the CC dynamics
changes from a stable steady state to a stable oscillatory state
(i.e. a limit cycle). The occurrence of a stable steady state in
the CC dynamics ensures that cells with heterogeneous states
at birth converge to the same volume-dependent steady state
before they reach the bifurcation point at a critical cell volume.
Either a saddle-node infinite period bifurcation (SNIPER) or a
Hopf bifurcation (subcritical or supercritical) may bring about
this type of scenario [10, 21].

However, if the CC dynamics is oscillatory, but close to
a SNIPER bifurcation, only a weak cell size control can be
achieved [24]. Because the period of the limit cycle solution
depends on the cell volume, larger cells would tend to have
a shorter interdivision time than smaller cells but they would
not necessarily divide at the same size, which is indicative of
a weak cell size control.

At last, if the period of the limit cycle solution does
not depend sufficiently on cell size, as it may occur close
to a Hopf bifurcation or far from a SNIPER bifurcation,
the cell volume would increase more than two-fold during

interdivision time. In this case, cells would suffer a deficient
size control and become progressively larger and larger over
successive generations.

4.2. Preserving the cell size checkpoint at a fast growth rate

When cells grow slowly, a strong size control can operate and
the cell volume at the onset of division is slightly larger than at
the cell size checkpoint (which marks the transition between
the sizer and timer phases). Therefore, the existence of a
cell size checkpoint imposes a minimum critical cell size at
division when nutrients are scarce [12, 40]. However, even
though the existence of a cell size checkpoint clearly prevents
the generation of small unviable daughter cells, it is unclear
how it would prevent the generation of large, less prolific or
unviable cells.

The underlying limit cycle dynamics of the CC model
imposes an intrinsic timescale to the timer phase. When the
growth rate increases, the cell adjusts the time it needs to
double its size with the time required for the CC dynamics to
initiate division by tuning the relative time spent in the sizer
and timer phases. As a result, fast-growing cells may spend
most, or all, of their cycle time in the timer phase in contrast to
slow-growing cells. Therefore, the cell size at division should
become larger and the cell size control weaker when the cell
growth rate increases. Using a generic eukaryotic model,
Csikasz-Nagy and colleagues reached similar conclusions
[24]. Our present study extends these findings by proposing
a possible strategy to maintain an efficient size control at fast
growth rates.

Indeed, although fast-growing cells have been reported
to have a larger size than slow-growing cells [3, 11, 12],
the measurement of standard deviations of cell division for
various growth rates has not demonstrated a failure of cell size
control even at elevated growth rates [16]. The strategy that we
propose is to add a new CC inhibitory activity that increases
in proportion to the cell growth rate. This new layer of CC
regulation would have, first, to delay the CC bifurcation such
that it would occur at a larger cell volume and, also, to reduce
the length of the timer phase. Delaying the CC bifurcation
and modifying the timescale of the CC dynamics are both
simultaneously necessary, which demonstrates that the cell
growth rate and the cell size must affect different parameters
of the dynamics. This type of CC regulatory mechanism
seems to operate in most eukaryotic cell types. In budding
yeast, for instance, a boost in the cell growth rate leads to an
increase in volume of the mother cell at bud initiation [40]
and a diminution of the duration of the budding phase [14].
We suggest that such growth rate-dependent mechanisms of
CC regulation would be crucial to ensure that daughter cells
remain smaller at birth than at CC bifurcation and, then, retain
a sizer phase during which they would be able to adjust their
size expansion to environmental parameters.

It is noteworthy that, despite the fact that prokaryotes
and eukaryotes have selected drastically different strategies
to survive in the course of their evolution, their cell cycle
processes still share some common features [41-43]. Notably,
in E.coli, initiation of DNA replication is tightly regulated
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and its timing relative to that of cell division varies with the
cell growth rate. Because the time required for the bacterial
chromosome to replicate (around 40 min) is independent
of the cell growth rate, fast-growing bacteria in which the
interdivision time is less than 40 min contain chromosomes
with multiple replication forks [1, 44]. Furthermore, the
cell size at the onset of DNA replication and the number of
chromosome replication origins change discontinuously, but
keep a constant ratio when the growth rate increases. A shorter
timer phase associated with a larger size at initiation of DNA
replication ensures that the cell size at birth is smaller than that
at the onset of DNA replication [1] as it occurs in our model.

4.3. Sloppy but robust size control

Since cell cycle progression is apparently tightly linked to
the cell size, it is puzzling why the cell size at division is so
variable, which suggests that the cell size control is a sloppy
process. The coefficients of variation of the cell size at division
indeed vary between 0.1 and 0.3 depending on the cell type
and environmental setting [15, 16].

We showed that both heterogeneity in the cell growth rate
and molecular fluctuations contribute to the cell size variation
although they contribute in a different way. The molecular
noise principally affects the cell volume at which the positive
feedback of the CC dynamics is activated. Heterogeneity
in the cell growth rate, in contrast, can act on both the
cell volume at the CC bifurcation and the length of the
timer phase. Together, they induce a sloppy size control
by increasing the probability that cells will traverse the cell
size checkpoint (before reaching a high plateau) as their
size increases [16, 17, 45]. Molecular noise alone fails
to account for the peculiar shape of the interdivision time
distributions that typically shows an exponential-like tail [16,
18]. The additional presence of heterogeneities in the cell
growth rate or/and in the birth volume could account for
this facet of the CC statistics as it has been suggested by
Koch [46]. It is worthwhile here to mention the results of an
experimental study analyzing the effects of various noises and
their combined impact on variability in the budding yeast cell
cycle [19]. This recent study corroborates some assumptions
and results of our modeling paper. Notably, it estimates and
emphasizes the respective contributions of the molecular noise
and of the variability of cell size at birth on the temporal
variability of the cell cycle.

The cell size control mechanism depicted here is
operational in the presence of large amounts of noise: a broad
distribution of the cell size at division does not necessarily
imply the occurrence of a faulty cell size control. This is
because the divergent effects of noises that may affect the onset
and the length of timer phase in parental cells are balanced by
the fact that the CC trajectories of daughter cells are attracted
onto a fixed point during the sizer phase.

4.4. A minimal modeling approach

Many existing cell cycle models attempt to build as realistic
as possible representations of the intricate CC regulatory
networks that operate in different living systems [47, 49]. A
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complementary approach is to design minimal mathematical
models capable of recapitulating the underlying universal
dynamical properties of these networks. Such minimal
models are highly useful and relevant for understanding
the basic function of more complex networks, as coarse-
grained modules in a more encompassing model. From
this perspective, we deliberately have made our model
dimensionless and as simple as possible.

Regarding the CC dynamics, our analysis is restricted
to the dynamics of the module that controls the cell size
checkpoint. We assume that the essential features of the
dynamics of this module can be captured within a two-
variable model based on the dynamics of protein synthesis
and degradation. However, the activity of the cyclin-Cdk
complexes is limited not only by the rates of cyclin synthesis
and degradation, but also by faster phosphorylation and
dephosphorylation reactions [34]. It is well acknowledged,
for instance, that Cdk inhibitor phosphorylation by cyclin-Cdk
complexes plays an essential role in the switch from G1 to S
phase. Our model mimics such a positive feedback (or double-
negative feedback) by attributing an autocatalytic activity to
the X-components.

Another assumption of the model is that individual cell
volume growth occurs exponentially although linear or bilinear
growth patterns have been documented in some cases. This
assumption, however, is not crucial for the conclusions of the
paper. In the case of linear cell growth, for instance, cell
size homeostasis would occur even without coupling between
growth and division. Nevertheless, the distinction between
strong and weak cell size control as well as the role of a
growth-rate-dependent CC inhibitory activity in preserving
a robust cell size control at high growth rate would still be
fully relevant. In addition, the distributions of cell size at
division and of interdivision time are quite similar in the case
of linear and exponential growth, except for the interdivision
time distribution in the presence of random asymmetric cell
division that may significantly change depending on the growth
pattern.

At last, specific assumptions regarding the coupling
between the CC and cell growth dynamics were made. First,
we postulated (as others [10, 24]) that the rate of appearance
of the CC components that initiate cell division increases with
cell size (see equation (5)). This hypothesis could be justified,
for instance, if the rate-limiting step in the appearance of
the active cyclin-Cdk complexes was the translocation of the
complexes from the cytoplasm to the nucleus. It should be
reminded, indeed, that the cyclin-Cdk complexes are formed in
the cytoplasm before they are transported to the nucleus where
they exert their cell cycle function. In a recent theoretical
study, Yang et al [39] argued that the rate of translocation of
proteins from the cytoplasm to the nucleus (which depends
on the ratio between the cytoplasmic volume and the nuclear
surface) could be a cell size-dependent rate-limiting step in
the appearance of active cyclin-Cdk complexes in nucleus.
Second, we anticipated the existence of a negative regulator
of the cyclin-Cdk complexes whose inhibitory activity would
increase with the cell growth rate (see equation (9)). This
could occur for instance if, with increasing growth rate, the
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ratio between the rates of synthesis and of degradation of
such a CC inhibitor would increase while the ratio between
the rate of appearance and of disappearance of the cyclin-
Cdk complexes would remain unchanged, or, at least, would
increase slower. It is important also to mention that the cyclin-
Cdk complexes have a plethora of substrates and that they are
also involved in CC-unrelated activities which may compete
with their CC-oriented activities [48]. This may be another
mechanism through which growth-rate-dependent regulation
of the cell cycle might occur.

5. Conclusion and outlook

The fact that living cells have the capacity to sustain a constant
size over continual proliferation rests upon their capacity
to adjust their interdivision time and growth extent until
division according to their birth size. In this work, a minimal
mathematical model is formulated that depicts how a robust
cell size homeostasis can be achieved by intimately connecting
cell growth and cell cycle progression before onset of division.
A crucial hypothesis of our model is that the cell size and
cell growth rate exert an opposite effect on the activation of
the positive feedback that triggers the CC bifurcation that
ultimately culminates in cell division: cell size acts as a
promoter and the cell growth rate as an antagonist.

In the eukaryotic CC, CC bifurcation (i.e. the cell size
checkpoint) is usually associated with the G1/S or the G2/M
transition. One key question now is what and how biochemical
activities connected to the cell size and the cell growth rate
regulate the positive feedback that propels cells into the S or M
phase. Conceivably, regulation of traffic of the CC regulatory
components from the cytoplasm (the site of synthesis) to the
nucleus (the site of action) could play a critical role in setting
the cell size at which the S or M phase is initiated [39, 49-51].
On the other hand, recent experiments suggest that growth-
rate-dependent regulation of the cell cycle may take root in
the versatile connection between ribosomal biogenesis and
replication initiators [52—-56]. Expectedly, each species must
have evolved a unique wiring diagram between its growth
and CC regulatory pathways to improve its adaptation and,
thereby, its long-term survival chances facing changeable
environments. Tremendous efforts, thus, are still to be made
to dissect such wiring diagrams in the different constitutive
cells of each living species.
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