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Sylvie BENZONI-GAVAGE Présidente du jury - Professeure Université Claude Bernard Lyon 1
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Abstract

In this manuscript, I present my research on nonlinear dispersive PDEs, done after my Ph.D.
Most of the results concern the Landau–Lifshitz equation, which is a quasilinear equation
that describes the evolution of the magnetization vector in ferromagnetic materials. This
equation is related, depending on the anisotropy, dispersion and dissipation, to the Shrödinger
map equation, the heat flow for harmonic maps, and the Gross–Pitaevskii equation.

There are several ways to gain a better understanding of the dynamics of a PDE. With
my collaborators, we focused on the study of particular solutions and on the relation with
other equations in some asymptotics regimes for the Landau–Lifshitz equation. Regarding the
particular solutions, we studied properties of solitons (traveling waves) and self-similar solutions
(forward and backward), such as their existence and stability. Concerning the asymptotics
regimes for the anisotropic Landau–Lifshitz equation, we established the connection with
the Sine–Gordon equation in the case of a strong easy-plane anisotropy, and with the cubic
Schrödinger equation in the presence of a strong easy-axis anisotropy. In addition, we tackled
some issues related to the Cauchy problem to provide a clear framework for our results.

In the last chapter, we also studied the Gross–Pitaevskii equation including nonlocal effects
in the potential energy. In particular, we provided some results concerning the existence and
stability of solitons for this equation.

Résumé

Dans ce manuscrit je présente mes recherches sur des EDP dispersives non linéaires,
faites après mon doctorat. La plupart des résultats concernent l’équation de Landau–Lifshitz,
qui est une équation quasi-linéaire qui décrit l’évolution du vecteur de magnétisation dans
les matériaux ferromagnétiques. Cette équation est liée, en fonction de l’anisotropie, de la
dispersion et de la dissipation, à plusieurs équations telles que l’équation de Shrödinger maps,
l’équation de la chaleur pour les applications harmoniques et l’équation de Gross–Pitaevskii.

Il existe plusieurs façons de mieux comprendre la dynamique d’une EDP. Avec mes
collaborateurs, nous nous sommes concentrés sur l’étude de solutions particulières et sur
la relation avec d’autres équations dans certains régimes asymptotiques pour l’équation de
Landau–Lifshitz. En ce qui concerne les solutions particulières, nous avons étudié les propriétés
des solitons (ondes progressives) et des solutions auto-similaires (forward et backward), telles
que leur existence et stabilité. Concernant les régimes asymptotiques pour l’équation Landau–
Lifshitz anisotropique, nous avons établi le lien avec l’équation de Sine–Gordon dans le cas
d’une forte anisotropie planaire, et avec l’équation de Schrödinger cubique en présence d’une
forte anisotropie axiale. De plus, nous avons abordé certaines questions liées au problème de
Cauchy afin de préciser le cadre de nos résultats.

Dans le dernier chapitre, nous avons également étudié l’équation de Gross–Pitaevskii,
prenant en compte des effets non locaux dans l’énergie potentielle. En particulier, nous avons
fourni quelques résultats concernant l’existence et la stabilité des solitons pour cette équation.
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Introduction

In this work, I present several mathematical results concerning nonlinear PDEs of Schrödinger
type, done after my Ph.D., defended in 2011 under the supervision of Fabrice Béthuel. My
research mainly focus on the dynamics of these equations and on the existence and behavior
of particular solutions, such as solitons and self-similar solutions.

Most of the results in this thesis concern to the Landau–Lifshitz equation (LL), describing
the magnetization vector in ferromagnetic materials. The LL equation is a nonlinear PDE
taking values in the sphere S2, and is related to several classical equations. There are many
variations of the LL equation, and I refer to them simply by LL, and sometimes by LLG
to emphasis the effect of a damping Gilbert term. For instance, in the undamped case, it
is a dispersive equation and shares several properties with nonlinear Schrödinger equations
with nontrivial boundary conditions at infinity, such as the Gross–Pitaevskii equation. In the
presence of damping, the LL equation can be seen as parabolic quasilinear system, related to
the complex Ginzburg–Landau equation. The LL equation is also related to the Sine–Gordon
equation, the harmonic map flow and the Localized Induction Approximation. Since the
LL equation is less well-known that other PDEs, I give preamble to introduce precisely the
LL equation, as well as some terminology, transformations, and some examples of explicit
solutions.

In the Chapter 1, I provide some results concerning the local well-posedness for the LL
equation in Sobolev spaces, in the pure dispersive case, i.e. without damping. Most of the
results in the literature in this framework consider the isotropic case, i.e. the Schrödinger
map equation, but it is not always possible to adapt these results to include anisotropic
perturbations. In this chapter, I review known results and provide an alternative proof for
local well-posedness for smooth solutions introducing high order energy quantities with good
symmetrization properties. This chapter is based on the papers [dLG15a, dLG18].

Chapter 2 is devoted explain the results obtained in collaboration with P. Gravejat in
[dLG15a, dLG18] concerning some asymptotic regimes for the anisotropic LL equation. Indeed,
using formal arguments, Sklyanin [Skl79] derived (in dimension one) two asymptotic regimes
corresponding to the Sine–Gordon equation and the cubic Schrödinger equation. We provide
a mathematical framework to rigorously prove the connection between these equations and
we also give estimates of the error in Sobolev norms.

In our collaboration with P. Gravejat in [dLG15a, dLG16], we have also investigated the
stability of solitons for the LL equation with easy-plane anisotropy in dimension one. This
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result is presented in Chapter 3, we describe the main result that establishes that sums of
solitons are orbitally stable, provided that the (nonzero) speeds of the solitons are different,
and that their initial positions are sufficiently separated and ordered according to their speeds.
We will also discuss their asymptotic stability, obtained later during the Ph.D. of Y. Bahri.

Chapter 4 is dedicated to explain the results obtained in collaboration with S. Gutiérrez
in [dLG15b, dLG19, dLG20], regarding the isotropic LLG equation. The aim is to study the
existence and properties of forward and backward self-similar solutions, i.e. of expanders
and shrinkers. The expanders provide a family of global solutions to the LLG equation with
discontinuous initial data that are smooth and have finite energy for all positive times, while
the shrinkers are explicit examples of smooth solutions blowing up in finite time. Furthermore,
we prove a global well-posedness result for the LLG equation, provided that the BMO semi-
norm of the initial data is small. As a consequence, we deduce that the aforementioned
expanders are stable (in some sense), and the existence of self-similar forward solutions in
any dimension.

Finally, in Chapter 5, I discuss some results concerning nonlocal effects in the potential
energy for the Gross–Pitaevskii equation, for a variety of nonlocal interactions. I briefly
summarize necessary conditions on the potential modeling the nonlocal interaction, in order
to generalize known properties for the contact interaction given by a Dirac delta function, that
I obtained during my PhD [dL10, dL09]. In particular, I tackle the global well-posedness and
the nonexistence of traveling waves for supersonic speeds. Afterwards, I describe a result in
collaboration with P. Mennuni in [dLM20], providing necessary conditions on the interaction
to have the existence of a branch of orbital stable traveling waves solutions, with nonvanishing
conditions at infinity.
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Preamble

The Landau–Lifshitz equation

The Landau–Lifshitz (LL) equation has been introduced in 1935 by L. Landau and E. Lifshitz
in [LL35] and it constitutes nowadays a fundamental tool in the magnetic recording industry,
due to its applications to ferromagnets [Wei12]. This PDE describes the dynamics of the
orientation of the magnetization (or spin) in ferromagnetic materials, and it is given by

∂tm+m×Heff(m) = 0, (1)

where m = (m1,m2,m3) : RN × I −→ S2 is the spin vector, I ⊂ R is a time interval, ×
denotes the usual cross-product in R3, and S2 is the unit sphere in R3. Here Heff(m) is the
effective magnetic field, corresponding to (minus) the L2-derivative of the magnetic energy of
the material. We will focus on energies of the form

ELL(m) = Eex(m) + Eani(m),

where the exchange energy

Eex(m) =
1

2

�
RN
|∇m|2 =

1

2

�
RN
|∇m1|2 + |∇m2|2 + |∇m3|2,

accounts for the local tendency of m to align the magnetization field, and the anisotropy
energy

Eani(m) =
1

2

�
RN
〈m, Jm〉R3 , J ∈ Sym3(R),

accounts for the likelihood of m to attain one or more directions of magnetization, which
determines the easy directions. Due to the invariance of (1) under rotations1, we can assume
that J is a diagonal matrix J := diag(J1, J2, J3), and thus the anisotropy energy reads

Eani(m) =
1

2

�
RN

(λ1m
2
1 + λ3m

2
3), (2)

1In fact, using that

(Ma)× (Mb) = (detM)(M−1)T (a× b), for all M ∈M3,3(R), a, b ∈ R3,

it is easy to verify that if m is a solution of (1), then so is Rm, for any R ∈ SO(3).

xi



xii Preamble. The Landau–Lifshitz equation

with λ1 := J2 − J1 and λ3 := J2 − J3. Therefore (1) can be recast as

∂tm+m× (∆m− λ1m1e1 − λ3m3e3) = 0, (3)

where (e1, e2, e3) is the canonical basis of R3. Notice that for finite energy solutions, (2)
formally implies that m1(x)→ 0 and m3(x)→ 0, as |x| → ∞, and hence

|m2(x)| → 1, as |x| → ∞.

For biaxial ferromagnets, all the numbers J1, J2 and J3 are different, so that λ1 6= λ3

and λ1λ3 6= 0. Uniaxial ferromagnets are characterized by the property that only two of
the numbers J1, J2 and J3 are equal. For instance, the case J1 = J2 corresponds to λ1 = 0
and λ3 6= 0, so that the material has a uniaxial anisotropy in the direction e3. Hence, the
ferromagnet owns an easy-axis anisotropy along the vector e3 if λ3 < 0, while the anisotropy
is easy-plane along the plane x3 = 0 if λ3 > 0. Finally, in the isotropic case λ1 = λ3 = 0,
equation (3) reduces to the well-known Schrödinger map equation

∂tm+m×∆m = 0. (4)

The LL equation (3) is a nonlinear dispersive PDE. Indeed, let us consider a small
perturbation of the constant solution e2 of the form

m =
e2 + sv

|e2 + sv| ,

for s small, where v = (v1, v2, v3). Using that m = e2 + s(v1e1 + v3e3) +O(s2) and dropping
the terms in s2, we obtain the linearized system for v

∂tv1 + ∆v3 − λ3v3 = 0,

∂tv3 −∆v1 + λ1v1 = 0,

so that
∂ttv1 + ∆2v1 − (λ1 + λ3)∆v1 + λ1λ3v1 = 0.

Thus, we get the dispersion relation

ω(k) = ±
√
|k|4 + (λ1 + λ3)|k|2 + λ1λ3, (5)

for linear sinusoidal waves of frequency ω and wavenumber k, i.e. solutions of the form
ei(k·x−ωt). In particular, the group velocity is given by

∇ω(k) = ± 2|k|2 + λ1 + λ3√
(|k|2 + λ1)(|k|2 + λ3)

k.

From (5), we can recognize similarities with some classical dispersive equations. For
instance, for the Schrödinger equation

i∂tψ + ∆ψ = 0,
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the dispersion relation is ω(k) = |k|2, corresponding to λ1 = λ3 = 0 in (5), i.e. the Schrödinger
maps equation (4).

When considering Schrödinger equations with nonvanishing conditions at infinity, the
typical example is the Gross–Pitaesvkii equation

i∂tψ + ∆ψ + σψ(1− |ψ|2) = 0, (6)

and the dispersion relation for the linearized equation at the constant solution equal to 1 is

ω(k) = ±
√
|k|4 + 2σ|k|2,

for σ > 0, that corresponds to take λ1 = 0 or λ3 = 0, with λ1 + λ3 = 2σ, in (5).

Finally, let us consider the Sine–Gordon equation

∂ttψ −∆ψ + σ sin(ψ) = 0,

σ > 0, whose linearized equation at 0 is given by the Klein–Gordon equation, with dispersion
relation

ω(k) = ±
√
|k|2 + σ,

that behaves like (5) for λ1λ3 = σ and λ1 + λ3 = 1, at least for k small.

In this context, the Landau–Lifshitz equation is considered as a universal model from
which it is possible to derive other completely integrable equations. We will provide some
rigorous results in this context in Chapter 2.

§1 Solitons

In dimension one, the LL equation is completely integrable by means of the inverse scattering
method (see e.g. [FT07]) and, using this technique, explicit solitons and multisolitons solutions
can be constructed (see e.g. [BBI14]).

We will define a soliton for the LL equation (3) as a traveling wave propagating with
speed c along the x1-axis, i.e. of the form

m(x, t) = mc(x1 − ct, x2, . . . , xN ).

By substituting this formula in (3), taking cross product with mc and noticing that for a
(smooth) function satisfying |v| = 1, we have2

v × (v ×∆v) = ∆v + |∇v|2v, (7)

we obtain the equation for the profile mc = (m1,c,m2,c,m3,c),

∆mc + |∇mc|2mc + (λ1m
2
1,c + λ3m

2
3,c)mc− (λ1m1,ce1 + λ3m3,ce3) + cmc× ∂1mc = 0. (8)

2Here we use also the identity a× (b× c) = b(a · c)− c(a · b), for all a, b, c ∈ R3.
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Assuming without loss of generality, that λ3 > λ1 > 0, we set c∗ := λ
1/2
3 − λ1/2

1 . Then, in
the one-dimensional case N = 1, for |c| ≤ c∗, nonconstant solitons mc satisfying the boundary
conditions at infinity

mc(−∞) = (0,−1, 0) and mc(∞) = (0, 1, 0), (9)

are explicitly given by the formulas

m±c (x) =

(
a±c

cosh(µ±c x)
, tanh(µ±c x),

(1− (a±c )2)
1
2

cosh(µ±c x)

)
, (10)

up to the geometric invariances of the equation, which are the translations and the orthogonal
symmetries with respect to the axes e1, e2 and e3. In this formula, the values of a±c and µ±c
are given by

a±c := δc

(
c2 + λ3 − λ1 ∓

(
(λ3 + λ1 − c2)2 − 4λ1λ3

) 1
2

2(λ3 − λ1)

) 1
2

,

and

µ±c =

(
λ3 + λ1 − c2 ±

(
(λ3 + λ1 − c2)2 − 4λ1λ3

) 1
2

2

) 1
2

,

with δc = 1, if c ≥ 0, and δc = −1, when c < 0. Noticing that

(µ±c )2 = λ1(a±c )2 + λ3(1− (a±c )2),

we get that the energy of the solitons m±c is equal to

ELL(m±c ) = 2µ±c .

In this manner, the solitons form two branches in the plane (c, ELL). The lower branch

2(λ1λ3)
1
4

2λ
1
2
3

2λ
1
2
1

0 c∗ c

ELL(mc)

Figure 1: The curves ELL(m+
c ) and ELL(m−c ) in dotted and solid lines, respectively.

corresponds to the solitons m−c , and the upper one to the solitons m+
c as depicted in Figure 1.

The lower branch is strictly increasing and convex with respect to c ∈ [0, c∗], with

E(m−0 ) = 2λ
1
2
1 and E(m−c∗) = 2(λ1λ3)

1
4 .
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The upper branch is a strictly decreasing and concave function of c ∈ [0, c∗], with

E(m+
0 ) = 2λ

1
2
3 and E(m+

c∗) = 2(λ1λ3)
1
4 ,

and the two branches meet at the common soliton m−c∗ = m+
c∗ .

In the limit λ1 → 0, the lower branch vanishes, while the upper one goes to the branch of
solitons for the Landau-Lifshitz equation with easy-plane anisotropy (see e.g. [dL12]).

Finally, we remark that since a−c is a strictly decreasing and a continuous function of c,
with

a−0 = 1 and a−c∗ =
( √

λ3√
λ1 +

√
λ3

) 1
2
,

the function m̌−c := m−1,c + im−2,c may always be lifted as

m̌−c =
√

1− (m−3,c)
2
(

sin(ϕ−c ) + i cos(ϕ−c )
)
,

with

ϕ−c (x) = 2 arctan

((
(a−c )2 + sinh2(µ−c x)

) 1
2 − sinh(µ−c x)

a−c

)
.

In particular, when c = 0, we get

ϕ−0 (x) = 2 arctan
(
e−
√
λ1x
)
,

that corresponds to the (stationary) anti-kink solution to the Sine–Gordon equation

∂ttψ − ∂xxψ +
λ1

2
sin(2ψ) = 0.

In addition to the explicit solitons satisfying the boundary condition (9), it is also possible
to obtain solitons with the same limit at ±∞, e.g. mc(±∞) = (0, 1, 0) (see [dLG21]). As
mentionated before, multisolitons can also be constructed by the inverse scatttttering method
[BBI14].

In the higher dimensional case N ∈ {2, 3}, N. Papanicolaou and P. N. Spathis [PS99] found
finite energy solitons to (8) in the easy-plane case λ1 = 0, by using formal developments and
numerical simulations. More precisely, they obtained a branch of solitons, for all |c| ≤

√
λ3.

Later, F. Lin and J. Wei [LW10] proved the existence of these solitons for small values of c by
perturbative arguments.

§2 The hydrodynamical formulations

In the seminal work [Mad26], Madelung shows that the nonlinear Schrödinger equation (NLS)
can be recast into the form of a hydrodynamic system. For instance, for the NLS equation

i∂tΨ + ∆Ψ = Ψf(|Ψ|2) = 0,
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assuming that ρ := |Ψ|2 does not vanish, the Madelung transform

ψ =
√
ρeiφ

leads to the system
∂tρ+ 2 div(ρ∇φ) = 0,

∂tφ+ |∇φ|2 + f(ρ) =
∆(
√
ρ)

√
ρ

.
(11)

Therefore, setting v = 2∇φ, we get the Euler–Korteweg system

∂tρ+ div(ρv) = 0,

∂tv + (v · ∇)v + 2∇(f(ρ)) = 2∇
(∆(
√
ρ)

√
ρ

)
,

which is a dispersive perturbation of the classical equation Euler equation for compressible
fluids, with the additional term 2∇(∆(

√
ρ)/
√
ρ, which is interpreted as quantum pressure in

the quantum fluids models [CDS12, BGLV19].

The Madelung transform is useful to study properties of NLS equations with nonvanishing
conditions at infinity (see [BGS14, CR10]). In the case of the Gross–Pitaesvkii equation (6),
we have f(ρ) = ρ − 1, so setting u = 1 − |ψ|2 = 1 − ρ, we can write the hydrodynamical
system (11) as

∂tu = 2div
(
(1− u)∇φ),

∂tφ = σu− |∇φ|2 − ∆u

2(1− u)
− |∇u|2

4(1− u)2
.

(12)

Coming back to the LL equation (3), let m be a solution of this equation such that the map
m̌ := m1 + im2 does not vanish. In the spirit of the Madelung transform, we set

m̌ =
√

1−m2
3e
−iφ,

so that we obtain the following hydrodynamical system in terms of the variables u := m3 and
φ,

∂tu = div
(
(1− u2)∇φ

)
+
λ1

2
(1− u2) sin(2φ),

∂tφ = λ3u− u|∇φ|2 −
∆u

1− u2
− u|∇u|2

(1− u2)2
− λ1u cos2(φ).

(13)

Therefore, the hydrodynamical formulations (12) and (13) are very similar when λ1 = 0. As
shown in the next chapters, these kinds of formulations will be essential in the study some
solutions of the LL equation.

§3 The dissipative model

In 1955, T. Gilbert proposed in [Gil55] a modification of equation (1) to incorporate a damping
term. The so-called Landau–Lifshit–Gilbert (LLG) equation then reads

∂tm = βm×Heff(m)− αm× (m×Heff(m)), (14)
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where β ≥ 0 and α ≥ 0, so that there is dissipation when α > 0, and in that case we refer to
α as the Gilbert damping coefficient. Note that, by performing a time scaling, we assume
w.l.o.g. that

α ∈ [0, 1] and β =
√

1− α2.

Thus, using (7), we see that in the limit case β = 0 (and so α = 1), the LLG equation reduces
to the heat-flow equation for harmonic maps

∂tm−∆m = |∇m|2m. (HFHM)

This classical equation is an important model in several areas such as differential geometry
and calculus of variations. It is also related with other problems such as the theory of
liquid crystals and the Ginzburg–Landau equation. For more details, we refer to the surveys
[EL78, EL88, Hél02, LW08, Str96].

As in previous sections, one way to start the study of the LLG is noticing the link with
other PDEs. Let us illustrate this point in the isotropic case Heff(m) = ∆m, i.e. for

∂tm = βm×∆m− αm× (m×∆m). (15)

For a smooth solution m with m3 > −1, we can use the stereographic projection

u = P(m) :=
m1 + im2

1 +m3
,

that satisfies the quasilinear Schrödinger equation

iut + (β − iα)∆u = 2(β − iα)
ū(∇u)2

1 + |u|2 ,

where we used the notation (∇u)2 = ∇u · ∇u =
∑N

j=1(∂xju)2 (see e.g. [LN84] for details).

When α > 0, one can use the properties of the semigroup e(α+iβ)t∆ to establish a Cauchy
theory for rough initial data (see e.g. [dLG19, Mel12] and the references therein).

When N = 1, the LL equation is also related to the Localized Induction Approximation
(LIA), also called binormal flow, a geometric curve flow modeling the self-induced motion of
a vortex filament within an inviscid fluid in R3 [Lak11]. This is related with the geometric
representation of the LL equation as follows. Let us suppose that m is the tangent vector
of a curve in R3, that is m(x, t) = ∂xX(x, t), for some curve X(x, t) ∈ R3 parameterized by
arclenght3. When the curvature k(x, t) and the torsion τ(x, t) of the curve X are specified
(and assuming that X has nonvanishing curvature), the Serret–Frenet system

∂xm = kn,

∂xn = −km+ τb,

∂xb = −τn,
(16)

3Notice that since m ∈ S2, this condition is compatible with the arclength parametrization |∂xX| = 1.
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determines uniquely the shape of the curve, and in particular the space evolution of the
tangent vector m = ∂xX. Using (16), we get

∂xxm = ∂xkn+ k(−kn+ τb),

and thus the LLG equation (15) rewrites as

∂tm = β(∂xkb− kτn) + α(kτb+ ∂xkn) (17)

in terms of intrinsic quantities k, τ and the Serret-Frenet trihedron (m,n, b). From the
geometric representation of the LLG equation (17), and the compatible condition ∂tx = ∂xt,
one can show that the evolution equations for the curvature and torsion associated with a
curve evolving under LLG are given by (see e.g. [DL83])

∂tτ =β

(
k∂xk + ∂x

(∂xxk− kτ2

k

))
+ α

(
k2τ + ∂x

(∂x(kτ) + τ∂xk

k

))
,

∂tk =β (−∂x(kτ)− τ∂xk) + α
(
∂xxk− kτ2

)
.

(18)

In the absence of damping (i.e. α = 0), system (18) reduces to the intrinsic equations associated
with the LIA equation. In addition, in this case, Hasimoto [Has72] established a remarkable
connection with a nonlinear cubic Schrödinger equation through the filament function defined
by

u(s, t) = k(s, t)ei
� s
0 τ(σ,t) dσ, (19)

in terms of the curvature k and the torsion τ of the curve. The Hasimoto transform also allows
us to establish the connection between the LLG equation with certain nonlinear Schrödinger
equations. Precisely, it can be shown [DL83] that if m evolves under (15) and considering the
filament function u defined by (19), then u solves the following nonlocal damped Schrödinger
equation

i∂tu+ (β − iα)∂xxu+
u

2

(
β|u|2 + 2α

� x

0
Im(u∂xu)−A(t)

)
= 0, (20)

where

A(t) =

(
β

(
k2 +

2(∂xxk− kτ2)

k

)
+ 2α

(
∂x(kτ) + ∂xkτ

k

))
(0, t).

Notice that if α = 0, equation (20) is the completely integrable cubic Schrödinger equation.



Chapter 1

The Cauchy problem for the LL
equation

Despite some serious efforts to establish a complete Cauchy theory for the LL equation, several
issues remain unknown. In this chapter we will focus on the LL equation without damping,
for which the Cauchy theory is even more delicate to handle. Even in the case where the
problem is isotropic, i.e. the Schrödinger map equation, there are several unknowns aspects.
Moreover, it is not always possible to adapt results for Schrödinger map equation to include
anisotropic perturbations.

The aim of this chapter present results of [dLG15a, dLG18], on the Cauchy theory for
smooth solutions to the anisotropic LL equation in Sobolev spaces. We will also provide the
existence and uniqueness of a continuous flow in the energy space, in dimension N = 1.

The study of well-posedness in the presence of a damping term is different. Indeed, for
the LLG equation, some techniques related to parabolic equations and for the heat-flow for
harmonic maps (HFHM) can be used. We will discuss this issue in Chapter 4.

1.1 The Cauchy problem for smooth solutions

Let us consider the anisotropic LL equation

∂tm+m× (∆m− λ1m1e1 − λ3m3e3) = 0, (1.1)

with λ1, λ3 ≥ 0. Since the associated energy is given by

Eλ1,λ3(m) :=
1

2

�
RN

(|∇m|2 + λ1m
2
1 + λ3m

2
3), (1.2)

the natural functional setting for solving this equation is the energy set

Eλ1,λ3(RN ) :=
{
v ∈ L1

loc(RN ,R3) : |v| = 1 a.e., ∇v ∈ L2(RN ), λ1v1, λ3v3 ∈ L2(RN )
}
.

1



2 The Cauchy problem for the LL equation

In the context of function taking values on S2, it is standard to use the notation

H`(RN ) =
{
v ∈ L1

loc(RN ,R3) : |v| = 1 a.e., ∇v ∈ H`−1(RN )
}
,

for an integer ` ≥ 1. Notice that a function v ∈ H`(RN ) does not belong to L2(RN ,R3),
since this is incompatible with the constraint |v| = 1. In this manner, Eλ1,λ3(RN ) reduces to
H1(RN ) if λ1 = λ3 = 0.

For the sake of simplicity, in this section we drop the subscripts λ1 and λ3, and denote
the energy by E(m) and the space by E(RN ), since the constants λ1 and λ3 are fixed.

The first results concerning the existence of weak solutions of (1.1) in the energy space
where obtained by Zhou and Guo in the one-dimensional case N = 1 [ZG84], and by Sulem,
Sulem and Bardos [SSB86] for N ≥ 1. The approach followed in [ZG84] was to consider a
parabolic regularization by adding the term ε∆m and letting ε→ 0 (see e.g. [GD08]), while
the strategy in [SSB86] relied on finite difference approximations and a weak compactness
argument. In both cases, no uniqueness was obtained. The proof in [SSB86] can be generalized
to include the anisotropic perturbation in (1.1), leading to the existence of a global (weak)
solution as follows.

Theorem 1.1 ([SSB86]). For any m0 ∈ E(RN ), there exists a global solution of (1.1) with
m ∈ L∞(R+, E(RN )).

The uniqueness of the solution in Theorem 1.1 not known. To our knowledge, the well-
posedness of the Landau-Lifshitz equation for general initial data in E(RN ) remains an open
question.

Let us now discuss some results about smooth solutions in Hk(RN ), k ∈ N, in the isotropic
case λ1 = λ3 = 0. For an initial data in m0 ∈ Hk(RN ), Sulem, Sulem and Bardos [SSB86]
proved the local existence and uniqueness of a solution m ∈ L∞([0, T ),Hk(RN )), provided
that k > N/2 + 21. By using a parabolic approximation, Ding and Wang [DW98] proved
the local existence in L∞([0, T ),Hk(RN )), provided that k > N/2 + 1. They also study the
difference between two solutions, obtaining uniqueness provided that the solutions are of
class C3. Another approach was used by McMahagan [McG07], showing the existence as
the limit of solutions to approximating wave problems, using parallel transport to compare
two solutions and to conclude local existence and uniqueness in L∞([0, T ),Hk(RN )), for
k > N/2 + 1.

When N = 1, these results provided the local existence and uniqueness at level Hk(RN ),
for k ≥ 2. Moreover, in this case the solutions are global in time (see [RRS09, CSU00]).

Of course, there is a large amount of other works with interesting results about the (local
and global) existence and uniqueness for the LL equation and other related equations, see e.g.
[BIKT11, GD08, Mos05, KTV14, GS02, GGKT08, JS12, SW18] and the references therein.
However, it is not straightforward to adapt these works to obtain local well-posednes results
for smooth solutions to equation (1.1). For this reason, in the rest of this section we provide

1Actually, in [SSB86] they do not study of the difference between two solutions. It is only asserted that
uniqueness followed from regularity, which it is not clear in this case; see also [JS12].
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an alternative proof for local well-posedness by introducing high order energy quantities with
better symmetrization properties.

To study the Cauchy problem of smooth solutions, given an integer k ≥ 1, we introduce
the set

Ek(RN ) := E(RN ) ∩Hk(RN ),

which we endow with the metric structure provided by the norm

‖v‖Zk :=
(
‖∇v‖2Hk−1 + ‖v2‖2L∞ + λ1‖v1‖2L2 + λ3‖v3‖2L2

) 1
2 ,

of the vector space

Zk(RN ) :=
{
v ∈ L1

loc(RN ,R3) : ∇v ∈ Hk−1(RN ), v2 ∈ L∞(RN ) λ1v1, λ3v3 ∈ L2(RN )
}
.

(1.3)
Observe that the energy space E(RN ) identifies with E1(RN ). The uniform control on the
second component v2 in the Zk-norm ensures that map ‖ · ‖Zk is a norm. Of course, this
uniform control is not the only possible choice of the metric structure. The main result of
this section is following local well-posedness result.

Theorem 1.2 ([dLG18]). Let λ1, λ3 ≥ 0 and k ∈ N, with k > N/2 + 1. For any initial
condition m0 ∈ Ek(RN ), there exists Tmax > 0 and a unique solution m : RN × [0, Tmax)→ S2

to the LL equation (1.1), which satisfies the following statements.

(i) The solution m belongs to L∞([0, T ], Ek(RN )) and ∂tm ∈ L∞([0, T ],Hk−2(RN )), for
all T ∈ (0, Tmax).

(ii) If the maximal time of existence Tmax is finite, then

� Tmax

0
‖∇m(·, t)‖2L∞ dt =∞. (1.4)

(iii) The flow map m0 7→m is well-defined and locally Lipschitz continuous from Ek(RN ) to
C0([0, T ], Ek−1(RN )), for all T ∈ (0, Tmax).

(iv) When m0 ∈ E`(RN ), with ` > k, the solution m lies in L∞([0, T ], E`(RN )), with
∂tm ∈ L∞([0, T ], H`−2(RN )), for all T ∈ (0, Tmax).

(v) The energy (1.2) is conserved along the flow.

Theorem 1.2 provides the local well-posedness of the LL equation in the set Ek(RN ). This
kind of statement is standard in the context of hyperbolic systems (see e.g. [Tay11, Theorem
1.2]). The critical regularity for the equation is given by the condition k = N/2, so that local
well-posedness is expected when k > N/2 + 1. This assumption is used to control uniformly
the gradient of the solutions by the Sobolev embedding theorem.



4 The Cauchy problem for the LL equation

1.1.1 Ideas of the proof

The construction of the solution m in Theorem 1.2 is based on the strategy developed by
Sulem, Sulem and Bardos [SSB86], relaying on a compactness argument and good energy
estimates. The compactness argument requires the density of smooth functions in the sets
Ek(RN ). Recall that these sets are equal to Zk(RN , S2) for any integer k ≥ 1, where the
vector spaces Zk(RN ) are defined in (1.3). In particular, the sets Ek(RN ) are complete metric
spaces for the distance corresponding to the Zk-norm. Using this norm, we have

Lemma 1.3 ([dLG15a],[dLG18]). Let k ∈ N, with k > N/2. Given any function m ∈ Ek(RN ),
there exists a sequence of smooth functions mn ∈ E(RN ), with ∇mn ∈ H∞(RN ), such that
the differences mn −m are in Hk(RN ), and satisfy

mn −m→ 0 in Hk(RN ),

as n→∞. In particular, we have ‖mn −m‖Zk → 0.

Remark 1.4. This density result is not necessarily true when k ≤ N/2 (see e.g. [SU83,
Section 4] for a discussion about this claim).

Concerning the energy estimates, a key observation is that a (smooth) solution to (1.1)
satisfies the equation

∂ttm+ ∆2m− (λ1 + λ3)
(
∆m1e1 + ∆m3e3

)
+ λ1λ3

(
m1e1 +m3e3

)
= F (m), (1.5)

where we have set

F (m) :=
∑

1≤i,j≤N

(
∂i
(
2〈∂im, ∂jm〉R3∂jm− |∂jm|2∂im

)
− 2∂ij

(
〈∂im, ∂jm〉R3m

))
+ λ1

(
div
(
(m2

3 − 2m2
1)∇m+ (m1m−m2

3e1 +m1m3e3)∇m1 + (m1m3e1 −m3m−m2
1e3)∇m3

)
+∇m1 ·

(
m1∇m−m∇m1

)
+∇m3 ·

(
m∇m3 −m3∇m

)
+m3|∇m|2e3

+
(
m1∇m3 −m3∇m1

)
·
(
∇m1e3 −∇m3e1

)
+ λ1m

2
1

(
m1e1 −m

))
+ λ3

(
div
(
(m2

1 − 2m2
3)∇m+ (m1m3e3 −m1m−m2

3e1)∇m1 + (m3m−m2
1e3 +m1m3e1)∇m3

)
+∇m3 ·

(
m3∇m−m∇m3

)
+∇m1 ·

(
m∇m1 −m1∇m

)
+m1|∇m|2e1

+
(
m1∇m3 −m3∇m1

)
·
(
∇m1e3 −∇m3e1

)
+ λ3m

2
3

(
m3e3 −m

))
+ λ1λ3

(
(m2

1 +m2
3)m+m2

1m3e3 +m2
3m1e1

)
.

In order to derive this expression, we have used the pointwise identities

〈m, ∂im〉R3 = 〈m, ∂iim〉R3 + |∂im|2 = 〈m, ∂iijm〉R3 + 2〈∂im, ∂ijm〉R3 + 〈∂jm, ∂iim〉R3 = 0,

which hold for any 1 ≤ i, j ≤ N , due to the property that m is valued into the sphere S2.
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In view of (1.5), we define the (pseudo)energy of order k ≥ 2, as

EkLL(t) :=
1

2

(
‖∂tm‖Ḣk−2 + ‖m‖Ḣk + (λ1 + λ3)(‖m1‖Ḣk−1 + ‖m3‖Ḣk−1)

+ λ1λ3(‖m1‖Ḣk−2 + ‖m3‖Ḣk−2)
)
,

for any t ∈ [0, T ]. This high order energy is an anisotropic version of the one used in [SSB86].

To get good energy estimates, we need to use Moser estimates (also called tame estimates)
in Sobolev spaces (see e.g. [Mos66, Hör97]). Using these estimates and differentiating EkLL,
we obtain the following energy estimates.

Proposition 1.5. Let λ1, λ3 ≥ 0 and k ∈ N, with k > 1 +N/2. Assume that m is a solution
to (1.1), which lies in C0([0, T ], Ek+2(RN )), with ∂tm ∈ C0([0, T ], Hk(RN )).

(i) The LL energy is well-defined and conserved along flow, that is

E1
LL(t) := ELL

(
m(·, t)

)
= E1

LL(0),

for any t ∈ [0, T ].

(ii) Given any integer 2 ≤ ` ≤ k, the energies E`LL are of class C1 on [0, T ], and there exists
a positive number Ck, depending only on k, such that their derivatives satisfy[

E`LL

]′
(t) ≤ Ck

(
1 + ‖m1(t)‖2L∞ + ‖m3(t)‖2L∞ + ‖∇m(t)‖2L∞

)
Σ`

LL(t), (1.6)

for any t ∈ [0, T ]. Here, we have set Σ`
LL :=

∑`
j=1E

j
LL.

We next discretize the equation by using a finite-difference scheme. The a priori bounds
remain available in this discretized setting. We then apply standard weak compactness and
local strong compactness results in order to construct local weak solutions, which satisfy
statement (i) in Theorem 1.2. Applying the Gronwall lemma to the inequalities in (1.6)
prevents a possible blow-up when the condition in (1.4) is not satisfied.

Finally, we establish uniqueness, as well as continuity with respect to the initial datum,
by computing energy estimates for the difference of two solutions. More precisely, we show

Proposition 1.6. Let λ1, λ3 ≥ 0, and k ∈ N, with k > N/2 + 1. Consider two solutions
m and m̃ to (1.1), which lie in C0([0, T ], Ek+1(RN )), with ∂tm, ∂tm̃ ∈ C0([0, T ], Hk−1(RN )),
and set u := m̃−m and v := (m̃+m)/2.

(i) The function

E0
LL(t) :=

1

2

�
RN
|u(x, t)− u2(x, 0)e2|2 dx,

is of class C1 on [0, T ], and there exists a positive number C such that[
E0

LL

]′
(t) ≤C

(
1 + ‖∇m̃(t)‖L2 + ‖∇m(t)‖L2 + ‖m̃1(t)‖L2 + ‖m1(t)‖L2

+ ‖m̃3(t)‖L2 + ‖m3(t)‖L2

) (
‖u(t)− u0

2e2‖2L2 + ‖u(t)‖2L∞ + ‖∇u(t)‖2L2 + ‖∇u0
2‖2L2

)
,

for any t ∈ [0, T ].
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(ii) The function

E1
LL(t) :=

1

2

�
RN

(
|∇u|2 + |u×∇v + v ×∇u|2

)
dx,

is of class C1 on [0, T ], and there exists a positive number C such that[
E1

LL

]′
(t) ≤ C

(
1 + ‖∇m(t)‖2L∞ + ‖∇m̃(t)‖2L∞

) (
‖u(t)‖2L∞ + ‖∇u(t)‖2L2

)
×

×
(
1 + ‖∇m(t)‖L∞ + ‖∇m̃(t)‖L∞ + ‖∇m(t)‖H1 + ‖∇m̃(t)‖H1

)
.

(iii) Let 2 ≤ ` ≤ k − 1. The function

E`LL(t) :=
1

2

(
‖∂tu‖Ḣk−2 + ‖u‖Ḣk + (λ1 + λ3)(‖u1‖Ḣk−1 + ‖u3‖Ḣk−1)

+ λ1λ3(‖u1‖Ḣk−2 + ‖u3‖Ḣk−2)
)
,

is of class C1 on [0, T ], and there exists a positive number Ck, depending only on k, such
that[

E`LL

]′
(t) ≤ Ck

(
1 + ‖∇m(t)‖2H` + ‖∇m̃(t)‖2H` + ‖∇m(t)‖2L∞ + ‖∇m̃(t)‖2L∞

+ δ`=2

(
‖m̃1(t)‖L2 + ‖m1(t)‖L2 + ‖m̃3(t)‖L2 + ‖m3(t)‖L2

)) (
S`

LL(t) + ‖u(t)‖2L∞
)
.

Here, we have set S`
LL :=

∑`
j=0 E

j
LL.

When ` ≥ 2, the quantities E`LL in Proposition 1.6 are anisotropic versions of the ones
used in [SSB86] for similar purposes. Their explicit form is related to the linear part of the
second-order equation in (1.5). The quantity E0

LL is tailored to close off the estimates.

The introduction of the quantity E1
LL is of a different nature. The functions ∇u and

u ×∇v + v ×∇u in its definition appear as the good variables for performing hyperbolic
estimates at an H1-level. They provide a better symmetrization corresponding to a further
cancellation of the higher order terms. Without any use of the Hasimoto transform, or of
parallel transport, this makes possible a direct proof of local well-posedness at an Hk-level,
with k > N/2 + 1 instead of k > N/2 + 2.

1.1.2 Local well-posedness for smooth solutions to the HLL equation

In the following chapters we will also need the hydrodynamical version of the LL equation.
As explained in §2, this change of variables is a reminiscent of the use of the Madelung
transform [Mad26]. Indeed, assuming that the map m̌ := m1 + im2, associated with a solution
m to (1.1), does not vanish, we can write

m̌ = (1−m2
3)

1
2
(

sin(φ) + i cos(φ)
)
.
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Thus, setting the hydrodynamical variables u := m3 and φ, we get the system
∂tu = div

(
(1− u2)∇φ

)
− λ1

2
(1− u2) sin(2φ),

∂tφ = −div
( ∇u

1− u2

)
+ u

|∇u|2
(1− u2)2

− u|∇φ|2 + u
(
λ3 − λ1 sin2(φ)

)
,

(HLL)

at least as

|u| < 1 on RN . (1.7)

In order to analyze rigorously this regime, we introduce a functional setting in which we
can legitimate the use of the hydrodynamical framework. Under the condition (1.7), it is
natural to work in the Hamiltonian framework in which the solutions m have finite LL energy.
In the hydrodynamical formulation, the LL energy is given by

ELL(u, ϕ) :=
1

2

�
RN

( |∇u|2
1− u2

+ (1− u2)|∇ϕ|2 + λ1(1− u2) sin2(ϕ) + λ3u
2
)
. (1.8)

As a consequence of this formula, we work in the nonvanishing set

NVsin(RN ) :=
{

(u, ϕ) ∈ H1(RN )×H1
sin(RN ) : |u| < 1 on RN

}
,

where

H1
sin(RN ) :=

{
v ∈ L1

loc(RN ) : ∇v ∈ L2(RN ), sin(v) ∈ L2(RN )
}
.

The set H1
sin(RN ) is an additive group, which is naturally endowed with the pseudometric

distance

d1
sin(v1, v2) :=

(∥∥ sin(v1 − v2)
∥∥2

L2 +
∥∥∇v1 −∇v2

∥∥2

L2

) 1
2
,

that vanishes if and only if v1 − v2 ∈ πZ. This quantity is not a distance on the group
H1

sin(RN ), but it is on the quotient group H1
sin(RN )/πZ. In the sequel, we identify the set

H1
sin(RN ) with this quotient group when necessary, in particular when a metric structure is

required. This identification is not a difficulty as far as we deal with the hydrodynamical
form of the LL equation and with the Sine–Gordon equation. Both the equations are indeed
left invariant by adding a constant number in πZ to the phase functions. This property is
one of the motivations for introducing the pseudometric distance d1

sin. We refer to [dLG18]
for more details concerning this distance, as well as the set H1

sin(RN ).

To translate the analysis of the Cauchy problem for the LL equation into the hydrody-
namical framework, we set for k ≥ 1,

NVksin(RN ) :=
{

(u, ϕ) ∈ Hk(RN )×Hk
sin(RN ) : |u| < 1 on RN

}
.

Here, the additive group Hk
sin(RN ) is defined as

Hk
sin(RN ) :=

{
v ∈ L1

loc(RN ) : ∇v ∈ Hk−1(RN ) and sin(v) ∈ L2(RN )
}
.
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As before, we identify this group, when necessary, with the quotient group Hk
sin(RN )/πZ, and

then we endow it with the distance

dksin(v1, v2) :=
(∥∥ sin(v1 − v2)

∥∥2

L2 +
∥∥∇v1 −∇v2

∥∥2

Hk−1

) 1
2
.

With this notation at hand, the vanishing set NVsin(RN ) identifies with NV1
sin(RN ).

From Theorem 1.2, we obtain the following local well-posedness result for (HLL).

Corollary 1.7 ([dLG18]). Let λ1, λ3 ≥ 0, and k ∈ N, with k > N/2 + 1. Given any pair
(u0, φ0) ∈ NVksin(RN ), there exist a positive number Tmax and a unique solution (u, φ) :
RN × [0, Tmax)→ (−1, 1)×R to (HLL) with initial data (u0, φ0), which satisfies the following
statements.

(i) The solution (u, φ) is in L∞([0, T ],NVksin(RN )), while (∂tu, ∂tφ) is in L∞([0, T ], Hk−2(RN )2),
for any 0 < T < Tmax.

(ii) If the maximal time of existence Tmax is finite, then

� Tmax

0

(∥∥∥ ∇u(·, t)
(1− u(·, t)2)

1
2

∥∥∥2

L∞
+
∥∥∥(1−u(·, t)2)

1
2∇φ(·, t)

∥∥∥2

L∞

)
dt =∞, or lim

t→Tmax

‖u(·, t)‖L∞ = 1.

(iii) The flow map (u0, φ0) 7→ (u, φ) is well-defined, and locally Lipschitz continuous from
NVksin(RN ) to C0([0, T ],NVk−1

sin (RN )) for any 0 < T < Tmax.

(iv) When (u0, φ0) ∈ NV`sin(RN ), with ` > k, the solution (u, φ) lies in L∞([0, T ],NV`sin(RN )),
with (∂tu, ∂tφ) ∈ L∞([0, T ], H`−2(RN )2) for any 0 < T < Tmax.

(v) The LL energy in (1.8) is conserved along the flow.

Remark 1.8. Here as in the sequel, the set L∞([0, T ], Hk
sin(RN )) is defined as

L∞
(
[0, T ], Hk

sin(RN )
)

=
{
v ∈ L1

loc(RN×[0, T ],R) : sup
0≤t≤T

‖ sin(v(·, t))‖L2+‖∇v(·, t)‖Hk−1 <∞
}
,

for any integer k ≥ 1 and any positive number T . This definition is consistent with the
fact that a family (v(·, t))0≤t≤T of functions in Hk

sin(RN ) (identified with the quotient group
Hk

sin(RN )/πZ) is then bounded with respect to the distance dksin. In particular, the set
L∞([0, T ],NVksin(RN )) is given by

L∞
(
[0, T ],NVksin(RN )

)
:=
{

(u, φ) ∈ L1
loc(RN × [0, T ],R2) : |u| < 1 on RN × [0, T ]

and sup
0≤t≤T

‖u(·, t)‖Hk−1 + ‖ sin(φ(·, t))‖L2 + ‖∇φ(·, t)‖Hk−1 <∞
}
.

The proof of Corollary 1.7 is complicated by the metric structure corresponding to the
set Hk

sin(RN ). Establishing the continuity of the flow map with respect to the pseudometric
distance dksin is not so immediate. We by-pass this difficulty by using some simple trigonometric
identities.



Local well-posedness in the energy space in dimension one 9

1.2 Local well-posedness in the energy space in dimension one

In this section we focus on the LL equation with easy-plane anisotropy in dimension one, that
is

∂tm+m× (∂xxm− λ3m3e3) = 0. (1.9)

As mentioned before, the isotropic case λ3 = 0, the best result concerning the local and global
well-posedness for initial data in H2(R) [CSU00, NSVZ07, RRS09]. Theorem 1.2 gives us for
instance, the H2-local well-posedness, while Theorem 1.1 provides the existence of a solution
in H1(R), i.e. in the energy space for the isotropic equation. The isotropic equation is energy
critical in H1/2, so that one could think that local well-posedness at the H1-level would be
simple to establish. In this direction, when the domain is the torus, some progress has been
made at the H3/2+-level [CET15], and an ill-posedness type result is given in [JS12] for the
H1/2-weak topology.

The purpose of this section is to provide a local well-posedness theory for (1.9) in the
energy space, in the case λ3 ≥ 0. To this end, we will use the hydrodynamical version of the
equation, considering hydrodynamical variables u := m3 and w := −∂xϕ, which gives us after
some simplifications, the system

∂tu = ∂x
(
(u2 − 1)w

)
,

∂tw = ∂x

( ∂xxu

1− u2
+ u

(∂xu)2

(1− u2)2
+ u
(
w2 − λ3)

)
.

(HLL1d)

We introduce the notation u := (u,w), that we will refer to as hydrodynamical pair. Notice
that the LL energy is now expressed as

E(u) :=

�
R
e(u) :=

1

2

�
R

( (u′)2

1− u2
+
(
1− u2

)
w2 + λ3u

2
)
. (1.10)

Another formally conserved quantity is the momentum P , which is defined by

P (u) :=

�
R
uw.

As we will see in Chapter 3, the momentum P , as well as the energy E, play an important
role in the construction and the qualitative analysis of the solitons.

In order to establish this property rigorously, we first address the Cauchy problem in the
hydrodynamical framework. In view of the expression of the energy in (1.10), the natural
space for solving it is given by nonvanishing space

NV(R) :=
{
v = (v, w) ∈ H1(R)× L2(R), s.t. max

R
|v| < 1

}
,

endowed with the metric structure corresponding to the norm

‖v‖H1×L2 :=
(
‖v‖2H1 + ‖w‖2L2

) 1
2
.
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The nonvanishing condition on the maximum of |v| is necessary to define properly the function
w, which, in the original setting of a solution m to (1.9), corresponds to the derivative of the
phase ϕ of the map m̌. Due to the Sobolev embedding theorem, this nonvanishing condition
is also enough to define w properly, and then establish the continuity of the energy E and the
momentum P on NV(R).

Concerning the Cauchy problem for (HLL1d), we have the following local well-posedness
result.

Theorem 1.9 ([dLG15a]). Let λ3 ≥ 0 and u0 = (u0, w0) ∈ NV(R). There exist Tmax > 0
and u = (u,w) ∈ C0([0, Tmax),NV(R)), such that the following statements hold.

(i) The map u is the unique solution to (HLL1d), with initial condition u0, such that there
exist smooth solutions un ∈ C∞(R× [0, T ]) to (HLL1d), which satisfy

un → u in C0([0, T ],NV(R)), (1.11)

as n→∞, for any T ∈ (0, Tmax).

(ii) The maximal time Tmax is characterized by the condition

lim
t→Tmax

max
x∈R
|u(x, t)| = 1, if Tmax <∞.

(iii) The energy E and the momentum P are constant along the flow.

(iv) When
u0
n → u0 in H1(R)× L2(R),

as n→∞, the maximal time of existence Tn of the solution un to (HLL1d), with initial
condition u0

n, satisfies
Tmax ≤ lim inf

n→∞
Tn,

and
un → u in C0([0, T ], H1(R)× L2(R)),

as n→∞, for any T ∈ (0, Tmax).

In other words, Theorem 1.9 provides the existence and uniqueness of a continuous flow
for (HLL1d) in the energy space NV(R). On the other hand, this does not prevent from the
existence of other solutions which could not be approached by smooth solutions according to
(1.11). In particular, we do not claim that there exists a unique local solution to (HLL1d) in
the energy space for a given initial condition. To our knowledge, the question of the global
existence in the hydrodynamical framework of the local solution v remains open.

Concerning the equation (1.9), since we are in the one-dimensional case, we can endow
the energy space

E(R) =
{
v : R→ S2 : v′ ∈ L2(R), λ3v3 ∈ L2(R)

}
,
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with the metric structure corresponding to the distance

dE(u,v) :=
(∣∣ǔ(0)− v̌(0)

∣∣2 +
∥∥u′ − v′∥∥2

L2 + λ3

∥∥u3 − v3

∥∥2

L2

) 1
2
.

In this manner, we have the following statement for the original LL equation.

Corollary 1.10. Let λ3 ≥ 0 and m0 ∈ E(R), with max
R
|m0

3| < 1. Consider the corresponding

hydrodynamical pair u0 ∈ NV(R), and denote by Tmax > 0 the maximal time of existence
of the solution u ∈ C0([0, Tmax),NV(R)) to (HLL1d) with initial condition u0, provided by
Theorem 1.9. Then there exists m ∈ C0([0, Tmax), E(R)), satisfying the following statements.
(i) The hydrodynamical pair corresponding to m(x, t) is well-defined for any (x, t) ∈ R ×
[0, Tmax), and is equal to u(x, t).
(ii) The map m is the unique solution to (1.9), with initial condition m0, such that there
exist smooth solutions mn ∈ C∞(R× [0, T ]) to (1.9), which satisfy

mn →m in C0([0, T ], E(R)),

as n→∞, for any T ∈ (0, Tmax).
(iii) The energy E is constant along the flow.
(iv) If

m0
n →m0 in E(R),

as n→∞, then the solution mn to (1.9) with initial condition m0
n satisfies

mn →m in C0([0, T ], E(R)),

as n→∞, for any T ∈ (0, Tmax).

Corollary 1.10 is nothing more than the translation of Theorem 1.9 in the original
framework of the LL equation. It provides the existence of a unique continuous flow for (1.9)
in the neighborhood of solutions m, such that the third component m3 does not reach the
value ±1. The flow is only locally defined due to this restriction.

We refer to [dLG15a] for the detailed proofs of Theorem 1.9 and Corollary 1.10. Let us
only explain a sketch of the proofs. The local well-posedness in the spaces NVk(R) for the
hydrodynamical system follows from the local well-posedness for the LL equation. The idea
is that if m is a solution to (1.9), then

u(x, t) :=
(
m3(x, t),

m1(x, t)∂xm2(x, t)−m2(x, t)∂xm1(x, t)

1−m3(x, t)2

)
,

solves (HLL1d). Reciprocally, let u = (u,w) be a solution to (HLL1d). Considering ϕ a
solution to the equation

∂tϕ =
1

(1− u2)
1
2

∂x

(
∂xu

(1− u2)
1
2

)
+ u
(
w2 − 1

)
,
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we get that the map

m :=
(

(1− u2)
1
2 cos(ϕ), (1− u2)

1
2 sin(ϕ), u

)
,

solves (1.9). In this manner, from Theorem 1.2, we obtain

Proposition 1.11. Let k ≥ 4 and u0 = (u0, w0) ∈ NVk(R). There exists a positive maximal
time Tmax, and a unique solution u = (u,w) to (HLL1d), with initial condition u0, such that
u belongs to C0([0, Tmax),NVk−2(R)), and L∞([0, T ],NVk(R)) for any 0 < T < Tmax. The
maximal time Tmax is characterized by the condition

lim
t→Tmax

‖u(·, t)‖C0 = 1, if Tmax < +∞.

Moreover, the energy E and the momentum P are constant along the flow.

The most difficult part in Theorem 1.9 is the continuity with respect to the initial data in
the energy space NV(R) when λ3 > 0. In this case, by performing a change of variables, we
can assume that λ3 = 1. Our proof relies on the strategy developed by Chang, Shatah and
Uhlenbeck in [CSU00] (see also [GS02, NSVZ07]). We introduce the map

Ψ :=
1

2

( ∂xu

(1− u2)
1
2

+ i(1− u2)
1
2w
)

exp iθ,

where we have set

θ(x, t) := −
� x

−∞
u(y, t)w(y, t) dy.

The map Ψ solves the nonlinear Schrödinger equation

i∂tΨ + ∂xxΨ + 2|Ψ|2Ψ +
1

2
u2Ψ− Re

(
Ψ
(
1− 2F (u,Ψ)

))(
1− 2F (u,Ψ)

)
= 0, (1.12)

with

F (u,Ψ)(x, t) :=

� x

−∞
u(y, t)Ψ(y, t) dy,

while the function u satisfies the two equations: ∂tu = 2∂x Im
(

Ψ
(
2F (u,Ψ)− 1

))
,

∂xu = 2 Re
(

Ψ
(
1− 2F (u,Ψ)

))
.

(1.13)

In this setting, deriving the continuous dependence in NV(R) of u with respect to its initial
data reduces to establish it for u and Ψ in L2(R). This is done in the following proposition,
by combining an energy method for u and classical Strichartz estimates for Ψ.

Proposition 1.12. Let (v0,Ψ0) ∈ H1(R) × L2(R) and (ṽ0, Ψ̃0) ∈ H1(R) × L2(R) be such
that

∂xv
0 = 2 Re

(
Ψ0
(
1− 2F (v0,Ψ0)

))
, and ∂xṽ

0 = 2 Re
(

Ψ̃0
(

1− 2F
(
ṽ0, Ψ̃0

)))
.



Local well-posedness in the energy space in dimension one 13

Given two solutions (v,Ψ) and (ṽ, Ψ̃) in C0([0, T∗], H
1(R)× L2(R)), with (Ψ, Ψ̃) ∈ L4([0, T∗],

L∞(R))2, to (1.12)-(1.13) with initial datum (v0,Ψ0), resp. (ṽ0, Ψ̃0), for some positive time
T∗, there exist a positive number τ , depending only on ‖v0‖L2, ‖ṽ0‖L2, ‖Ψ0‖L2 and ‖Ψ̃0‖L2,
and a universal constant A such that we have∥∥v − ṽ∥∥C0([0,T ],L2)

+
∥∥Ψ− Ψ̃

∥∥
C0([0,T ],L2)

+
∥∥Ψ− Ψ̃

∥∥
L4([0,T ],L∞)

≤A
(∥∥v0 − ṽ0

∥∥
L2 +

∥∥Ψ0 − Ψ̃0
∥∥
L2

)
,

for any T ∈ [0,min{τ, T∗}]. In addition, there exists a positive number B, depending only on
‖v0‖L2, ‖ṽ0‖L2, ‖Ψ0‖L2 and ‖Ψ̃0‖L2, such that∥∥∂xv − ∂xṽ∥∥C0([0,T ],L2)

≤ B
(
‖v0 − ṽ0

∥∥
L2+

∥∥Ψ0 − Ψ̃0
∥∥
L2

)
,

for any T ∈ [0,min(τ, T∗)].



14 The Cauchy problem for the LL equation



Chapter 2

Asymptotic regimes for the
anisotropic LL equation

In this chapter we will study the connection between the LL equation,

∂tm+m× (∆m− λ1m1e1 − λ3m3e3) = 0, (2.1)

with λ1, λ3 ≥ 0, and the Sine–Gordon and NLS equation, for certain types of anisotropies.
More precisely, we consider the anisotropic LL equation (2.1) and investigate the cases when
λ1 � λ3 and when 1 � λ1 = λ3. A conjecture in the physical literature [Skl79, FT07] is
that in the former case, the dynamics of (2.1) can be described by the Sine–Gordon equation,
while in the latter case, can be approximated by the cubic NLS equation. Here we present a
quantified proof in Sobolev norms of this conjecture, obtained in collaboration with P. Gravejat
in [dLG18, dLG21].

It is well-known that deriving asymptotic regimes is a powerful tool in order to tackle the
analysis of intricate equations. In this direction, we expect that the rigorous derivations in
this chapter of the Sine–Gordon and the cubic Schrödinger regime will be a useful tool in
order to describe the dynamical properties of the LL equation, in particular the role played by
the solitons in this dynamics. For instance, this kind of strategy has been useful in order to
prove the asymptotic stability of the dark solitons of the Gross-Pitaevskii equation by using
its link with the Korteweg-de Vries equation (see [CR10, BGSS09, BGSS10]).

2.1 The Sine–Gordon regime

In order to provide a rigorous mathematical statement for the anisotropic LL equation with
λ1 � λ3, i.e. for a strong easy-plane anisotropy regime, we consider a small parameter ε > 0,
a fixed constant σ > 0, and set the anisotropy values

λ1 := σε and λ3 :=
1

ε
.

15
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We will also use the hydrodynamical formulation of the equation, i.e. assuming that the map
m̌ := m1 + im2, associated with a solution m to (2.1), does not vanish, it can be written

as m̌ = (1 −m2
3)

1
2

(
sin(φ) + i cos(φ)

)
. Thus, the hydrodynamical variables u := m3 and φ

satisfies the system
∂tu = div

(
(1− u2)∇φ

)
− σε

2
(1− u2) sin(2φ),

∂tφ = −div
( ∇u

1− u2

)
+ u

|∇u|2
(1− u2)2

− u|∇φ|2 + u
(1

ε
− σε sin2(φ)

)
,

as long as the nonvanishing condition (1.7) is satisfied. To study the behavior of the system
as ε→ 0, we introduce the rescaled variables Uε and Φε given by

Uε(x, t) =
u(x/

√
ε, t)

ε
, and Φε(x, t) = φ(x/

√
ε, t),

which satisfy the hydrodynamical system
∂tUε = div

(
(1− ε2U2

ε )∇Φε

)
− σ

2
(1− ε2U2

ε ) sin(2Φε),

∂tΦε = Uε
(
1− ε2σ sin2(Φε)

)
− ε2 div

( ∇Uε
1− ε2U2

ε

)
+ ε4Uε

|∇Uε|2
(1− ε2U2

ε )2
− ε2Uε|∇Φε|2.

(Hε)

Therefore, as ε→ 0, we formally see that the limit system is∂tU = ∆Φ− σ
2 sin(2Φ),

∂tΦ = U,
(SGS)

so that the limit function Φ is a solution to the Sine–Gordon equation

∂ttΦ−∆Φ +
σ

2
sin(2Φ) = 0. (SG)

As seen in Corollary 1.7 in Section 1.1.2, the hydrodynamical system (Hε) is locally
well-posed in the space NVksin(RN ) for k > N/2 + 1, where

NVksin(RN ) :=
{

(u, ϕ) ∈ Hk(RN )×Hk
sin(RN ) : |u| < 1 on RN

}
.

and

Hk
sin(RN ) :=

{
v ∈ L1

loc(RN ) : ∇v ∈ Hk−1(RN ) and sin(v) ∈ L2(RN )
}
.

However, this result gives us time of existence Tε that could vanish as ε→ 0. Therefore, we
need to find a uniform estimate for Tε to prevent this phenomenon. As we will discuss later,
the Sine–Gordon equation is also locally well-posed at the same level of regularity, so that we
can compare the evolution of the difference, at least in an interval of time independent of ε.
A further analysis of (Hε) involving good energy estimates, will lead us to the main result of
this section, as follows.
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Theorem 2.1 ([dLG18]). Let N ≥ 1 and k ∈ N, with k > N/2 + 1, and 0 < ε < 1. Consider
an initial condition (U0

ε ,Φ
0
ε) ∈ NVk+2

sin (RN ), and set

Kε :=
∥∥U0

ε

∥∥
Hk + ε

∥∥∇U0
ε

∥∥
Hk +

∥∥∇Φ0
ε

∥∥
Hk +

∥∥ sin(Φ0
ε)
∥∥
Hk .

Consider similarly an initial condition (U0,Φ0) ∈ L2(RN )×H1
sin(RN ), and denote by (U,Φ) ∈

C0(R, L2(RN ) ×H1
sin(RN )) the unique corresponding solution to (SGS). Then, there exists

C > 0, depending only on σ, k and N , such that, if the initial data satisfy the condition

C εKε ≤ 1, (2.2)

then the following statements hold.

(i) There exists a positive number

Tε ≥
1

CK2
ε

, (2.3)

such that there is a unique solution (Uε,Φε) ∈ C0([0, Tε],NVk+1
sin (RN )) to (Hε) with initial

data (U0
ε ,Φ

0
ε).

(ii) If Φ0
ε − Φ0 ∈ L2(RN ), then we have∥∥Φε(·, t)− Φ(·, t)

∥∥
L2 ≤ C

(∥∥Φ0
ε − Φ0

∥∥
L2 +

∥∥U0
ε − U0

∥∥
L2 + ε2Kε

(
1 +K3

ε

))
eCt, (2.4)

for any 0 ≤ t ≤ Tε.
(iii) If N ≥ 2, or N = 1 and k > N/2 + 2, then we have∥∥Uε(t)−U(t)

∥∥
L2+d1

sin(Φε(t)−Φ(t)) ≤ C
(∥∥U0

ε−U0
∥∥
L2+d1

sin(Φ0
ε−Φ0)+ε2Kε

(
1+K3

ε

))
eCt,

(2.5)

for any 0 ≤ t ≤ Tε.
(iv) Let (U0,Φ0) ∈ Hk(RN )×Hk+1

sin (RN ) and set

κε := Kε +
∥∥U0

∥∥
Hk +

∥∥∇Φ0
∥∥
Hk +

∥∥ sin(Φ0)
∥∥
Hk .

There exists A > 0, depending only on σ, k and N , such that the solution (U,Φ) lies in
C0([0, T ∗ε ], Hk(RN )×Hk+1

sin (RN )), for a positive number

Tε ≥ T ∗ε ≥
1

Aκ2
ε

. (2.6)

Moreover, when k > N/2 + 3, we have∥∥Uε(·, t)− U(·, t)
∥∥
Hk−3 +

∥∥∇Φε(·, t)−∇Φ(·, t)
∥∥
Hk−3 +

∥∥ sin(Φε(·, t)− Φ(·, t))
∥∥
Hk−3

≤ AeA(1+κ2ε)t
(∥∥U0

ε −U0
∥∥
Hk−3 +

∥∥∇Φ0
ε−∇Φ0

∥∥
Hk−3 +

∥∥ sin(Φ0
ε−Φ0)

∥∥
Hk−3 + ε2κε

(
1 +κ3

ε

))
,

(2.7)

for any 0 ≤ t ≤ T ∗ε .
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In arbitrary dimension, Theorem 2.1 provides a quantified convergence of the LL equation
towards the Sine–Gordon equation in the regime of strong easy-plane anisotropy. Three types
of convergence are proved depending on the dimension, and the levels of regularity of the
solutions. This trichotomy is related to the analysis of the Cauchy problems for the LL and
Sine–Gordon equations.

In its natural Hamiltonian framework, the Sine–Gordon equation is globally well-posed
and its Hamiltonian is the Sine–Gordon energy:

ESG(φ) =
1

2

�
RN

(
(∂tφ)2 + |∇φ|2 + σ sin(φ)2

)
. (2.8)

More precisely, given an initial condition (Φ0,Φ1) ∈ H1
sin(RN ) × L2(RN ), there exists a

unique corresponding solution Φ ∈ C0(R, H1
sin(RN )) to (SG), with ∂tΦ ∈ C0(R, L2(RN )).

Moreover, the Sine–Gordon equation is locally well-posed in the spaces Hk
sin(RN )×Hk−1(RN ),

when k > N/2 + 1. In other words, the solution Φ remains in C0([0, T ], Hk
sin(RN )), with

∂tΦ ∈ C0([0, T ], Hk−1(RN )), at least locally in time, when (Φ0,Φ1) ∈ Hk
sin(RN )×Hk−1(RN ).

We will give more details about the Cauchy problem for (SG) in Subsection 2.1.1.

As seen in Chapter 1, the Cauchy problem for the LL equation at its Hamiltonian level
is far from being completely understood. However, the LL equation is locally well-posed
at the same level of high regularity as the Sine–Gordon equation. In the hydrodynamical
context, this reads as the existence of a maximal time Tmax and a unique solution (U,Φ) ∈
C0([0, Tmax),NVk−1

sin (RN )) to (Hε) corresponding to an initial condition (U0,Φ0) ∈ NVksin(RN ),
when k > N/2 + 1 (see Corollary 1.7 in Subsection 1.1); note the loss of one derivative here.
This loss explains why we take initial conditions (U0

ε ,Φ
0
ε) in NVk+2

sin (RN ), though the quantity
Kε is already well-defined when (U0

ε ,Φ
0
ε) ∈ NVk+1

sin (RN ).

In view of this local well-posedness result, we restrict our analysis of the Sine–Gordon
regime to the solutions (Uε,Φε) to the rescaled system (Hε) with sufficient regularity. A
further difficulty then lies in the fact that their maximal times of existence possibly depend
on the small parameter ε.

Statement (i) in Theorem 2.1 provides an explicit control on these maximal times. In
view of (2.3), these maximal times are bounded from below by a positive number depending
only on the choice of the initial data (U0

ε ,Φ
0
ε). Notice in particular that if a family of initial

data (U0
ε ,Φ

0
ε) converges towards a pair (U0,Φ0) in Hk(RN )×Hk

sin(RN ), as ε→ 0, then it is
possible to find T > 0 such that all the corresponding solutions (Uε,Φε) are well-defined on
[0, T ]. This property is necessary in order to make possible a consistent analysis of the limit
ε→ 0.

Statement (i) only holds when the initial data (U0
ε ,Φ

0
ε) satisfy the condition in (2.2).

However, this condition is not a restriction in the limit ε→ 0. It is satisfied by any fixed pair
(U0,Φ0) ∈ NVk+1

sin (RN ) provided that ε is small enough, so that it is also satisfied by a family
of initial data (U0

ε ,Φ
0
ε), which converges towards a pair (U0,Φ0) in Hk(RN )×Hk

sin(RN ) as
ε→ 0.

Statements (ii) and (iii) in Theorem 2.1 provide two estimates between the previous
solutions (Uε,Φε) to (Hε), and an arbitrary global solution (U,Φ) to (SGS) at the Hamiltonian
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level. The first one yields an L2-control on the difference Φε −Φ, while the second one, an
energetic control on the difference (Uε,Φε)− (U,Φ). Due to the fact that the difference Φε−Φ
is not necessarily in L2(RN ), statement (ii) is restricted to initial conditions satisfying this
property.

Finally, statement (iv) bounds the difference between the solutions (Uε,Φε) and (U,Φ)
at the same initial Sobolev level. In this case, we also have to control the maximal time of
regularity of the solutions (U,Φ). This follows from the control from below in (2.6), which is
of the same order as the one in (2.3).

We then obtain the Sobolev estimate in (2.7) of the difference (Uε,Φε) − (U,Φ) with a
loss of three derivatives. Here, the choice of the Sobolev exponents k > N/2 + 3 is tailored to
gain a uniform control on the functions Uε − U , ∇Φε −∇Φ and sin(Φε − Φ), by the Sobolev
embedding theorem.

A loss of derivatives is natural in the context of long-wave regimes (see e.g. [BGSS09,
BGSS10] and the references therein). It is related to the terms with first and second-order
derivatives in the right-hand side of (Hε). This loss is the reason why the energetic estimate in
statement (iii) requires an extra derivative in dimension one, that is the condition k > N/2+2.
Using the Sobolev bounds (2.13) in Corollary 2.6 below, we can (partly) recover this loss by
a standard interpolation argument, and deduce an estimate in H`(RN )×H`+1

sin (RN ) for any
number ` < k. In this case, the error terms are no more of order ε2, as in the right-hand sides
of (2.4), (2.5) and (2.7).

Our presentation of the convergence results in Theorem 2.1 is motivated by the fact that a
control of order ε2 is sharp. As a matter of fact, the system (SGS) owns explicit traveling-wave
solutions. Up to a suitable scaling for which σ = 1, and up to the geometric invariance by
translation, they are given by the kink and anti-kink functions

u±c (x, t) = ± c√
1− c2 cosh

(
x−ct√
1−c2

) , and φ±c (x, t) = 2 arctan
(
e
∓ x−ct√

1−c2
)
, (2.9)

for any speed c ∈ (−1, 1). Using the explicit solitons in (10), we can get explicit traveling-wave
solutions (Uc,ε,Φc,ε) to (Hε), with speed c, for which their exists a positive number A,
depending only on c, such that

‖Uc,ε − u+
c ‖L2 + ‖∇Φc,ε −∇φ+

c ‖L2 + ‖ sin(Φc,ε − φ+
c )
∥∥
L2 ∼

ε→0
Aε2.

Hence, the estimates by ε2 in (2.4), (2.5) and (2.7) are indeed optimal.

As a by-product of our analysis, we can also analyze the wave regime for the LL equation.
This regime is obtained by allowing the parameter σ to converge to 0. At least formally, a
solution (Uε,σ,Φε,σ) to (Hε) indeed satisfies the free wave system{

∂tU = ∆Φ,

∂tΦ = U,
(FW)

as ε→ 0 and σ → 0. In particular, the function Φ is solution to the free wave equation

∂ttΦ−∆Φ = 0.
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The following result provides a rigorous justification for this asymptotic approximation.

Theorem 2.2 ([dLG18]). Let N ≥ 1 and k ∈ N, with k > N/2 + 1, and 0 < ε, σ < 1.
Consider an initial condition (U0

ε,σ,Φ
0
ε,σ) ∈ NVk+2

sin (RN ) and set

K0
ε,σ :=

∥∥U0
ε,σ

∥∥
Hk + ε

∥∥∇U0
ε,σ

∥∥
Hk +

∥∥∇Φ0
ε,σ

∥∥
Hk + σ

1
2

∥∥ sin(Φ0
ε,σ)
∥∥
L2 .

Let m ∈ N, with 0 ≤ m ≤ k − 2. Consider similarly an initial condition (U0,Φ0) ∈
Hm(RN ) × Hm−1(RN ), and denote by (U,Φ) ∈ C0(R, Hm−1(RN ) × Hm(RN )) the unique
corresponding solution to (FW). Then, there exists C > 0, depending only on k and N , such
that, if the initial data satisfies the condition

C εK0
ε,σ ≤ 1,

the following statements hold.

(i) There exists a positive number

Tε,σ ≥
1

C max(ε, σ)(1 +K0
ε,σ)max(2,k/2)

,

such that there is a unique solution (Uε,σ,Φε,σ) ∈ C0([0, Tε,σ],NVk+1
sin (RN )) to (Hε) with initial

data (U0
ε,σ,Φ

0
ε,σ).

(ii) If Φ0
ε,σ − Φ0 ∈ Hm(RN ), then we have the estimate∥∥Uε,σ(·, t)− U(·, t)

∥∥
Hm−1 +

∥∥Φε,σ(·, t)− Φ(·, t)
∥∥
Hm ≤ C

(
1 + t2

) (∥∥U0
ε,σ − U0

∥∥
Hm−1

+
∥∥Φ0

ε,σ − Φ0
∥∥
Hm + max

(
ε2, σ1/2

)
K0
ε,σ

(
1 +K0

ε,σ

)max(2,m)
)
,

for any 0 ≤ t ≤ Tε,σ. In addition,∥∥Uε,σ(·, t)− U(·, t)
∥∥
Ḣ`−1 +

∥∥Φε,σ(·, t)− Φ(·, t)
∥∥
Ḣ` ≤ C

(
1 + t

) (∥∥U0
ε,σ − U0

∥∥
Ḣ`−1

+
∥∥Φ0

ε,σ − Φ0
∥∥
Ḣ` + max

(
ε2, σ

)
K0
ε,σ

(
1 +K0

ε,σ

)max(2,`)
)
,

for any 1 ≤ ` ≤ m and any 0 ≤ t ≤ Tε,σ.

The wave regime of the LL equation was first derived rigorously by Shatah and Zeng [SZ06],
as a special case of the wave regimes for the Schrödinger map equations with values into
arbitrary Kähler manifolds. The derivation in [SZ06] relies on energy estimates, which
are similar in spirit to the ones we establish in the sequel, and a compactness argument.
Getting rid of this compactness argument provides the quantified version of the convergence in
Theorem 2.2. This improvement is based on the arguments developed by Béthuel, Danchin and
Smets [BDS09] in order to quantify the convergence of the Gross–Pitaevskii equation towards
the free wave equation in a similar long-wave regime. Similar arguments were also applied
in [Chi14] in order to derive rigorously the (modified) Korteweg-de Vries and (modified)
Kadomtsev–Petviashvili regimes of the LL equation (see also [GR19]).

In the remaining part of this section, we clarify the analysis of the Cauchy problem for
the Sine–Gordon equation and detail the main ingredients in the proof of Theorem 2.1.
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2.1.1 The Cauchy problem for the Sine–Gordon equation

The Sine–Gordon equation is a semilinear wave equation with a Lipschitz nonlinearity. The
well-posedness analysis of the corresponding Cauchy problem is classical (see e.g. [SS98,
Chapter 6] and [Eva10, Chapter 12]). With the proof of Theorem 2.1 in mind, we now provide
some details about this analysis in the context of the product sets Hk

sin(RN )×Hk−1(RN ).

In the Hamiltonian framework, it is natural to solve the equation for initial conditions
φ(·, 0) = φ0 ∈ H1

sin(RN ) and ∂tφ(·, 0) = φ1 ∈ L2(RN ), which guarantees the finiteness of
the Sine–Gordon energy in (2.8). Note that we do not assume that the function φ0 lies in
L2(RN ). This is motivated by formula (2.9) for the one-dimensional solitons φ±c , which lie
in H1

sin(R), but not in L2(R). In this Hamiltonian setting, the Cauchy problem for (SG) is
globally well-posed.

Theorem 2.3 ([dLG18]). Let σ ∈ R∗. Given two functions (φ0, φ1) ∈ H1
sin(RN )× L2(RN ),

there exists a unique solution φ ∈ C0(R, φ0 + H1(RN )), with ∂tφ ∈ C0(R, L2(RN )), to the
Sine–Gordon equation (SG) with initial conditions (φ0, φ1). Moreover, this solution satisfies
the following properties.

(i) For any T > 0, there exists A > 0, depending only on σ and T , such that the flow map
(φ0, φ1) 7→ (φ, ∂tφ) satisfies

d1
sin

(
φ(·, t), φ̃(·, t)

)
+
∥∥∂tφ(·, t)− ∂tφ̃(·, t)

∥∥
L2 ≤ A

(
d1

sin

(
φ0, φ̃0

)
+
∥∥φ1 − φ̃1

∥∥
L2

)
,

for any t ∈ [−T, T ]. Here, the function φ̃ is the unique solution to the Sine–Gordon equation
with initial conditions (φ̃0, φ̃1).

(ii) When φ0 ∈ H2
sin(RN ) and φ1 ∈ H1(RN ), the solution φ belongs to the space C0(R, φ0 +

H2(RN )), with ∂tφ ∈ C0(R, H1(RN )) and ∂ttφ ∈ C0(R, L2(RN )).

(iii) The Sine–Gordon energy ESG is conserved along the flow.

The proof of Theorem 2.3 relies on a classical fixed-point argument. The only difficulty
consists in working in the unusual functional setting provided by the set H1

sin(RN ). This
difficulty is by-passed by applying the strategy developed by Buckingham and Miller in [BM08,
Appendix B] (see also [Gal08a, dL10] for similar arguments in the context of the Gross–
Pitaevskii equation). In dimension N = 1, they fix a function f ∈ C∞(R), with (possibly
different) limits `±π at ±∞, and with a derivative f ′ in the Schwartz class. Given a real
number p ≥ 1, they consider an initial data (φ0 = f + ϕ0, φ1), with ϕ0, φ1 ∈ Lp(R), and
they apply a fixed-point argument in order to construct the unique corresponding solution
φ = f + ϕ to the Sine–Gordon equation, with ϕ ∈ L∞([0, T ], Lp(R)) for some time T > 0.
This solution is global when φ0 lies in W 1,p(R). This result includes all the functions φ0 in
the space H1

sin(R) for p = 2.

Our proof of Theorem 2.3 extends this strategy to arbitrary dimensions. We fix a smooth
function f ∈ H∞sin(RN ) := ∩k≥1H

k
sin(RN ), and we apply a fixed-point argument in order to

solve the Cauchy problem for initial conditions φ0 ∈ f + H1(RN ) and φ1 ∈ L2(RN ). We
finally check the local Lipschitz continuity in H1

sin(RN )× L2(RN ) of the corresponding flow.
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With the proof of Theorem 2.1 in mind, we also extend this analysis to the initial conditions
φ0 ∈ Hk

sin(RN ) and φ1 ∈ Hk−1(RN ), with k ∈ N∗. When the integer k is large enough, we
obtain the following local well-posedness result.

Theorem 2.4 ([dLG18]). Let σ ∈ R∗ and k ∈ N, with k > N/2 + 1. Given two functions
(φ0, φ1) ∈ Hk

sin(RN )×Hk−1(RN ), there exist T kmax > 0, and a unique solution φ ∈ C0([0, T kmax),
φ0 +Hk(RN )), with ∂tφ ∈ C0([0, T kmax), Hk−1(RN )), to the Sine–Gordon equation (SG) with
initial conditions (φ0, φ1). Moreover, this solution satisfies the following properties.

(i) The maximal time of existence T kmax is characterized by the condition

lim
t→Tkmax

dksin
(
φ(·, t), 0

)
=∞, if T kmax <∞.

(ii) Let 0 ≤ T < T kmax. There are R > 0 and A > 0, depending only on T , dksin(φ0, 0) and
‖φ1‖Hk−1, such that the flow map (φ0, φ1) 7→ (φ, ∂tφ) is well-defined from the ball

B
(
(φ0, φ1), R) =

{
(φ̃0, φ̃1) ∈ Hk

sin(RN )×Hk−1(RN ) : dksin(φ0, φ̃0) + ‖φ1 − φ̃1‖Hk−1 < R
}
,

to C0([0, T ], Hk
sin(RN ))×Hk−1(RN )), and satisfies

dksin
(
φ(·, t), φ̃(·, t)

)
+
∥∥∂tφ(·, t)− ∂tφ̃(·, t)

∥∥
Hk−1 ≤ A

(
dksin
(
φ0, φ̃0

)
+
∥∥φ1 − φ̃1

∥∥
Hk−1

)
,

for any t ∈ [0, T ]. Here, the function φ̃ is the unique solution to the Sine–Gordon equation
with initial conditions (φ̃0, φ̃1).

(iii) When φ0 ∈ Hk+1
sin (RN ) and φ1 ∈ Hk(RN ), the function φ is in C0([0, T kmax), φ0 +

Hk+1(RN )), with ∂tφ ∈ C0([0, T kmax), Hk(RN )) and ∂ttφ ∈ C0([0, T kmax), Hk−1(RN )). In par-
ticular, the maximal time of existence T k+1

max satisfies

T k+1
max = T kmax.

(iv) When 1 ≤ N ≤ 3, the solution φ is global in time. Moreover, when N ∈ {2, 3}, the
flow remains continuous for k = 2, i.e. on H2

sin(RN )×H1(RN ).

Theorem 2.4 follows from a fixed-point argument similar to the one of Theorem 2.3. The
control on the nonlinear terms is derived from a uniform bound on the gradient of the solutions.
This is the origin of the condition k > N/2 + 1 for which the Sobolev embedding theorem
guarantees a uniform control on the gradient. This condition is natural in the context of the
spaces Hk

sin(RN ).

The maximal time of existence T kmax in statement (i) can be estimated by performing
standard energy estimates. When 1 ≤ N ≤ 3, this leads to the global well-posedness of the
Sine–Gordon equation in the space Hk

sin(RN )×Hk−1(RN ) for k > N/2 + 1. Actually, it is
possible to extend this global well-posedness result to dimensions 4 ≤ N ≤ 9. This extension
relies on the Strichartz estimates for the free wave equation (see e.g. [KT98]), and the use
of fractional Sobolev spaces. A blow-up in finite time is possible when N ≥ 10. For the
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sake of simplicity, and since this is not our main goal, we do not address this question any
further. We refer to [Tao16] for a detailed discussion on this topic, and for the construction
of blowing-up solutions to related semilinear wave systems.

When 1 ≤ N ≤ 3, the fixed-point arguments in the proofs of Theorems 2.3 and 2.4 provide
the continuity of the flow with values in C0([0, T ], Hk

sin(RN ) ×Hk−1(RN )) for any positive
number T , except if k = 2 and 2 ≤ N ≤ 3. We fill this gap by performing standard energy
estimates. We conclude that the Sine–Gordon equation is globally well-posed in the spaces
Hk

sin(RN )×Hk(RN ) for any 1 ≤ N ≤ 3 and any k ≥ 1.

Note finally that the previous well-posedness analysis of the Sine–Gordon equation trans-
lates immediately into the Sine–Gordon system (SGS) by setting u = ∂tφ.

2.1.2 Sketch of the proof of Theorem 2.1

When (U0
ε ,Φ

0
ε) lies in NVk+2

sin (RN ), we deduce from Corollary 1.7 the existence of Tmax > 0,
and of a unique solution (Uε,Φε) ∈ C0([0, Tmax),NVk+1

sin (RN )) to (Hε) with initial data
(U0

ε ,Φ
0
ε). The maximal time of existence Tmax a priori depends on the scaling parameter ε.

The number Tmax might become smaller and smaller in the limit ε → 0, so that analyzing
this limit would have no sense.

As a consequence, our first task in the proof of Theorem 2.1 is to provide a control on
Tmax. In view of the conditions in statement (ii) of Corollary 1.7, this control can be derived
from uniform bounds on the functions Uε, ∇Uε and ∇Φε. Taking into account the Sobolev
embedding theorem and the fact that k > N/2+1, we are left with the computations of energy
estimates for the functions Uε and Φε in the spaces Hk(RN ) and Hk

sin(RN ), respectively.

In this direction, we recall that the LL energy corresponding to the scaled hydrodynamical
system (Hε) writes as

Eε(Uε,Φε) =
1

2

�
RN

(
ε2 |∇Uε|2

1− ε2U2
ε

+ U2
ε + (1− ε2U2

ε )|∇Φε|2 + σ(1− ε2U2
ε ) sin2(Φε)

)
.

Inspired in this formula, we proposed to define an energy of order k ≥ 1 as

Ekε (Uε,Φε) =
1

2

∑
|α|=k−1

�
RN

(
ε2 |∇∂αxUε|2

1− ε2U2
ε

+ |∂αxUε|2 + (1− ε2U2
ε )|∇∂αxΦε|2

+ σ(1− ε2U2
ε )|∂αx sin(Φε)|2

)
.

(2.10)

The factors 1− ε2U2
ε in this expression, as well as the non-quadratic term corresponding to

the function sin(Φε), are of substantial importance since they provide a better symmetrization
of the energy estimates, by inducing cancellations in the higher order terms. More precisely,
we have

Proposition 2.5. Let ε > 0 and k ∈ N, with k > N/2 + 1. Consider a solution (Uε,Φε)
to (Hε), with (Uε,Φε) ∈ C0([0, T ],NVk+3

sin (RN )) for some T > 0. Assume that

inf
RN×[0,T ]

(1− ε2U2
ε ) ≥ 1

2
.
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Then there exists C > 0, depending only on k and N , such that[
E`ε
]′

(t) ≤ C max
(
1, σ3/2

) (
1 + ε4

) (
‖ sin(Φε(·, t))‖2L∞ + ‖Uε(·, t)‖2L∞ + ‖∇Φε(·, t)‖2L∞

+ ‖∇Uε(·, t)‖2L∞ + ‖d2Φε(·, t)‖2L∞ + ε2‖d2Uε(·, t)‖2L∞
+ ε ‖∇Φε(·, t)‖L∞

(
‖∇Φε(·, t)‖2L∞ + ‖∇Uε(·, t)‖2L∞

))
Σk+1
ε (t),

(2.11)

for any t ∈ [0, T ] and any 2 ≤ ` ≤ k + 1. Here, we have set Σk+1
ε :=

∑k+1
j=1 E

j
ε .

Thanks to the condition k > N/2 + 1 and the Sobolev embedding, we get from (2.11) a
differential inequality for y(t) := Σk

ε , of the type

y′(t) ≤ Ay2(t), (2.12)

at least on the interval where y is well-defined and y(t) ≤ 2y(0). Here A is a constant
depending on y(0). Integrating (2.12), we conclude that

y(t) ≤ y(0)

1−Ay(0)t
≤ 2y(0),

provided that t ≤ 1/(2Ay(0)). Using this argument, we deduce from Proposition 2.5, that
maximal time Tmax is at least of order 1/(‖U0

ε ‖Hk + ε‖∇U0
ε ‖Hk + ‖∇Φ0

ε‖Hk + ‖ sin(Φ0
ε)‖Hk)2,

when the initial conditions (U0
ε ,Φ

0
ε) satisfy the inequality in (2.2). In particular, the depen-

dence of Tmax on the small parameter ε only results from the possible dependence of the
pair (U0

ε ,Φ
0
ε) on ε. Choosing suitably these initial conditions, we can assume without loss of

generality, that Tmax is uniformly bounded from below when ε tends to 0, so that analyzing
this limit makes sense. More precisely, we deduce from Proposition 2.5 the following results.

Corollary 2.6. Let ε > 0 and k ∈ N, with k > N/2 + 1. There exists C > 0, depending only
on σ, k and N , such that if the initial data (U0

ε ,Φ
0
ε) ∈ NVk+2

sin (RN ) satisfies

Cε
(∥∥U0

ε

∥∥
Hk + ε

∥∥∇U0
ε

∥∥
Hk +

∥∥∇Φ0
ε

∥∥
Hk +

∥∥ sin(Φ0
ε)
∥∥
Hk

)
≤ 1,

then there exists a positive time

Tε ≥
1

C
(
‖U0

ε ‖Hk + ε‖∇U0
ε ‖Hk + ‖∇Φ0

ε‖Hk + ‖ sin(Φ0
ε)‖Hk

)2 ,
such that the unique solution (Uε,Φε) to (Hε) with initial condition (U0

ε ,Φ
0
ε) satisfies the

uniform bound

ε
∥∥Uε(·, t)∥∥L∞ ≤ 1√

2
,

as well as the energy estimate∥∥Uε(·, t)∥∥Hk + ε
∥∥∇Uε(·, t)∥∥Hk+

∥∥∇Φε(·, t)
∥∥
Hk +

∥∥ sin(Φε(·, t))
∥∥
Hk

≤ C
(∥∥U0

ε

∥∥
Hk + ε

∥∥∇U0
ε

∥∥
Hk +

∥∥∇Φ0
ε

∥∥
Hk +

∥∥ sin(Φ0
ε)
∥∥
Hk

)
,

(2.13)

for any 0 ≤ t ≤ Tε.
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Remark 2.7. In the one-dimensional case, the conservation of the energy provides a much
direct control on the quantity ε‖Uε‖L∞ . This claim follows from the inequality

ε2‖Uε‖2L∞ ≤ 2ε2

�
R
|U ′ε(x)| |Uε(x)| dx ≤ ε

�
R

(
ε2U ′ε(x)2 + Uε(x)2

)
dx.

When ε‖U0
ε ‖L∞ < 1, and the quantity εEε(0) is small enough, combining this inequality

with the conservation of the energy Eε and performing a continuity argument give a uniform
control on the function εUε for any possible time.

As a further consequence of Proposition 2.5, Corollary 2.6 also provides the Sobolev
control in (2.13) on the solution (Uε,Φε), which is uniform with respect to ε. This estimate
is crucial in the proof of Theorem 2.1. As a matter of fact, the key ingredient in this proof
is the consistency of (Hε) with the Sine–Gordon system in the limit ε→ 0. Indeed, we can
rewrite (Hε) as ∂tUε = ∆Φε − σ

2 sin(2Φε) + ε2RUε ,

∂tΦε = Uε + ε2RΦ
ε ,

(2.14)

where we have set

RUε := −div
(
U2
ε ∇Φε

)
+ σU2

ε sin(Φε) cos(Φε),

and

RΦ
ε := −σUε sin2(Φε)− div

( ∇Uε
1− ε2U2

ε

)
+ ε2Uε

|∇Uε|2
(1− ε2U2

ε )2
− Uε |∇Φε|2.

In view of the Sobolev control in (2.13), the remainder terms RUε and RΦ
ε are bounded

uniformly with respect to ε in Sobolev spaces, with a loss of three derivatives. Due to this
observation, the differences uε := Uε−U and ϕε := Φε−Φ between a solution (Uε,Φε) to (Hε)
and a solution (U,Φ) to (SGS) are expected to be of order ε2, if the corresponding initial
conditions are close enough.

The proof of this claim would be immediate if the system (2.14) would not contain the
nonlinear term sin(2Φε). Due to this extra term, we have to apply a Gronwall argument in
order to control the differences uε and ϕε. Rolling out this argument requires an additional
Sobolev control on the solution (U,Φ) to (SGS).

In this direction, we use the consistency of the systems (2.14) and (SGS) to mimic the
proof of Corollary 2.6 for a solution (U,Φ) to (SGS). Indeed, when ε = 0, the quantities Ekε
in (2.10) reduce to

EkSG(U,Φ) :=
1

2

∑
|α|=k−1

�
RN

(
|∂αxU |2 + |∂αx∇Φ|2 + σ|∂αx sin(Φ)|2

)
.

When (U,Φ) is a smooth enough solution to (SGS), we can perform energy estimates on these
quantities in order to obtain
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Lemma 2.8. Let k ∈ N, with k > N/2 + 1. There exists A > 0, depending only on σ, k and
N , such that, given any initial data (U0,Φ0) ∈ Hk−1(RN )×Hk

sin(RN ), there exists a positive
time

T∗ ≥
1

A
(
‖U0‖Hk−1 + ‖∇Φ0‖Hk−1 + ‖ sin(Φ0)‖Hk−1

)2 ,
such that the unique solution (U,Φ) to (SGS) with initial condition (U0,Φ0) satisfies the
energy estimate

‖U(·, t)‖Hk−1 + ‖∇Φ(·, t)‖Hk−1+‖ sin(Φ(·, t))‖Hk−1

≤A
(
‖U0‖Hk−1 + ‖∇Φ0‖Hk−1 + ‖ sin(Φ0)‖Hk−1

)
,

for any 0 ≤ t ≤ T∗.

In view of (SGS) and (2.14), the differences vε = Uε − U and ϕε = Φε − Φ satisfy{
∂tvε = ∆ϕε − σ sin(ϕε) cos(Φε + Φ) + ε2RUε ,

∂tϕε = vε + ε2RΦ
ε .

With Corollary 2.6 and Lemma 2.8 at hand, we can control these differences by performing
similar energy estimates on the functionals∑

|α|=k−1

�
RN

(
|∂αx vε|2 + |∂αx∇ϕε|2 + σ|∂αx sin(ϕε)|2

)
.

This is enough to obtain

Proposition 2.9. Let k ∈ N, with k > N/2 + 1. Given an initial condition (U0
ε ,Φ

0
ε) ∈

NVk+2
sin (RN ), assume that the unique corresponding solution (Uε,Φε) to (Hε) is well-defined

on a time interval [0, T ] for a positive number T , and that it satisfies the uniform bound

ε
∥∥Uε(·, t)∥∥L∞ ≤ 1√

2
,

for any t ∈ [0, T ]. Consider similarly an initial condition (U0,Φ0) ∈ L2(RN )×H1
sin(RN ), and

denote by (U,Φ) ∈ C0(R, L2(RN ) × H1
sin(RN )) the unique corresponding solution to (SGS).

Set uε := Uε − U , ϕε := Φε − Φ, and

Kε(T ) := max
t∈[0,T ]

(
‖Uε(·, t)‖Hk + ε‖∇Uε(·, t)‖Hk + ‖∇Φε(·, t)‖Hk + ‖ sin(Φε(·, t))‖Hk

)
.

(i) Assume that Φ0
ε−Φ0 ∈ L2(RN ). Then, there exists a positive number C1 > 0, depending

only on σ and N , such that

‖ϕε(·, t)‖L2 ≤ C1

(
‖ϕ0

ε‖L2 + ‖v0
ε‖L2 + ε2Kε(T )

(
1 + ε2Kε(T )2 +Kε(T )3

))
eC1t,

for any t ∈ [0, T ].
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(ii) Assume that N ≥ 2, or that N = 1 and k > N/2 + 2. Then, there exists C2 > 0,
depending only on σ and N , such that

‖uε(·, t)‖L2 + ‖∇ϕε(·, t)‖L2 + ‖ sin(ϕε(·, t))‖L2 ≤ C2

(
‖u0

ε‖L2 + ‖∇ϕ0
ε‖L2 + ‖ sin(ϕ0

ε)‖L2

+ ε2Kε(T )
(
1 + ε2Kε(T )2 +Kε(T )3

))
eC2t,

for any t ∈ [0, T ].

(iii) Assume that k > N/2 + 3 and that the pair (U,Φ) belongs to C0([0, T ], Hk(RN ) ×
Hk+1

sin (RN )). Set

κε(T ) := Kε(T ) + max
t∈[0,T ]

(
‖U(·, t)‖Hk + ‖∇Φ(·, t)‖Hk + ‖ sin(Φ(·, t))‖Hk

)
.

Then, there exists a positive number Ck, depending only on σ, k and N , such that

‖uε(·, t)‖Hk−3 + ‖∇ϕε(·, t)‖Hk−3 + ‖ sin(ϕε(·, t))‖Hk−3

≤ Ck
(
‖u0

ε‖Hk−3 + ‖∇ϕ0
ε‖Hk−3 + ‖ sin(ϕ0

ε)‖Hk−3

+ ε2 κε(T )
(
1 + ε2κε(T )2 + (1 + ε2)κε(T )3

))
eCk(1+κε(T )2)t,

for any t ∈ [0, T ].

Finally, going to the proof of Theorem 2.1, in view of Corollaries 1.7 and 2.6, there
exists C > 0, depending only on σ, k and N , for which, given any initial condition
(U0

ε ,Φ
0
ε) ∈ NVk+2

sin (RN ) such that (2.2) holds, there exists Tε > 0 satisfying (2.3) such that the
unique solution (Uε,Φε) to (Hε) with initial conditions (U0

ε ,Φ
0
ε) lies in C0([0, Tε],NVk+1

sin (RN )).
Moreover, the quantity Kε(Tε) in Proposition 2.9 is bounded by

Kε(Tε) ≤ CKε(0).

Enlarging if necessary the value of C, we then deduce statements (ii) and (iii) in Theorem 2.1
from statements (i) and (ii) in Proposition 2.9.

Similarly, given a pair (U0,Φ0) ∈ Hk(RN )×Hk+1
sin (RN )), we infer from Theorem 2.4 and

Lemma 2.8 the existence of a number T ∗ε such that (2.6) holds, and the unique solution (U,Φ)
to (SGS) with initial conditions (U0,Φ0) is in C0([0, T ∗ε ], Hk(RN )×Hk+1

sin (RN )). Statement
(iv) in Theorem 2.1 then follows from statement (iii) in Proposition 2.9.

2.2 The cubic NLS regime

We now focus on the cubic Schrödinger equation, which is obtained in a regime of strong
easy-axis anisotropy of equation (2.1). For this purpose, we consider a uniaxial material in
the direction corresponding to the vector e2 = (0, 1, 0) and we fix the anisotropy parameters
as

λ1 = λ3 =
1

ε
.
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For this choice, the complex map m̌ = m1 + im3 associated with a solution m of (2.1)
satisfies 1 {

i∂tm̌+m2∆m̌− m̌∆m2 − 1
εm2m̌ = 0,

∂tm2 − 〈im̌,∆m̌〉C = 0.

Let us introduce the complex-valued function Ψε given by

Ψε(x, t) = ε−1/2m̌(x, t)eit/ε. (2.15)

This function is of order 1 in the regime where the map m̌ is of order ε
1
2 . When ε is small

enough, the function m2 does not vanish in this regime, since the solution m is valued into
the sphere S2. Assuming that m2 is everywhere positive, it is given by the formula

m2 =
(
1− ε|Ψε|2|

) 1
2 ,

and the function Ψε is a solution to the nonlinear Schrödinger equation

i∂tΨε+
(
1−ε|Ψε|2

)1/2
∆Ψε+

|Ψε|2
1 + (1− ε|Ψε|2)1/2

Ψε+εdiv
( 〈Ψε,∇Ψε〉C

(1− ε|Ψε|2)1/2

)
Ψε = 0. (NLSε)

As ε→ 0, the formal limit is therefore the focusing cubic Schrödinger equation

i∂tΨ + ∆Ψ +
1

2
|Ψ|2Ψ = 0. (CS)

The main goal of this section is to justify rigorously this cubic Schrödinger regime of the LL
equation.

We first recall a local well-posedness result for the Cauchy problem for the cubic Schrödinger
equation, that can be obtained by using a fixed-point argument. We refer to [Caz03] for an
extended review on this subject.

Theorem 2.10 ([Caz03]). Let k ∈ N, with k > N/2. Given any function Ψ0 ∈ Hk(RN ),
there exist Tmax > 0 and a unique solution Ψ ∈ C0([0, Tmax), Hk(RN )) to the cubic Schrödinger
equation CS with initial data Ψ0, which satisfies the following properties.

(i) If the maximal time of existence Tmax is finite, then

lim
t→Tmax

‖Ψ(·, t)‖Hk =∞, and lim sup
t→Tmax

‖Ψ(·, t)‖L∞ =∞.

(ii) The flow map Ψ0 7→ Ψ is well-defined and Lipschitz continuous from Hk(RN ) to C0([0, T ],
Hk(RN )), for any 0 < T < Tmax.

1Here as in the sequel, the notation 〈z1, z2〉C stands for the canonical real scalar product of the two complex
numbers z1 and z2, which is given by

〈z1, z2〉C = Re(z1) Re(z2) + Im(z1) Im(z2) = Re(z1z̄2).
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(iii) When Ψ0 ∈ H`(RN ), with ` > k, the solution Ψ lies in C0([0, T ], H`(RN )), for any
0 < T < Tmax.

(iv) The L2-mass M2 and the cubic Schrödinger energy ECS given by

M2(Ψ) =

�
RN
|Ψ|2, and ECS(Ψ) =

1

2

�
RN
|∇Ψ|2 − 1

4

�
RN
|Ψ|4,

are conserved along the flow.

Going on with our rigorous derivation of the cubic Schrödinger regime, we now express
the local well-posedness result in Theorem 1.2 in terms of the nonlinear Schrödinger equa-
tion (NLSε) satisfied by the rescaled function Ψε.

Corollary 2.11 ([dLG21]). Let ε > 0, and k ∈ N, with k > N/2 + 1. Consider a function
Ψ0
ε ∈ Hk(RN ) such that

ε1/2
∥∥Ψ0

ε

∥∥
L∞ < 1. (2.16)

Then, there exist Tε > 0 and a unique solution Ψε : RN × [0, Tε)→ C to (NLSε) with initial
data Ψ0

ε, which satisfies the following properties.

(i) The solution Ψε is in the space L∞([0, T ], Hk(RN )), while its time derivative ∂tΨε is in
L∞([0, T ], Hk−2(RN )), for any 0 < T < Tε.

(ii) If the maximal time of existence Tε is finite, then

� Tε

0

∥∥∇Ψε(·, t)
∥∥2

L∞ dt =∞, or ε1/2 lim
t→Tε

∥∥Ψε(·, t)
∥∥
L∞ = 1.

(iii) The flow map Ψ0
ε 7→ Ψε is locally well-defined and Lipschitz continuous from Hk(RN ) to

C0([0, T ], Hk−1(RN )) for any 0 < T < Tε.

(iv) When Ψ0
ε ∈ H`(RN ), with ` > k, the solution Ψε lies in L∞([0, T ], H`(RN )), with

∂tΨε ∈ L∞([0, T ], H`−2(RN )) for any 0 < T < Tε.

(v) The nonlinear Schrödinger energy Eε given by

Eε(Ψε) =
1

2

�
RN

(
|Ψε|2 + ε|∇Ψε|2 +

ε2〈Ψε,∇Ψε〉2C
1− ε|Ψε|2

)
,

is conserved along the flow.

(vi) Set

m0 =
(
ε

1
2 Re

(
Ψ0
ε

)
,
(
1− ε|Ψ0

ε|2
) 1

2 , ε
1
2 Im

(
Ψ0
ε

))
.

The function m : RN × [0, Tε]→ S2 given by

m(x, t) =
(
ε

1
2 Re

(
e−

it
ε Ψε(x, t)

)
,
(
1− ε|Ψε(x, t)|2

) 1
2 , ε

1
2 Im

(
e−

it
ε Ψε(x, t)

))
,

for any (x, t) ∈ RN×[0, Tε], is the unique solution to (2.1) with initial data m0 of Theorem 1.2,
with λ1 = λ3 = 1/ε.
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With Corollary 2.11 at hand, we are now in position to state our main result concerning
the rigorous derivation of the cubic Schrödinger regime of the LL equation.

Theorem 2.12 ([dLG21]). Let 0 < ε < 1, and k ∈ N, with k > N/2 + 2. Consider two initial
conditions Ψ0 ∈ Hk(RN ) and Ψ0

ε ∈ Hk+3(RN ), and set

Kε :=
∥∥Ψ0

∥∥
Hk +

∥∥Ψ0
ε

∥∥
Hk + ε

1
2

∥∥∇Ψ0
ε

∥∥
Ḣk + ε

∥∥∆Ψ0
ε

∥∥
Ḣk .

There exists A > 0, depending only on k, such that, if the initial data Ψ0 and Ψ0
ε satisfy the

condition

Aε
1
2 Kε ≤ 1, (2.17)

then the following statements hold.

(i) There exists a time

Tε ≥
1

AK2
ε

,

such that both the unique solution Ψε to (NLSε) with initial data Ψ0
ε, and the unique solution

Ψ to (CS) with initial data Ψ0 are well-defined on the time interval [0, Tε].

(ii) We have the error estimate∥∥Ψε(·, t)−Ψ(·, t)
∥∥
Hk−2 ≤

(∥∥Ψ0
ε −Ψ0

∥∥
Hk−2 +AεKε

(
1 +K3

ε

))
eAK

2
εt, (2.18)

for any 0 ≤ t ≤ Tε.

In this manner, Theorem 2.12 establish rigorously the convergence of the LL equation
towards the cubic Schrödinger equation in any dimension. The assumption k > N/2 + 2 in
Theorem 2.12 comes from our choice to quantify this convergence. Our estimates are taylored
in order to obtain the ε factor in the right-hand side of the error estimate (2.18), since we
expect this order of convergence to be sharp. More precisely, using the solitons for the LL
equation, we can compute explicitly solitons for (NLSε) and then prove that their difference
with respect to the corresponding bright solitons Ψc,ω of the cubic Schrödinger equation is of
exact order ε, as the error factor in (2.18) (see [dLG21]).

It is certainly possible to show only convergence under weaker assumptions by using
compactness arguments as for the derivation of similar asymptotic regimes (see e.g. [SZ06,
CR10, GR19] concerning Schrödinger-like equations).

Observe that smooth solutions for both the LL and the cubic Schrödinger equations
are known to exist when the integer k satisfies the condition k > N/2 + 1. The additional
assumption k > N/2+2 in Theorem 2.12 is related to the fact that our proof of (2.18) requires
a uniform control of the difference Ψε−Ψ, which follows from the Sobolev embedding theorem
of Hk−2(RN ) into L∞(RN ).

Similarly, the fact that Ψ0
ε is taken in Hk+3(RN ) instead of Hk+2(RN ), which is enough

to define the quantity Kε, is related to the loss of one derivative for establishing the flow
continuity in statement (iii) of Corollary 2.11.
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Finally, the loss of two derivatives in the error estimate (2.18) can be partially recovered
by combining standard interpolation theory with the estimates in Proposition 2.16 and
Lemma 2.17. Under the assumptions of Theorem 2.12, the solutions Ψε converge towards the
solution Ψ in C0([0, Tε], H

s(RN )) for any 0 ≤ s < k, when Ψ0
ε tends to Ψ0 in Hk+2(RN ) as

ε→ 0, but the error term is not necessarily of order ε due to the interpolation process.

Note here that condition (2.17) is not really restrictive in order to analyze such a conver-
gence. At least when Ψ0

ε tends to Ψ0 in Hk+2(RN ) as ε→ 0, the quantity Kε tends to twice
the norm ‖Ψ0‖Hk in the limit ε→ 0, so that condition (2.17) is always fulfilled. Moreover,
the error estimate (2.18) is available on a time interval of order 1/‖Ψ0‖2

Hk , which is similar to
the minimal time of existence of the smooth solutions to the cubic Schrödinger equation (see
Lemma 2.17 below).

2.3 Sketch of the proof of Theorem 2.12

The proof relies on the consistency between the Schrödinger equations (NLSε) and (CS) in
the limit ε→ 0. Indeed, we can recast (NLSε) as

i∂tΨε + ∆Ψε +
1

2
|Ψε|2Ψε = εRε, (2.19)

where the remainder term Rε is given by

Rε :=
|Ψε|2

1 + (1− ε|Ψε|2)
1
2

∆Ψε −
|Ψε|4

2(1 + (1− ε|Ψε|2)
1
2 )2

Ψε − div
( 〈Ψε,∇Ψε〉C

(1− ε|Ψε|2)
1
2

)
Ψε. (2.20)

In order to establish the convergence towards the cubic Schrödinger equation, our main goal is
to control the remainder term Rε on a time interval [0, Tε] as long as possible. In particular,
we have to show that the maximal time Tε for this control does not vanish in the limit ε→ 0.

The strategy for reaching this goal is reminiscent from a series of papers concerning the
rigorous derivation of long-wave regimes for various Schrödinger-like equations (see [SZ06,
BDS09, BGSS09, CR10, BGSS10, BDG+10, Chi14, GR19, dLG18] and the references therein).
The main argument is to perform suitable energy estimates on the solutions Ψε to (NLSε).
These estimates provide Sobolev bounds for the remainder term Rε, which are used to control
the differences uε := Ψε −Ψ with respect to the solutions Ψ to (CS). This further control is
also derived from energy estimates.

Concerning the estimates of the solutions Ψε, we rely on the equivalence with the solutions
m to (2.1). However, the estimates given in Chapter 1 are not enough in this case. It is
crucial to refine the estimate (1.6), which will be done by using that λ1 = λ3. More precisely,
given a positive number T and a sufficiently smooth solution m : RN × [0, T ]→ S2 to (2.1),
we recall that the energy EkLL of order k ≥ 2 is given by

EkLL(t) :=
1

2

(
‖∂tm(·, t)‖2

Ḣk−2 + ‖∆m(·, t)‖2
Ḣk−2 + (λ1 + λ3)

(
‖∇m1(·, t)‖2

Ḣk−2

+ ‖∇m3(·, t)‖2
Ḣk−2

)
+ λ1λ3

(
‖m1(·, t)‖2

Ḣk−2 + ‖m3(·, t)‖2
Ḣk−2

))
,
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for any t ∈ [0, T ]. Then, in the regime λ1 = λ3 = 1/ε, we can prove the following improvement
of the computations made in Proposition 1.5.

Proposition 2.13. Let 0 < ε < 1, and k ∈ N, with k > N/2 + 1. Assume that

λ1 = λ3 =
1

ε
,

and that m is a solution to (2.1) in C0([0, T ], Ek+4(RN )), with ∂tm ∈ C0([0, T ], Hk+2(RN )).
Given any integer 2 ≤ ` ≤ k + 2, the energies E`LL are of class C1 on [0, T ], and there exists
Ck > 0, depending possibly on k, but not on ε, such that their derivatives satisfy[
E`LL

]′
(t) ≤ Ck

ε

(
‖m1(·, t)‖2L∞ + ‖m3(·, t)‖2L∞ + ‖∇m(·, t)‖2L∞

)(
E`LL(t) + E`−1

LL (t)
)
, (2.21)

for any t ∈ [0, T ]. Here we have set E1
LL(t) := ELL(m(·, t)), the LL energy.

As for the proof of Proposition 1.5, the estimates in Proposition 2.13 rely on the identity
(1.5), that in the case λ1 = λ3 = 1/ε can be simplified as

∂ttm+ ∆2m− 2

ε

(
∆m1e1 + ∆m3e3

)
+

1

ε2

(
m1e1 +m3e3

)
= Fε(m), (2.22)

where

Fε(m) :=
∑

1≤i,j≤N

(
∂i
(
2〈∂im, ∂jm〉R3∂jm− |∂jm|2∂im

)
− 2∂ij

(
〈∂im, ∂jm〉R3m

))
−1

ε

(
(m2

1 + 3m2
3)∆m1e1 + (3m2

1 +m2
3)∆m3e3 − 2m1m3(∆m1e3 + ∆m3e1)

+ (m2
1 +m2

3)∆m2e2 − |∇m|2(m1e1 +m3e3) +∇
(
m2

1 +m2
3

)
· ∇m

)
+

1

ε2

(
(m2

1 +m2
3)(m1e1 +m3e3)

)
.

Using (2.22), the proof of Proposition 2.13 follows as in Proposition 1.5. However, in
contrast with the estimate (1.6), the multiplicative factor in the right-hand side of (2.21) now
only depends on the uniform norms of the functions m1, m3 and ∇m. This property is key
in order to use these estimates in the cubic Schrödinger regime.

The next step of the proof is indeed to express the quantities EkLL in terms of the functions
Ψε. Assume that these functions Ψε : RN × [0, T ]→ C are smooth enough. In view of (2.15)
and (NLSε), we propose the following high order energy

Ekε(t) :=
1

2

(∥∥Ψε(·, t)
∥∥2

Ḣk−2 +
∥∥ε∂tΨε(·, t)− iΨε(·, t)

∥∥2

Ḣk−2 + ε2
∥∥∆Ψε(·, t)

∥∥2

Ḣk−2

+ε
(∥∥∂t(1− ε|Ψε(·, t)|2)

1
2

∥∥2

Ḣk−2 +
∥∥∆(1− ε|Ψε(·, t)|2)

1
2

∥∥2

Ḣk−2 + 2
∥∥∇Ψε(·, t)

∥∥2

Ḣk−2

))
,

for any k ≥ 2 and any t ∈ [0, T ]. Combining the local well-posedness result of Corollary 2.11
and the computations in Proposition 2.13, we obtain
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Corollary 2.14. Let 0 < ε < 1, and k ∈ N, with k > N/2 + 1. Consider Ψ0
ε ∈ Hk+5(RN )

satisfying condition (2.16), and let Ψε : RN × [0, Tε) → C be the corresponding solution
to (NLSε) given by Corollary 2.11. Given any integer 2 ≤ ` ≤ k + 2 and any number
0 ≤ T < Tε, the energies E`ε are of class C1 on [0, T ], and there exists a positive number Ck,
depending possibly on k, but not on ε, such that their derivatives satisfy

[
E`ε
]′

(t) ≤ Ck
(
‖Ψε(·, t)‖2L∞+‖∇Ψε(·, t)‖2L∞+ε

∥∥∥〈Ψε(·, t),∇Ψε(·, t)〉C
(1− ε|Ψε(·, t)|2)

1
2

∥∥∥2

L∞

)(
E`ε(t)+ε

δ`,2E`−1
ε (t)

)
,

(2.23)
for any t ∈ [0, T ]. Here we have set E1

ε(t) := Eε(Ψε(·, t)).

In order to gain a control on the solutions Ψε to (NLSε) from inequality (2.23), we now
have to characterize the Sobolev norms, which are controlled by the energies Ekε . In this
direction, we show

Lemma 2.15. Let 0 < ε < 1, T > 0 and k ∈ N, with k > N/2 + 1. Consider a solution
Ψε ∈ C0([0, T ], Hk+4(RN )) to (NLSε) such that

σT := ε
1
2 max
t∈[0,T ]

∥∥Ψε(·, t)
∥∥
L∞ < 1.

There exists C > 0, depending possibly on σT and k, but not on ε, such that

1

2

(∥∥Ψε(·, t)
∥∥2

Ḣ`−2 + ε
∥∥∇Ψε(·, t)

∥∥2

Ḣ`−2 + ε2
∥∥∆Ψε(·, t)

∥∥2

Ḣ`−2

)
≤ E`ε(t) ≤ C

(∥∥Ψε(·, t)
∥∥2

Ḣ`−2 + ε
∥∥∇Ψε(·, t)

∥∥2

Ḣ`−2 + ε2
∥∥∆Ψε(·, t)

∥∥2

Ḣ`−2

)
,

for any 2 ≤ ` ≤ k + 2 and any t ∈ [0, T ]. Moreover,

1

2

(∥∥Ψε(·, t)
∥∥2

L2 + ε
∥∥∇Ψε(·, t)

∥∥2

L2

)
≤ E1

ε(t) ≤ C
(∥∥Ψε(·, t)

∥∥2

L2 + ε
∥∥∇Ψε(·, t)

∥∥2

L2

)
,

for any t ∈ [0, T ].

With Corollary 2.14 and Lemma 2.15 at hand, we are now in position to provide the
following control on the solutions Ψε to (NLSε).

Proposition 2.16. Let 0 < ε < 1, 0 < δ < 1 and k ∈ N, with k > N/2 + 1. There exists
C > 0, depending possibly on δ and k, but not on ε, such that if an initial data Ψ0

ε ∈ Hk+3(RN )
satisfies

Cε
1
2

(∥∥Ψ0
ε

∥∥
Hk + ε

1
2

∥∥∇Ψ0
ε

∥∥
Ḣk + ε

∥∥∆Ψ0
ε

∥∥
Ḣk

)
≤ 1,

then there exists a positive time

Tε ≥
1

C
(∥∥Ψ0

ε

∥∥
Hk + ε

1
2

∥∥∇Ψ0
ε

∥∥
Ḣk + ε

∥∥∆Ψ0
ε

∥∥
Ḣk

)2 ,
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such that the unique solution Ψε to (NLSε) with initial condition Ψ0
ε satisfies the uniform

bound
ε

1
2

∥∥Ψε(·, t)
∥∥
L∞ ≤ δ,

as well as the energy estimate∥∥Ψε(·, t)
∥∥
Hk + ε

1
2

∥∥∇Ψε(·, t)
∥∥
Ḣk + ε

∥∥∆Ψε(·, t)
∥∥
Ḣk

≤ C
(∥∥Ψ0

ε

∥∥
Hk + ε

1
2

∥∥∇Ψ0
ε

∥∥
Ḣk + ε

∥∥∆Ψ0
ε

∥∥
Ḣk

)
,

(2.24)

for any 0 ≤ t ≤ Tε.

An important feature of Proposition 2.16 lies in the fact that the solutions Ψε are
controlled uniformly with respect to the small parameter ε up to a loss of three derivatives.
This loss is usual in the context of asymptotic regimes for Schrödinger-like equations (see
e.g [BGSS09, BGSS10] and the references therein). It is related to the property that the
energies EkLL naturally scale according to the right-hand side of (2.24) in the limit ε→ 0. This
property is the origin of a loss of two derivatives. The extra loss is due to the requirement
to use the continuity of the (NLSε) flow with respect to the initial data in order to prove
Proposition 2.16, and this continuity holds with a loss of one derivative in view of statement
(iii) in Corollary 2.11.

We now turn to our ultimate goal, which is to estimate the error between a solution Ψε

to (NLSε) and a solution Ψ to (CS). Going back to (2.19), we check that their difference
uε := Ψε −Ψ satisfies the equation

i∂tuε + ∆uε +
1

2

(
|uε + Ψ|2(uε + Ψ)− |Ψ|2Ψ

)
= εRε.

In view of (2.20), we can invoke Proposition 2.16 in order to bound the remainder term Rε in
suitable Sobolev norms. On the other hand, we also have to provide a Sobolev control of the
solution Ψ to (CS) on a time interval as long as possible. In this direction, we can show the
following classical result (see e.g. [Caz03]), by performing standard energy estimates on the
Hk-norms of the solution Ψ.

Lemma 2.17. Let k ∈ N, with k > N/2, and Ψ0 ∈ Hk(RN ). There exists a positive number
Ck, depending possibly on k, such that there exists a positive time

T∗ ≥
1

Ck‖Ψ0‖2
Hk

,

for which the unique solution Ψ to (CS) with initial condition Ψ0 satisfies the energy estimate∥∥Ψ(·, t)
∥∥
Hk ≤ Ck

∥∥Ψ0
∥∥
Hk ,

for any 0 ≤ t ≤ T∗.

The final ingredient to complete the proof of Theorem 2.12 is to obtain energy estimates
in order to control the difference uε, according to the following statement.
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Proposition 2.18. Let 0 < ε < 1, 0 < δ < 1 and k ∈ N, with k > N/2 + 2. Given an initial
condition Ψ0

ε ∈ Hk+3(RN ), assume that the unique corresponding solution Ψε to (NLSε) is
well-defined on a time interval [0, T ] for some positive number T , and that it satisfies the
uniform bound

ε
1
2

∥∥Ψε(·, t)
∥∥
L∞ ≤ δ,

for any t ∈ [0, T ]. Assume similarly that the solution Ψ to (CS) with initial data Ψ0 ∈ Hk(RN )
is well-defined on [0, T ]. Set uε := Ψε −Ψ and

Kε(T ) :=
∥∥Ψ
∥∥
C0([0,T ],Hk)

+
∥∥Ψε

∥∥
C0([0,T ],Hk)

+ ε
1
2

∥∥∇Ψε

∥∥
C0([0,T ],Ḣk)

+ ε
∥∥∆Ψε

∥∥
C0([0,T ],Ḣk)

.

Then there exists C > 0, depending possibly on δ and k, but not on ε, such that∥∥uε(·, t)∥∥Hk−2 ≤
(∥∥uε(·, 0)

∥∥
Hk−2 + εKε(T )

(
1 +Kε(T )3

))
eCKε(T )2t,

for any t ∈ [0, T ].
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Chapter 3

Stability of sum of solitons

We consider in this chapter the one-dimensional easy-plane LL equation, that is (1.9) with
λ3 > 0. Thus, we can assume that λ3 = 1 and we simply write

∂tm+m× (∂xxm− λm3e3) = 0, (3.1)

We focus on the analysis of localized solutions such as solitons. The main goal is to explain
the results in [dLG15a], that provide the orbital stability of arbitrary perturbations of a
(well-prepared) sum of solitons.

3.1 Sum of solitons and the hydrodynamical formulation

As seen in §1, there are exact soliton to equation (3.1) of the form m(x, t) = u(x − ct).
Moreover, these solutions are nonconstant with finite energy if |c| < 1, and there are given by

uc(x) = (c sech
(√

1− c2x
)
, tanh

(√
1− c2x

)
,
√

1− c2 sech
(√

1− c2x
)
),

up to the invariances of the equation, i.e. translations, rotations around the axis x3 and
orthogonal symmetries with respect to any line in the plane x3 = 0. A nonconstant soliton
with speed c may be written as

uc,a,θ,s(x) =
(

cos(θ)[uc]1 − s sin(θ)[uc]2, sin(θ)[uc]1 + s cos(θ)[uc]2, s[uc]3
)
(x− a),

with a ∈ R, θ ∈ R and s ∈ {±1}.
In addition, using the integrability of the equation and by means of the inverse scattering

method, for any M ∈ N∗, it can be also computed explicit solutions to (3.1) that behave like
a sum M decoupled solitons as t→∞. These solutions are often called M -solitons or simply
multisolitons (see e.g. [BBI14, Section 10] for their explicit formula).

We can define properly the solitons in the hydrodynamical framework when c 6= 0, since
the function ǔc = [uc]1 + i[uc]2 does not vanish. More precisely, we recall that for a function

37
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u : R→ S2 such that |u| 6= 0, we set

ǔ = (1− u2
3)1/2 exp iϕ,

and we define the hydrodynamical variables v := u3 and w := ∂xϕ. Thus, equation (3.1)
recast as 

∂tv = ∂x
(
(v2 − 1)w

)
,

∂tw = ∂x

( ∂xxv

1− v2
+ v

(∂xv)2

(1− v2)2
+ v
(
w2 − 1)

)
,

(3.2)

and the soliton uc in the hydrodynamical variables vc := (vc, wc) is given by

vc(x) =
√

1− c2 sech
(√

1− c2x
)
, and wc(x) =

c vc(x)

1− vc(x)2
=
c
√

1− c2 cosh
(√

1− c2x
)

sinh
(√

1− c2x
)2

+ c2
.

(3.3)
In this framework, the only remaining invariances of solitons are translations, as well as the
opposite map (v, w) 7→ (−v,−w). Any soliton with speed c may be then written as

vc,a,s(x) := s vc(x− a) :=
(
s vc(x− a), s wc(x− a)

)
,

with a ∈ R and s ∈ {±1}.
Our goal in this chapter is to establish the orbital stability of a single soliton uc along the

LL flow. More generally, we will also consider the case of a sum of solitons. In the original
framework, defining this sum is not so easy, since the sum of unit vectors in R3 does not
necessarily remain in S2. In the hydrodynamical framework, this difficulty does not longer
arise. We can define a sum of M solitons Sc,a,s as

Sc,a,s := (Vc,a,s,Wc,a,s) :=
M∑
j=1

vcj ,aj ,sj ,

with M ∈ N∗, c = (c1, . . . , cM ), a = (a1, . . . , aM ) ∈ RM , and s = (s1, . . . , sM ) ∈ {±1}M .
However, we have to restrict the analysis to speeds cj 6= 0, since the function ǔ0, associated
with the black soliton, vanishes at the origin.

Coming back to the original framework, we can define properly a corresponding sum of
solitons Rc,a,s, when the third component of Sc,a,s does not reach the values ±1. Due to the
exponential decay of the functions vc and wc, this assumption is satisfied at least when the
positions aj are sufficiently separated, i.e. when the solitons are decoupled. In this case, the
sum Rc,a,s is given, up to a phase factor, by the expression

Rc,a,s :=
(

(1− V 2
c,a,s)

1
2 cos(Φc,a,s), (1− V 2

c,a,s)
1
2 sin(Φc,a,s), Vc,a,s

)
,

where we have set

Φc,a,s(x) :=

� x

0
Wc,a,s(y) dy,

for any x ∈ R. This definition presents the advantage to provide a quantity with values on
the sphere S2. On the other hand, it is only defined under restrictive assumptions on the
speeds cj and positions aj . Moreover, it does not take into account the geometric invariance
with respect to rotations around the axis x3.
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3.2 Orbital stability in the energy space

In the sequel, our main results are proved in the hydrodynamical framework. We establish that,
if the initial positions a0

j are well-separated and the initial speeds c0
j are ordered according to

the initial positions a0
j , then the solution corresponding to a chain of solitons at initial time,

that is a perturbation of a sum of solitons Sc0,a0,s0 , is uniquely defined, and that it remains
a chain of solitons for any positive time. We then rephrase this statement in the original
framework.

Let us recall that Theorem 1.9 provides the existence and uniqueness of a continuous flow
for (3.2) in the nonvanishing energy spaceNV(R). To our knowledge, the question of the global
existence (in the hydrodynamical framework) of the local solution v is open. In the sequel, we
by-pass this difficulty using the stability of a well-prepared sum of solitons Sc,a,s. Since the
solitons in such a sum have exponential decay by (3.3), and are sufficiently well-separated,
the sum Sc,a,s belongs to NV(R). Invoking the Sobolev embedding theorem, this remains
true for a small perturbation in H1(R)× L2(R). As a consequence, the global existence for a
well-prepared sum of solitons follows from its stability by applying a continuation argument.

Concerning the stability of sums of solitons, our main result is

Theorem 3.1 ([dLG15a]). Let s∗ ∈ {±1}M and c∗ = (c∗1, . . . , c
∗
M ) ∈ (−1, 1)M such that

c∗1 < . . . < 0 < . . . < c∗M .

There exist positive numbers α∗, L∗ and A∗, depending only on c∗ such that, if v0 ∈ NV(R)
satisfies the condition

α0 :=
∥∥v0 − Sc∗,a0,s∗

∥∥
H1×L2 ≤ α∗,

for points a0 = (a0
1, . . . , a

0
M ) ∈ RM such that

L0 := min
{
a0
j+1 − a0

j , 1 ≤ j ≤M − 1
}
≥ L∗,

then the solution v to (3.2) with initial condition v0 is globally well-defined on R+, and there
exists a function a = (a1, . . . , aM ) ∈ C1(R+,RM ) such that

M∑
j=1

∣∣a′j(t)− c∗j ∣∣ ≤ A∗(α0 + exp
(
− νc∗L

0

65

))
, (3.4)

and ∥∥v(·, t)− Sc∗,a(t),s∗
∥∥
H1×L2 ≤ A∗

(
α0 + exp

(
− νc∗L

0

65

))
, (3.5)

for any t ∈ R+.

Theorem 3.1 provides the orbital stability of well-prepared sums of solitons with different,
nonzero speeds for positive time. The sums are well-prepared in the sense that their positions
at initial time are well-separated and ordered according to their speeds (see condition (3.1)).
As a consequence, the solitons are more and more separated along the LL flow (see estimate
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(3.4)) and their interactions become weaker and weaker. The stability of the chain then results
from the orbital stability of each single soliton in the chain.

As a matter of fact, the orbital stability of a single soliton appears as a special case of
Theorem 3.1 when M = 1.

Corollary 3.2. Let s∗ ∈ {±1}, a0 ∈ R and c∗ ∈ (−1, 0) ∪ (0, 1). There exist α∗ > 0 and
A∗ > 0, depending only on c∗, such that, if v0 ∈ NV(R) satisfies the condition

α0 :=
∥∥v0 − vc∗,a0,s∗

∥∥
H1×L2 ≤ α∗,

then the solution v to (3.2) with initial condition v0 is globally well-defined on R, and there
exists a function a ∈ C1(R,R) such that∣∣a′(t)− c∗∣∣ ≤ A∗α0, and

∥∥v(·, t)− vc∗,a(t),s∗
∥∥
H1×L2 ≤ A∗α0,

for any t ∈ R.

In this case, stability occurs for both positive and negative times due to the time reversibility
of the LL equation. Time reversibility also provides the orbital stability of reversely well-
prepared chains of solitons for negative time. The analysis of stability for both negative and
positive time is more involved. It requires a deep understanding of the possible interactions
between the solitons in the chain (see [MM09, MM11] for such an analysis in the context of
the Korteweg-de Vries equation). This issue is of particular interest because of the existence
of multisolitons.

Special chains of solitons are indeed provided by the exact multisolitons. However, there
is a difficulty to define them properly in the hydrodynamical framework. As a matter of
fact, multisolitons can reach the values ±1 at some times. On the other hand, an arbitrary
multisoliton becomes well-prepared for large time in the sense that the individual solitons are
ordered according to their speeds and well-separated (see e.g. [BBI14, Section 10]).

If we consider a perturbation of an arbitrary multisoliton at initial time, our theorem does
not guarantee that a perturbation of this multisoliton remains a perturbation of a multisoliton
for large time. As a matter of fact, this property would follow from the continuity with respect
to the initial datum of LL equation in the energy space, which remains, to our knowledge,
an open question. Indeed, Corollary 1.10 only provides this continuity in the neighborhood
of solutions m, whose third component m3 does not reach the value ±1. As a consequence,
Theorem 3.1 only shows the orbital stability of the multisolitons, which do not reach the
values ±1 for any positive time.

Let us go back now to the original formulation of the LL equation, so that we can rephrase
the orbital stability of the sums of solitons follows.

Corollary 3.3. Let s∗ ∈ {±1}M and c∗ = (c∗1, · · · , c∗M ) ∈ (−1, 1)M , with c∗1 < · · · < 0 <
· · · < c∗M . Given any ε∗ > 0, there are ρ∗ > 0 and L∗ > 0 such that, if m0 ∈ E(R) satisfies
the condition

dE
(
m0,Rc∗,a0,s∗

)
≤ ρ∗, (3.6)
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for points a0 = (a0
1, . . . , a

0
M ) ∈ RM such that

min
{
a0
j+1 − a0

j , 1 ≤ j ≤M − 1
}
≥ L∗,

then the solution m to (3.1) with initial datum m0 is globally well-defined on R+. Moreover,
there exists a function a = (a1, . . . , aM ) ∈ C1(R+,RM ) such that, setting

I1 :=
(
−∞, a1 + a2

2

]
, Ij :=

[aj−1 + aj
2

,
aj + aj+1

2

]
, and IM :=

[aM−1 + aM
2

,+∞
)
,

for 2 ≤ j ≤M − 1, we have the estimates

M∑
j=1

∣∣a′j(t)− c∗j ∣∣ ≤ ε∗,
and

M∑
j=1

inf
θj∈R

{∣∣m̌(aj(t), t)− ǔc∗j ,aj(t),θj ,s∗j (aj(t))
∣∣+
∥∥∂xm− u′c∗j ,aj(t),θj ,s∗j∥∥L2(Ij)

+
∥∥m3 −

[
uc∗j ,aj(t),θj ,s∗j

]
3

∥∥
L2(Ij)

}
≤ ε∗,

(3.7)

for any t > 0.

Corollary 3.3 only guarantees that a solution corresponding to a perturbation of a (well-
prepared) sum of solitons Rc,a,s at initial time splits into localized perturbations of M solitons
for any time. In particular, the solution does not necessarily remain a perturbation of a sum
of solitons Rc,a,s for any time. This difficulty is related to the main obstacle when constructing
a function m corresponding to a hydrodynamical pair v, which is a possible phase shift of
the map m̌. In the construction of the sum Rc,a,s, this phase shift is globally controlled. In
contrast, the estimates into (3.5) do not seem to prevent a possible phase shift θj around
each soliton in the hydrodynamical sum. This explains the difference between the controls in
assumption (3.6) and in conclusion (3.7).

Observe also that we have no information on the dependence of the error ε∗ on the
numbers ρ∗ and L∗ in contrast with estimates (3.4) and (3.5) in Theorem 3.1. This is due
to the property that the dependence of a function m with respect to the corresponding
hydrodynamical pair v is not a priori locally Lipschitz.

When M = 1, Corollary 3.3 states nothing more than the orbital stability of the solitons
uc,a,θ,s, with c 6= 0. Taking into account the time reversibility of the LL equation, we can
indeed show

Corollary 3.4. Let s∗ ∈ {±1}, a0, θ0 ∈ R and c∗ ∈ (−1, 0) ∪ (0, 1). Given any ε∗ > 0, there
is ρ∗ > 0 such that, if m0 ∈ E(R) satisfies the condition

dE
(
m0,uc∗,a0,θ0,s∗

)
≤ ρ∗,



42 Stability of sum of solitons

then the solution m to (3.1) with initial datum m0 is globally well-defined on R+. Moreover,
there exists a function a ∈ C1(R+,R) such that we have the estimates∣∣a′(t)− c∗∣∣ ≤ ε∗,
and

inf
θ∈R

{∣∣m̌(a(t), t)− ǔc∗,a(t),θ,s∗(a(t))
∣∣+∥∥∂xm−u′c∗,a(t),θ,s∗

∥∥
L2 +

∥∥m3−
[
uc∗,a(t),θ,s∗

]
3

∥∥
L2

}
≤ ε∗,

for any t ∈ R.

To our knowledge, the orbital stability of the soliton u0 remains an open question. In the
context of the Gross–Pitaevskii equation, the orbital stability of the vanishing soliton (often
called black soliton) was proved in [BGSS08a, GZ09]. Part of the analysis in this further
context certainly extends to the soliton u0 of the LL equation.

In the rest of this section, we restrict our attention to the analysis of the stability of
single solitons and sums of solitons in the hydrodynamical framework. In particular, we
present below the main elements in the proof of Theorem 3.1. Before detailing this proof,
we would like to underline that the arguments developed in the sequel do not make use of
the inverse scattering transform. Instead, they rely on the Hamiltonian structure of the
LL equation, in particular, on the conservation laws for the energy and momentum. As a
consequence, our arguments can presumably be extended to non-integrable equations similar
to the hydrodynamical LL equation.

Remark 3.5. In the isotropic case λ3 = 0, there is no traveling-wave solution to (3.1) with
nonzero speed and finite energy. However, breather-like solutions were found to exist in
[LRT76a], and their numerical stability was investigated in [TW77]. In the easy-axis case,
there are traveling-wave solutions (see e.g. [BL79]), but their third coordinate m3(x) converges
to ±1 as |x| → +∞. This prevents from invoking the hydrodynamical formulation, and thus
from using the strategy developed below in order to prove their orbital stability.

3.2.1 Main elements in the proof of Theorem 3.1

Our strategy is reminiscent of the one developed to tackle the stability of well-prepared
chains of solitons for the generalized Korteweg-de Vries equations [MMT02], the nonlinear
Schrödinger equations [MMT06], or the Gross-Pitaevskii equation [BGS14].

A key ingredient in the proof is the minimizing nature of the soliton vc, which can be
constructed as the solution of the minimization problem

E(vc) = min
{
E(v), v ∈ NV(R) s.t. P (v) = P (vc)

}
, (3.8)

where we recall that the energy and the momentum are given by, for v = (v, w),

E(v) =
1

2

�
R

( (v′)2

1− v2
+
(
1− v2

)
w2 + v2

)
, and P (v) :=

�
R
vw.
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This characterization results from the compactness of the minimizing sequences for (3.8),
and the classification of solitons in (3.3). The compactness of minimizing sequences can
be proved following the arguments developed for a similar problem in the context of the
Gross–Pitaevskii equation [BGS08a], that we will review and extend in chapter 5, in the
context of the nonlocal Gross–Pitaevskii equation.

The Euler–Lagrange equation for (3.8) reduces to the identity

E′(vc) = cP ′(vc), (3.9)

where the speed c appears as the Lagrange multiplier of the minimization problem. The
minimizing energy is equal to

E(vc) = 2(1− c2)
1
2 ,

while the momentum of the soliton vc is given by

P (vc) = 2 arctan
((1− c2)

1
2

c

)
, (3.10)

when c 6= 0. An important consequence of formula (3.10) is the inequality

d

dc

(
P (vc)

)
= − 2

(1− c2)
1
2

< 0, (3.11)

which is related to the Grillakis–Shatah–Strauss condition (see e.g. [GSS87]) for the orbital
stability of a soliton. As a matter of fact, we can use inequality (3.11) to establish the
coercivity of the quadratic form

Qc := E′′(vc)− cP ′′(vc),

under suitable orthogonality conditions. More precisely, we show

Proposition 3.6. Let c ∈ (−1, 0) ∪ (0, 1). There exists Λc > 0, such that

Qc(ε) ≥ Λc‖ε‖2H1×L2 , (3.12)

for any pair ε ∈ H1(R)× L2(R) satisfying the two orthogonality conditions

〈∂xvc, ε〉L2×L2 = 〈P ′(vc), ε〉L2×L2 = 0. (3.13)

Moreover, the map c 7→ Λc is uniformly bounded from below on any compact subset of
(−1, 1) \ {0}.

The first orthogonality condition in (3.13) originates in the invariance with respect to
translations of (3.2). Due to this invariance, the pair ∂xvc lies in the kernel of Qc. The
quadratic form Qc also owns a unique negative direction, which is related to the constraint in
(3.8). This direction is controlled by the second orthogonality condition in (3.13).
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As a consequence of Proposition 3.6, the functional

Fc(v) := E(v)− cP (v),

controls any perturbation ε = v − vc satisfying the two orthogonality conditions in (3.13).
More precisely, we derive from (3.9) and (3.12) that

Fc(vc + ε)− Fc(vc) ≥ Λc‖ε‖2H1×L2 +O
(
‖ε‖3H1×L2

)
, (3.14)

as ‖ε‖H1×L2 → 0. Since the energy E(v) and the momentum P (v) are conserved along the
flow, the left-hand side of (3.14) remains small for all time if it was small at the initial time.
As a consequence of (3.14), the perturbation ε remains small for all time, which implies the
stability of vc.

The strategy for proving Theorem 3.1 consists in extending this argument to a sum
of solitons. This requires to derive a coercivity inequality in the spirit of (3.14) for the
perturbation of a sum of solitons. In a configuration where the solitons vcj ,aj ,sj are sufficiently
separated, a perturbation ε, which is localized around the position ak, essentially interacts
with the soliton vck,ak,sk due to the exponential decay of the solitons. In order to extend (3.14),
it is necessary to impose that ε satisfies at least the orthogonality conditions in (3.13) for the
soliton vck,ak,sk . In particular, we cannot hope to extend (3.14) to a general perturbation ε
without imposing the orthogonality conditions in (3.13) for all the solitons in the sum.

It turns out that this set of orthogonal conditions is sufficient to derive a coercivity
inequality like (3.14) when the solitons in the sum are well-separated (see Proposition 3.8
below). Before addressing this question, we have to deal with the usual tool to impose
orthogonality conditions, that is modulation parameters. Here again, we take advantage of the
exponential decay of the solitons to check that modulating their speeds and positions is enough
to get the necessary orthogonality conditions, at least when the solitons are well-separated.

More precisely, we now fix a set of speeds c∗ = (c∗1, . . . , c
∗
M ) ∈ (−1, 1)M , with c∗j 6= 0,

and of orientations s∗ = (s∗1, . . . , s
∗
n) ∈ {±1}M as in the statement of Theorem 3.1. Given a

positive number L, we introduce the set of well-separated positions

Pos(L) :=
{
a = (a1, . . . , aM ) ∈ RM , s.t. aj+1 > aj + L for 1 ≤ j ≤M − 1

}
,

and we set

V(α,L) :=
{
v = (v, w) ∈ H1(R)× L2(R), s.t. inf

a∈Pos(L)

∥∥v− Sc∗,a,s∗
∥∥
H1×L2 < α

}
,

for any α > 0. We also define

µc := min
1≤j≤M

|cj |, and νc := min
1≤j≤M

(
1− c2

j

) 1
2 ,

for any c ∈ (−1, 1)M . At least for α small enough and L sufficiently large, we show the existence
of modulated speeds c(v) = (c1(v), . . . , cM (v)) and positions a(v) = (a1(v), . . . , aM (v)) such
that any pair v ∈ V(α,L) may be decomposed as v = Sc(v),a(v),s∗ + ε, with ε satisfying
suitable orthogonality conditions.
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Proposition 3.7. There exist positive numbers α∗1 and L∗1, depending only on c∗ and s∗, such
that we have the following properties.
(i) Any pair v = (v, w) ∈ V(α∗1, L

∗
1) belongs to NV(R), with

1− v2 ≥ 1

8
µ2
c∗ .

(ii) There exist two maps c ∈ C1(V(α∗1, L
∗
1), (−1, 1)M ) and a ∈ C1(V(α∗1, L

∗
1),RM ) such that

ε = v− Sc(v),a(v),s∗ ,

satisfies the orthogonality conditions〈
∂xvcj(v),aj(v),s∗j

, ε
〉
L2×L2 =

〈
P ′(vcj(v),aj(v),s∗j

), ε
〉
L2×L2 = 0, (3.15)

for any 1 ≤ j ≤M .
(iii) There exists a positive number A∗, depending only on c∗ and s∗, such that, if∥∥v− Sc∗,a∗,s∗

∥∥
H1×L2 < α,

for a∗ ∈ Pos(L), with L > L∗1 and α < α∗1, then we have

‖ε‖H1×L2 +
M∑
j=1

∣∣cj(v)− c∗j
∣∣+

M∑
j=1

∣∣aj(v)− a∗j
∣∣ ≤ A∗α, (3.16)

as well as

a(v) ∈ Pos(L− 1), µc(v) ≥
1

2
µc∗ and νc(v) ≥

1

2
νc∗ .

The next ingredient in the proof is to check the persistence of a coercivity inequality like
(3.14) for the perturbation ε in Proposition 3.7. Once again, we rely on the property that the
solitons vj := vcj(v),aj(v),s∗j

are well-separated and have exponential decay.

We indeed localize the perturbation ε around the position aj(v) of each soliton vj by
introducing cut-off functions, and we then control each localized perturbation using the
coercivity of the quadratic form Qj = E′′(vj) − cj(v)P ′′(vj) in (3.12). Such a control is
allowed by the orthogonality conditions that we have imposed in (3.15). Collecting all the
localized controls, we obtain a global bound on ε, which is enough for our purpose.

More precisely, we consider a pair v = (v, w) ∈ V(α∗1, L
∗
1), and we set

ε = v− Sc(v),a(v),s∗ ,

as in Proposition 3.7, with c(v) = (c1(v), . . . , cM (v)) and a(v) = (a1(v), . . . , aM (v)). We next
introduce the functions

φj(x) :=


1 if j = 1,

1
2

(
1 + tanh

(
νc∗
16

(
x− aj−1(v)+aj(v)

2

)))
if 2 ≤ j ≤M,

0 if j = M + 1.
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By construction, the maps φj−φj+1 are localized in a neighborhood of the soliton vj . Moreover,
they form a partition of unity since they satisfy the identity

M∑
j=1

(
φj − φj+1) = 1.

Setting

F(v) := E(v)−
M∑
j=1

c∗jPj(v),

where

Pj(v) :=

�
R

(
φj − φj+1

)
vw,

and following the strategy described above, we prove that the functional F controls the
perturbation ε, up to small error terms.

Proposition 3.8. There exist positive numbers α∗2 ≤ α∗1, L∗2 ≥ L∗1 and Λ∗, depending only on
c∗ and s∗, such that v = Sc(v),a(v),s∗ + ε ∈ V(α∗2, L), with L ≥ L∗2, satisfies the two inequalities

F(v) ≥
M∑
j=1

Fc∗j (vc∗j ) + Λ∗
∥∥ε∥∥2

H1×L2 +O
( M∑
j=1

|cj(v)− c∗j |2
)

+O
(
L exp

(
− νc∗L

16

))
, (3.17)

and

F(v) ≤
M∑
j=1

Fc∗j (vc∗j ) +O
(∥∥ε∥∥2

H1×L2

)
+O

( M∑
j=1

|cj(v)− c∗j |2
)

+O
(
L exp

(
− νc∗L

16

))
.

Remark 3.9. Here as in the sequel, we have found convenient to use the notation O in order
to simplify the presentation. By definition, we are allowed to substitute a quantity X by the
notation O(Y ) if and only if there exists a positive number A∗, depending only on c∗ and s∗,
such that

|X| ≤ A∗ Y.

In order to establish the stability of a sum of solitons with respect to the LL flow, we now
consider an initial datum v0 ∈ V(α/2, 2L), with α ≤ α∗2 and L ≥ L∗2. Invoking the continuity
of the flow with respect to the initial datum (see Theorem 1.9), we can assume the existence
of a positive number T such that

v(·, t) ∈ V(α,L) ⊂ V(α∗2, L
∗
2),

for any t ∈ [0, T ]. As a consequence, we can specialize the statements in Propositions 3.7
and 3.8 to the pair v(·, t). We define

c(t) := c(v(·, t)) :=
(
c1(t), . . . , cM (t)

)
, and a(t) := a(v(·, t)) :=

(
a1(t), . . . , aM (t)

)
,
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as well as
ε(·, t) :=

(
ε1(·, t), ε2(·, t)

)
= v(·, t)− Sc(t),a(t),s∗ , (3.18)

for any t ∈ [0, T ]. In view of Proposition 3.7, we have

‖ε(·, t)‖H1×L2 +
M∑
j=1

∣∣cj(t)− c∗j ∣∣+
M∑
j=1

∣∣aj(t)− a∗j ∣∣ ≤ A∗α,
and

a(t) ∈ Pos(L− 1), µc(t) ≥
1

2
µc∗ , and νc(t) ≥

1

2
νc∗ .

Similarly, Proposition 3.8 provides

F(t) := F(v(·, t)) ≥
M∑
j=1

Fc∗j (vc∗j ) + Λ∗
∥∥ε(·, t)∥∥2

H1×L2 +O
( M∑
j=1

|cj(t)− c∗j |2
)

+O
(
L exp

(
− νc∗L

16

))
.

Coming back to the strategy developed for the orbital stability of a single soliton (see the
discussion after inequality (3.14)), we observe two major differences between the coercivity
estimates (3.14) and (3.17). The first one lies in the two extra terms in the right-hand side of
(3.17). There is no difficulty to control the second term, namely O(L exp(−νc∗L/16)), since
it becomes small when L is large enough. In contrast, we have to deal with the differences
|cj(t)− c∗j |2. In order to bound them, we rely on the equation satisfied by the perturbation ε.
Introducing identity (3.18) into (3.2) and using (3.9), we are led to the equations

∂tε1 =

M∑
j=1

((
a′j(t)−cj(t)

)
∂xvj−c′j(t)∂cvj

)
+∂x

((
(V +ε1)2−1

)
(W+ε2)−

M∑
j=1

(
v2
j −1

)
wj

)
,

and

∂tε2 =

M∑
j=1

((
a′j(t)− cj(t)

)
∂xwj − c′j(t)∂cwj

)
+ ∂xx

(
∂xV + ∂xε1

1− (V + ε1)2
−

M∑
j=1

∂xvj
1− v2

j

)

+ ∂x

((
V + ε1)

(
(W + ε2)2 − 1

)
− (V + ε1)(∂xV + ∂xε1)2

(1− (V + ε1)2)2
−

M∑
j=1

(
vj
(
w2
j − 1

)
− vj(∂xvj)

2

(1− v2
j )

2

))
.

Here, we have set vj(·, t) := vcj(t),aj(t),s∗j (·) and wj(·, t) := wcj(t),aj(t),s∗j (·) for any 1 ≤ j ≤M ,

as well as

V (·, t) = Vc(t),a(t),s∗(·) =

M∑
j=1

vj(·, t), and W (·, t) = Wc(t),a(t),s∗(·) =

M∑
j=1

wj(·, t),

in order to simplify the notation. We next differentiate with respect to time the orthogonality
conditions in (3.15) to derive bounds on the time derivatives a′j(t) and c′j(t) of the modulation
parameters. This provides
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Proposition 3.10. There exist positive numbers α∗3 ≤ α∗2 and L∗3 ≥ L∗2, depending only on
c∗ and s∗, such that, if α ≤ α∗3 and L ≥ L∗3, then the modulation functions a and c are of
class C1 on [0, T ], and satisfy

M∑
j=1

(∣∣a′j(t)− cj(t)∣∣+
∣∣c′j(t)∣∣) = O

(∥∥ε(·, t)∥∥
H1×L2

)
+O

(
L exp

(
− νc∗L

2

))
, (3.19)

for any t ∈ [0, T ].

Combining Proposition 3.10 with the bounds in (3.16), we conclude that the evolution of
the modulation parameters is essentially governed by the initial speeds of the solitons in the
sum Sc∗,a∗,s∗ . In particular, when the speeds are well-ordered, that is when

c∗1 < . . . < c∗M , (3.20)

the solitons in the sum Sc(t),a(t),s∗ remain well-separated for any t ∈ [0, T ]. More precisely,
setting

δc∗ =
1

2
min

{
c∗j+1 − c∗j , 1 ≤ j ≤M − 1

}
,

we can derive from (3.16), (3.19) and (3.20), for a possible further choice of the numbers α∗3
and L∗3, the estimates

aj+1(t)− aj(t) > aj+1(0)− aj(0) + δc∗t ≥ L− 1 + δc∗t,

and

a′j(t)
2 ≤ 1− ν2

c∗

4
,

for any t ∈ [0, T ], when α ≤ α∗3 and L ≥ L∗3. In view of these bounds and the exponential
decay of the solitons, the interactions between the solitons remain exponentially small for any
t ∈ [0, T ].

A second difference between (3.14) and (3.17) lies in the fact that the left-hand side of
(3.17) is not conserved along the (3.2) flow due to the presence of the cut-off function φj−φj+1

in the definition of Pj . As a consequence, we also have to control the evolution with respect to
time of these quantities. We derive this control from the conservation law for the momentum,
which may be written as

∂t
(
vw
)

= −1

2
∂x

(
v2 + w2

(
1− 3v2

)
+

3− v2

(1− v2)2
(∂xv)2

)
− 1

2
∂xxx ln

(
1− v2

)
. (3.21)

As a consequence of this equation, we obtain a monotonicity formula for a localized version of
the momentum. More precisely, we set

Rj(t) =

�
R
φj(·, t)v(·, t)w(·, t),

for any 1 ≤ j ≤M . Using (3.21), we establish
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Proposition 3.11. There exist positive numbers α∗4 ≤ α∗3, L∗4 ≥ L∗3 and A∗4, depending only
on c∗ and s∗, such that, if α ≤ α∗4 and L ≥ L∗4, then the map Rj is of class C1 on [0, T ], and
it satisfies

R′j(t) ≥ −A∗4 exp
(
− νc∗(L+ δc∗t)

32

)
, (3.22)

for any 1 ≤ j ≤M and any t ∈ [0, T ]. In particular, the map F is of class C1 on [0, T ] and it
satisfies

F ′(t) ≤ O
(

exp
(
− νc∗(L+ δc∗t)

32

))
, (3.23)

for any t ∈ [0, T ].

Estimate (3.23) is enough to overcome the fact that the function F is not any longer
conserved along time. We now have all the elements to complete the proof of Theorem 3.1
applying the strategy developed for the orbital stability of a single soliton.

3.3 Asymptotic stability

We consider now the long-time asymptotics of a solution to (3.1), with initial condition a
perturbation of a soliton. We would like to determinate conditions such as the solutions
converges to a (possible different) soliton.

Let us remark that the convergence as t → ∞ cannot hold in the energy space. For
instance, we could consider a solution v to (3.2) with an initial condition v0 ∈ NV(R), such
that v converges to a hydrodynamical soliton vc in the norm ‖ · ‖H1×L2 , as t→∞. By the
continuity of the energy and the momentum (with respect to this norm), we have

E
(
v(·, t)

)
→ E(vc) and P

(
v(·, t)

)
→ P (vc),

as t→∞. Since these quantities are conserved by the flow, we conclude that E(v0) = E(vc)
and P (v0) = P (vc). Thus, the variational characterization of solitons implies that v0 must be
a soliton. Therefore, the only solutions that converge (in energy norm) to a soliton as t→∞,
are the solitons.

In conclusion, to establish the asymptotic stability, we need to weak the notion of
convergence. Indeed, using the weak convergence in the space NV(R), Bahri [Bah16] proved
the asymptotic stability of solitons for the hydrodynamical formulation of LL.

Theorem 3.12 ([Bah16]). Let c ∈ (−1, 1), c 6= 0. There is α∗ > 0 such that, if the initial
condition v0 ∈ NV(R) satisfies that∥∥v0 − vc

∥∥
H1×L2 < α∗,

then there exist a unique global associated solution v ∈ C0(R,NV(R)) to (3.1), c∗ ∈ (−1, 0) ∪
(0, 1) and a ∈ C1(R,R) such that, as t→∞,

v(·+ a(t), t)
)
⇀ vc∗ in H1(R)× L2(R), and a′(t)→ c∗.
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This kind of result has been previously established for the solitons of other equations
such as the Korteweg-de Vries [MM01], the Benjamin-Bona-Mahony [Dik05], the Benjamin-
Ono [KM09], and the Gross-Pitaevskii [BGS15a, GS15a] equations.

The weak convergence in Theorem 3.12 can probably be improved. Indeed, Martel and
Merle [MM05, MM08b, MM08a] proved the asymptotic stability of solitons of the KdV
equation, establishing a locally (strong) convergence in the energy space. It is possible
that a similar result can be shown for the asymptotic stability of hydrodynamical soli-
tons of the LL equation satisfy a similar, i.e. a strong convergence in a norm of the type
H1([−R(t), R(t)])× L2([−R(t), R(t)]), where R(t) is a linear function of time.

Finally, we remark that Theorem 3.12 provides the weak convergence towards a soliton,
but this long-time dynamics need to take into account the geometric in variances of the
problem, i.e. the translations. This is precisely the role of the parameter a(t), whose derivative
converges to the speed of the limit soliton vc∗ . In this fashion, the solution propagates with
the same speed as the limit soliton, as t goes to infinity, as expected.

Going back to the original framework for the LL equation, Bahri [Bah16] also obtained

Corollary 3.13 ([Bah16]). Let c ∈ (−1, 1), c 6= 0. There exists δ∗ > 0 such that, if m0 ∈ E(R)
satisfies

dE(m
0,mc) < δ∗,

then there are c∗ ∈ (−1, 0) ∪ (0, 1), and two functions a ∈ C1(R,R) and θ ∈ C1(R,R) such
that the associated solution m to (3.1) with initial condition m0 satisfies

∂xm−m′c∗,a(t),θ(t) ⇀ 0, and m3 − [mc∗,a(t),θ(t)]3 ⇀ 0 in L2(R),

as t→∞. Also, a and θ satisfy, as t→∞,

a′(t)→ c∗ and θ′(t)→ 0.

This result is a almost a direct consequence of Theorem 3.12, and the only difficulty is to
handle the invariance by rotations around the axis x3 of the original equation (3.1). The phase
θ allows to by-pass this difficulty. Let us remark that as t→∞, the derivative of the phase
converge to 0, and thus the orientation of the solution in the plan x3 = 0 is asymptotically
fixed. Let us also remark that, by the Rellich–Kondrachov theorem, the weak convergence in
Theorem 3.13 provides a local uniform convergence towards the limit soliton.

The proof of Theorems 3.12 and 3.13 are based on an approach developed by Martel
and Merle for the KdV equation (cf. [MM01, MM05, Mar06, MM08b, MM08a]). Their
strategy can be decomposed in three steps, that we would explain in our context, i.e. in the
hydrodynamical setting.

The orbital stability provided by Theorem 3.1 guarantees that a solution v to (3.1), with
initial condition v0 close enough to a soliton vc, remains in a neighborhood of the orbit of
the soliton. In particular, the solution v is bounded in the nonvanishing space NV(R) for
any t ≥ 0. It is then possible to construct a sequence of times (tn), with tn →∞, and a limit
function v0

∗ ∈ NV(R), such that, up to a subsequence,

v(·, tn) ⇀ v0
∗ dans H1(R)× L2(R),
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as n→∞. In addition, v0
∗ remains close to the orbit of the soliton vc. Moreover, the solution

v∗ to (3.2) with initial condition v0
∗ is global, and is also close to this orbit. We point out that

is also necessary to introduce a modulation parameter due to the invariance by translation,
but we will omit it for the sake of clarity.

We need to prove that the limit profile v0
∗, and the associated solution v∗, are indeed

solitons. Thus, the second step is to study the regularity and decay properties of v∗. To this
end, it is useful to establish the weak continuity of the flow of the hydrodynamical equation
with respect to the initial condition, which imply that the solution v converges to v∗ as follows:
for any t ∈ R (fixed),

v(·, tn + t) ⇀ v∗(·, t) in H1(R)× L2(R).

Using also the monotonicity formula for the momentum in Proposition 3.11, from this
convergence it is possible to deduce that v∗ is localized in space, uniformly in time. Moreover,
(3.22) also implies that v∗ has an exponential decay in space, uniformly in time. Thus, using
the Kato smoothing effect that gives regularizing properties of the Schrödinger-type equations,
it follows that v∗ is of class C∞ on R × R, and that all its derivatives also decay in space,
uniformly in time (see e.g. [KPV03, BGS15a] for more details).

The third step is to show that in the neighborhood of a soliton, the only solutions to (3.2)
having this behavior are the solitons. This rigidity property follows from a Liouville type
theorem. The proof of this theorem requires another monotonicity formula, and it is the most
difficult part of the argument. We refer to [Bah16] for more details.

By refining the approach described above, Bahri [Bah18] also established the asymptotic
stability for initial data close to a sum of solitons, that are as usual well-prepared according
to their speeds and have sufficiently separated initial positions. We conclude this section with
the following result that states that the associated solution converges weakly to one of the
solitons in the sum, when it is translated to the center of this soliton.

Theorem 3.14 ([Bah18]). Let s∗ ∈ {±1}M and c∗ = (c∗1, . . . , c
∗
M ) ∈ (−1, 1)M such that

c∗1 < . . . < 0 < . . . < c∗M .

There exist α∗ > 0, L∗ > 0 and A∗ > 0, depending only on c∗ such that, if v0 ∈ NV(R)
satisfies

α0 :=
∥∥v0 −

M∑
j=1

vc∗j ,a0j ,sj
∥∥
H1×L2 ≤ α∗,

for points a0 = (a0
1, . . . , a

0
M ) ∈ RM such that

L0 := min
{
a0
j+1 − a0

j , 1 ≤ j ≤M − 1
}
≥ L∗,

then the global solution v to (3.2) with initial condition v0 satisfies the following properties.
There exist a = (a1, . . . , aM ) ∈ C1(R+,RM ), c = (c1, . . . , cM ) ∈ C1(R+, ((−1, 1) \ {0})M ), and
c∞ = (c∞1 , . . . , c

∞
M ) ∈ ((−1, 1) \ {0})M , such that, for all j ∈ {1, . . .M},

v(·+ aj(t), t)−
M∑
j=1

sjvck(t)(·+ aj(t)− ak(t)) ⇀ 0, in H1(R)× L2(R),
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and
cj(t)→ c∞j , a′j(t)→ c∞j , ast→∞.

In particular, as t→∞,

v(·+ aj(t), t)− sjvck(t)(·) ⇀ 0 in H1(R)× L2(R).

The proof of this theorem relies on the strategy developed by Martel, Merle and Tsai
in [MMT02] for the KdV equation. Let us also remark that the locally strong asymptotic
stability result for multisolitons in [MMT02] is stronger than the statement in Theorem 3.14
with M = 2. Indeed, the proof in [MMT02] is based on a monotonicity argument for the
localized energy. It is an open problem if this kind of argument can be adapted to the study
of the LL equation, or more generally, if it possible to get a locally strong asymptotic stability
result. We refer the interested reader to [KMMn17] for a survey on asymptotic stability of
other dispersive equations and wave models.



Chapter 4

Self-similar solutions for the LLG
equation

In this chapter we will study the dissipative LLG equation (14) in the isotropic case, i.e.

∂tm = βm×∆m− αm× (m×∆m), (4.1)

with α > 0. We will focus on the existence of self-similar solutions and provide their
asymptotics in dimension N = 1. We also analyze the qualitative and quantitative effect of
the damping α on the dynamical behavior of these self-similar solutions.

As we will see, these kinds of solutions do not belong to classical Sobolev spaces, and we
cannot invoke the Cauchy theory developed in Chapter 1 to give a meaning to their stability.
Therefore, we will provide a well-posedness result in a more general framework related to the
BMO space to give some stability results. We point out that the proof of the well-posedness
result uses the parabolic behavior of the equation in presence of damping, and cannot be
applied for the pure dispersive equation (i.e. α = 0) analyzed in previous chapters.

The results present in this chapter are based on joint works with S. Gutiérrez [dLG15b,
dLG19, dLG20].

4.1 Self-similar solutions

A natural question, that has been proven relevant for understanding the global behavior of
solutions and formation of singularities, is whether or not there exist solutions which are
invariant under scalings of the equation. In the case of equation (4.1), it is straightforward
to see that it is invariant under the following scaling: If m is a solution of (4.1), then
mλ(t, x) = m(λx, λ2t) is also a solution, for any λ > 0. Associated with this invariance, a
solution m of (4.1) defined for I = R+ or I = R− is called self-similar if it is invariant under
rescaling, that is

m(x, t) = m(λx, λ2t), ∀λ > 0, ∀x ∈ RN , ∀t ∈ I.

53
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Setting T ∈ R and performing a translation in time, this definition leads to two types of
self-similar solutions: A forward self-similar solution, or expander, is a solution of the form

m(x, t) = f

(
x√
t− T

)
for (x, t) ∈ RN × (T,∞),

and a backward self-similar solution, or shrinker, is a solution of the form

m(x, t) = f

(
x√
T − t

)
for (x, t) ∈ RN × (−∞, T ),

for certain profile f : RN −→ S2. Expanders evolve from a singular value at time T , while
shrinkers evolve towards a singular value at time T .

Self-similar solutions have brought a lot of attention in the study on nonlinear PDEs
because they can provide some important information about the dynamics of the equation.
While expanders are related to nonuniqueness phenomena, resolution of singularities and long
time description of solutions, shrinkers are often related to phenomena of singularity formation
(see e.g. [GGS10, EF09]). On the other hand, the construction and understanding of the
dynamics and properties of self-similar solutions also provide an idea of which are the natural
spaces to develop a well-posedness theory, that captures these very often physically relevant
structures. Examples of equations for which self-similar solutions have been considered, and a
substantial work around these types of solutions has been done, include among others the
Navier–Stokes equation, semilinear parabolic equations, and geometric flows such as Yang-
Mills, mean curvature flow and harmonic map flow. We refer to [JST18, QS07, Ilm98, Str88]
and the references therein for more details.

Most of the works in the literature related to the study of self-similar solutions to the
LLG equation are confined to the heat flow for harmonic maps equation, i.e. α = 1. In this
setting, the main works on the subject restrict the analysis to corotational maps taking values
in Sd, which reduces the analysis of (HFHM) to the study of a second order real-valued ODE.
Then tools such as the maximum principle or the shooting method can be used to show the
existence of solutions. We refer to [Fan99, Gas02, GR11, BD18, BW15, BB11, GGM17] and
the references therein for more details on such results for maps taking values in Sd, with
d ≥ 3. Recently, Deruelle and Lamm [DL] have studied the Cauchy problem for the harmonic
map heat flow with initial data m0 : RN → Sd, with N ≥ 3 and d ≥ 2, where m0 is Lipschitz
0-homogeneous function, homotopic to a constant, which implies the existence of expanders
coming out of m0.

When 0 < α ≤ 1, we recently established the existence of self-similar expanders for the
LLG equation in [dLG19]. This result is a consequence of a well-possedness theorem for the
LLG equation considering an initial data m0 : RN → S2 in the space BMO of functions
of bounded mean oscillation. Notice that this result includes in particular the case of the
harmonic map heat flow. We will explain more precisely this result in Section 4.3.

As seen before, in absence of damping (α = 0), (4.1) reduces to the Schrödinger map
equation (4), which is reversible in time, so that the notions of expanders and shrinkers
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coincide. For this equation, Germain, Shatah and Zeng [GSZ10] established the existence of
(k-equivariant) self-similar profiles f : R2 → S2.

In the one-dimensional case, when α = 0, (4) is closely related Localized Induction
Approximation (LIA), and self-similar profiles f : R → S2 were obtained and analyzed in
[GRV03, GV04, LRT76b, But88]. In the context of LIA, self-similar solutions constitute a
family of smooth solutions that develop a singularity in the shape of a corner in finite time.
For further work related to these solutions, including the study of the continuation of these
solutions after the blow-up time and their stability, we refer to the reader to [BV18, BV09].
At the level of the Schrödinger map equation, these self-similar solutions provide examples of
smooth solutions that develop a jump singularity in finite time.

In the next section we explain how to construct the family of expanders profiles for
α ∈ [0, 1], and provide their analytical study [dLG15b]. In Section 4.3, we also discuss the
Cauchy problem associated with these solutions and their stability [dLG19]. Finally, in
Section 4.5, we construct and analyze the family of shrinkers profiles [dLG20]

4.2 Expanders in dimension one

We consider in this section equation (4.1) in dimension N = 1, and α ∈ [0, 1], in order to
include both the damped and undamped cases. We seek self-similar solutions of the form

m(x, t) = m

(
x√
t

)
, x ∈ R, t > 0. (4.2)

and we will say that m is the profile of the solution m. Observe that if m is a solution to
(4.1) given by a smooth profile m as in (4.2), then m solves the following system of ODEs

−xm
′

2
= βm×m′′ − αm× (m×m′′), on R, (4.3)

which recasts as

αm′′ + α|m′|2m + β(m×m′)′ +
xm′

2
= 0, on R, (4.4)

due to the fact that m takes values in S2. Thus, we can give a weak formulation to this
equation, in the sense that m ∈ H1

loc(R; S2) solves the system
�
R
A(m(x))m′(x) · ϕ′(x) =

�
R
G(x,m,m′)ϕ(x), for all ϕ ∈ C∞0 (R),

with

A(u) =

 α −βu3 βu2

βu3 α −βu1

−βu2 βu1 α,

 and G(x,u,p) =

αu1|p|2 − xp1
2

αu2|p|2 − xp2
2

αu3|p|2 − xp3
2

 ,

where u = (u1, u2, u3) and p = (p1, p2, p3). If α > 0, this system is uniformly elliptic, since

A(u)ξ · ξ = α|ξ|2, for all ξ,u ∈ R3.
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We can then invoke the regularity theory for quasilinear elliptic systems (see [LU68, Gia83]),
to verify that the solutions are smooth. In the limit case α = 0, we can show directly that the
solutions are also smooth. Most importantly, we have the following theorem that provides a
rigidity result concerning the possible solutions to (4.4): The modulus of the gradient of any
solution must be ce−αx

2/4, for some c ≥ 0.

Theorem 4.1. Let α ∈ [0, 1]. Assume that m ∈ H1
loc(R;S2) is a weak solution to (4.4). Then

m belongs to C∞(R; S2) and there exists c ≥ 0 such that |m′(x)| = ce−αx
2/4, for all x ∈ R.

In the limit cases α = 1 and α = 0, it is possible to find explicit solutions to (4.4), as we
will see later on. However, this seems unlikely in the case α ∈ (0, 1), and even the existence
of such solutions is not clear. We proceed now to give a way of to establish the existence of
solutions satisfying the condition |m′(x)| = ce−αx

2/4, for any c > 0 (notice that case c = 0 is
trivial), and any α ∈ [0, 1].

The idea is to look for m as the tangent vector to a curve in R3, so we first recall some
facts about curves in the space. Given m : R→ S2 a smooth function, we can define the curve

Xm(x) =

� x

0
m(s)ds, (4.5)

so that Xm is smooth, parametrized by arclenght, and its tangent vector is m. In addition,
if |m′| does not vanish on R, we can define the normal vector n(x) = m′(x)/|m′(x)| and the
binormal vector b(x) = m(x)× n(x). Moreover, we can define the curvature and torsion of
Xm as k(x) = |m′(x)| and τ(x) = −b′(x) · n(x). Since |m(x)|2 = 1, for all x ∈ R, we have that
m(x) · n(x) = 0, for all x ∈ R, that the vectors {m, n, b} are orthonormal and it is standard to
check that they satisfy the Serret–Frenet system

m′ = kn,

n′ = −km + τb,

b′ = −τn.
(4.6)

Let us apply this method to find a solution to (4.3). We define Xm as in (4.5), and we remark
that equation (4.3) rewrites in terms of {m, n, b} as

−x
2
kn = β(k′b− τkn)− α(−k′n− kτb).

Therefore, from the orthogonality of the vectors n and b, we conclude that the curvature and
torsion of Xm are solutions of the equations

−x
2
k = αk′ − βτk and βk′ + αkτ = 0,

that is

k(x) = ce−
αx2

4 and τ(x) =
βx

2
, (4.7)

for some c ≥ 0. Of course, the fact that k(x) = ce−αx
2/4 is in agreement with the fact that

we must have |m′(x)| = ce−αx
2/4.
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Now, given α ∈ [0, 1] and c > 0, consider the Serret–Frenet system (4.6) with curvature
and torsion function given by (4.7) and initial conditions

m(0) = (1, 0, 0), n(0) = (0, 1, 0), b(0) = (0, 0, 1). (4.8)

Then, by standard ODE theory, there exists a unique global solution {mc,α, nc,α, bc,α} in
(C∞(R;S2))3, and these vectors are orthonormal. Also, it is straightforward to verify that
mc,α is a solution to (4.3) (and to (4.4)) satisfying |m′c,α(x)| = ce−αx

2/4.

The above argument provides the existence of solutions in the statement of Theorem 4.1.
Finally, using the uniqueness of the Cauchy–Lipshitz theorem and the Serret–Frenet system,
it is simple to show the uniqueness of such solutions, up to rotations.

Theorem 4.2 ([dLG20]). The set of nonconstant solutions to (4.3) is {Rmc,α : c > 0,R ∈
SO(3)}, where SO(3) is the group of rotations about the origin preserving orientations.

The above proposition reduces the study of self-expanders to the understanding of the
family of self-expanders associated with the profiles {mc,α}c,α. The next result summarize the
properties of these solutions.

Theorem 4.3 ([dLG15b]). Let α ∈ [0, 1], c ≥ 0 and mc,α be the solution of the Serret–Frenet
system (4.6) with curvature and torsion given by (4.7) and initial conditions (4.8). Let

mc,α(x, t) = mc,α

(
x√
t

)
, for (x, t) ∈ R× (0,∞).

Then the following statements hold.

(i) The function mc,α is a C∞(R; S2)-solution of (4.1) on R× (0,∞).

(ii) There exist unitary vectors A±c,α = (A±j,c,α)3
j=1 ∈ S2 such that the following pointwise

convergence holds when t goes to zero:

lim
t→0+

mc,α(x, t) =

A
+
c,α, if s > 0,

A−c,α, if s < 0,

where A−c,α = (A+
1,c,α,−A+

2,c,α,−A+
3,c,α).

(iii) Moreover, there exists a constant C(c, α, p) such that for all t > 0

‖mc,α(·, t)−A+
c,αχR+(·)−A−c,αχR−(·)‖Lp(R) ≤ C(c, α, p)t

1
2p , (4.9)

for all p ∈ (1,∞). In addition, if α > 0, (4.9) also holds for p = 1. Here, χE denotes
the characteristic function of a set E.

(iv) For t > 0 and x ∈ R, the derivative in space satisfies

|∂xmc,α(x, t)| = c√
t
e−

αx2

4t . (4.10)
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Let us point out that the case c = 0 is trivial and corresponds to the constant solution

mc,α(x, t) = m

(
s√
t

)
= (1, 0, 0), ∀α ∈ [0, 1].

The graphics in Figure 4.1 depict the profile mc,α for fixed c = 0.8 and the values of
α = 0.01, α = 0.2, and α = 0.4. In particular, it can be observed how the convergence of mc,α

to A±c,α is accelerated by the diffusion α.

m1
m2

m3

(a) α = 0.01

m1
m2

m3

(b) α = 0.2

m1
m2

m3

(c) α = 0.4

Figure 4.1: The profile mc,α for c = 0.8 and different values of α.

Notice that the initial condition

m0
c,α := A+

c,αχR+ +A−c,αχR− , (4.11)

has a jump singularity at the point x = 0 whenever the vectors A+
c,α and A−c,α satisfy

A+
c,α 6= A−c,α.

In this situation (and we will be able to prove analytically that this is the case, at least for
certain ranges of the parameters α and c, see Proposition 4.7 below), Theorem 4.3 provides a
bi-parametric family of global smooth solutions of (4.1) associated to a discontinuous singular
initial data (jump-singularity).

As has been already mentioned, in the absence of damping (α = 0), singular self-similar
solutions of the Schrödinger map equation were previously obtained in [GRV03], [LRT76b]
and [But88]. In this framework, Theorem 4.3 establishes the persistence of a jump singularity
for self-similar solutions in the presence of dissipation.

When α = 0, the stability of the self-similar solutions was considered in a series of papers
by Banica and Vega [BV09, BV12, BV13]. The stability in the case α > 0 is a natural
question that we will discuss in Section 4.3.



Expanders in dimension one 59

Some further remarks on the results stated in Theorem 4.3 are in order. First, the total
energy E(t) of the mc,α(x, t) for α > 0, is given by

E(t) =
1

2

� ∞
−∞
|∂xmc,α(x, t)|2 dx =

1

2

� ∞
−∞

(
c√
t
e−

αx2

4t

)2

dx = c2

√
π

αt
, t > 0. (4.12)

It is evident from (4.12) that the total energy at the initial time t = 0 is infinite, while the
total energy becomes finite for all positive times, showing the dissipation of energy in the
system in the presence of damping.

Secondly, it is also important to remark that in the setting of Schrödinger equations, for
fixed α ∈ [0, 1] and c > 0, the solution mc,α of (4.1) established in Theorem 4.3 is associated
through the Hasimoto transformation (19) with the filament function

uc,α(x, t) =
c√
t
e(−α+iβ)x

2

4t , (4.13)

which solves

i∂tu+(β− iα)∂xxu+
u

2

(
β|u|2 + 2α

� x

0
Im(ū∂xu)−A(t)

)
= 0, with A(t) =

βc2

t
, (4.14)

and is such that at as t→ 0+

uc,α(x, 0) := lim
t→0+

uc,α(x, t) = 2c
√
π(α+ iβ)δ0, in S′(R).

Here δ0 denotes the Dirac delta function at the origin, and
√
z denotes the square root of a

complex number z such that Im(
√
z) > 0.

Notice that the solution uc,α(x, t) is very rough at initial time, and in particular uc,α(x, 0)
does not belong to the Sobolev class Hs(R), for any s ≥ 0. Therefore, the standard arguments
(i.e. a Picard iteration scheme based on Strichartz estimates and Sobolev–Bourgain spaces)
cannot be applied, at least not in a straightforward way, to study the local well-posedness of
the initial value problem for the Schrödinger equations (4.14). The existence of solutions to
equation (4.14) associated with an initial data proportional to a Dirac delta opens the question
of developing a well-posedness theory for Schrödinger equations of the type considered here
to include initial data of infinite energy. In the case α = 0, A(t) = 0 and when the initial
condition is proportional to the Dirac delta, Kenig, Ponce and Vega [KPV01] proved that
the Cauchy problem for (4.14) is ill-posed due to some oscillations. Moreover, even after
removing these oscillations, Banica and Vega [BV09] showed that the associated equation
(4.14) (with α = 0 and A(t) = c2/t) is still ill-posed. This question was also addressed by
Vargas and Vega in [VV01] and Grünrock in [Grü05] for other types of initial data of infinite
energy (see also [BV08] for a related problem), but we are not aware of any results in this
setting when α > 0 (see [GD08] for related well-posedness results in the case α > 0 for initial
data in Sobolev spaces of positive index). Notice that when α > 0 , the solution (4.13) has
infinite energy at the initial time, however the energy becomes finite for any t > 0. Moreover,
as a consequence of the exponential decay in the space variable when α > 0, uc,α(t) ∈ Hm(R),
for all t > 0 and m ∈ N. Hence, these solutions do not fit into the usual functional framework
for solutions of the Schrödinger equations (4.14).
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4.2.1 Asymptotics for the profile

In this section we study the qualitative and quantitative effect of the damping α and the
parameter c on the dynamical behavior of the family (mc,α)c,α of self-similar solutions of
(4.1) found in Theorem 4.3. Precisely, in an attempt to fully understand the regularization
of the solution at positive times close to the initial time t = 0, and to understand how the
presence of damping affects the dynamical behavior of these self-similar solutions, we aim to
give answers to the following questions:

Q1: Can we obtain a more precise behavior of the solutions mc,α(x, t) at positive times t
close to zero?

Q2: Can we understand the limiting vectors A±c,α in terms of the parameters c and α?

In order to address our first question, we observe that, due to the self-similar nature
of these solutions, the behavior of the family of solutions mc,α at positive times close to
the initial time t = 0 is directly related to the study of the asymptotics of the associated
profile mc,α(x) for large values of |x|. In addition, the symmetries of mc,α (see Theorem 4.4
below) allow to reduce ourselves to obtain the behavior of the profile as x→∞. The precise
asymptotics of the profile is given in the following theorem.

Theorem 4.4 ([dLG15b]). Let α ∈ [0, 1] and c > 0.

(i) (Symmetries). The components of mc,α, nc,α and bc,α satisfy respectively that

• m1,c,α is an even function, and mj,c,α is an odd function for j ∈ {2, 3}.
• n1,c,α and b1,c,α are odd functions, while nj,c,α and bj,c,α are even functions for
j ∈ {2, 3}.

(ii) (Asymptotics). There exist a unit vector A+
c,α ∈ S2, and B+

c,α ∈ R3 such that the

following asymptotics hold for all s ≥ s0 = 4
√

8 + c2:

mc,α(s) =A+
c,α −

2c

s
B+
c,αe

−αs2/4(α sin(φc,α(s)) + β cos(φc,α(s)))

− 2c2

s2
A+
c,αe

−αs2/2 +O

(
e−αs

2/4

s3

)
, (4.15)

nc,α(s) =B+
c,α sin(φc,α(s)) +

2c

s
A+
c,ααe

−αs2/4 +O

(
e−αs

2/4

s2

)
,

bc,α(s) =B+
c,α cos(φc,α(s)) +

2c

s
A+
c,αβe

−αs2/4 +O

(
e−αs

2/4

s2

)
. (4.16)

Here, sin(φc,α) and cos(φc,α) are understood acting on each of the components of
φc,α = (φ1,cα, φ2,c,α, φ3,c,α), with

φj,c,α(s) = aj,α,c + β

� s2/4

s20/4

√
1 + c2

e−2ασ

σ
dσ, j ∈ {1, 2, 3}, (4.17)
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for some constants a1,α,c, a2,α,c, a1,α,c ∈ [0, 2π), and the vector B+
c,α is given in terms of

A+
c,α = (A+

j,c,α)3
j=1 by

B+
c,α = ((1− (A+

1,c,α)2)1/2, (1− (A+
2,c,α)2)1/2, (1− (A+

3,c,α)2)1/2).

As we will see later, the convergence and rate of convergence of the solutions mc,α

established in parts (ii) and (iii) of Theorem 4.3, will be obtained as a consequence of the
more refined asymptotic analysis of the associated profile given in Theorem 4.4.

With regard to the asymptotics of the profile established in part (ii) of Theorem 4.4,
it is important to mention that the errors in the asymptotics in Theorem 4.4-(ii) depend
only on c. In other words, the bounds for the errors terms are independent of α ∈ [0, 1].
More precisely, we use the notation O(f(s)) to denote a function for which exists a constant
C(c) > 0 depending on c, but independent on α, such that

|O (f(s))| ≤ C(c)|f(s)|, for all s ≥ s0.

At first glance, one might think that the term −2c2A+
c,αe

−αs2/2/s2 in (4.15) could be included

in the error term O(e−αs
2/4/s3). However, we cannot do this because

e−αs
2/2

s2
>
e−αs

2/4

s3
, for all 2 ≤ s ≤

(
2

3α

)1/2

, α ∈ (0, 1/8], (4.18)

and in our notation the big-O must be independent of α. (The exact interval where the
inequality in (4.18) holds can be determined using the so-called Lambert W function.)

When α = 1 (so β = 0), we can solve explicitly the Serret–Frenet system, to obtain

mc,1(s) = (cos(cErf(s)), sin(cErf(s)), 0),

nc,1(s) = −(sin(cErf(s)), cos(cErf(s)), 0),

bc,1(s) = (0, 0, 1),

for all s ∈ R, where Erf is the non-normalized error function

Erf(s) =

� s

0
e−σ

2/4 dσ.

In particular, the limiting vectors A+
c,1 and A−c,1 in Theorem 4.4 are given in terms of c by

A±c,1 = (cos(c
√
π),± sin(c

√
π), 0), (4.19)

and we have

mc,1(s) = A+
c,1 −

2c

s
B+
c,1e
−s2/4 sin(ac,1)− 2c2

s2
A+
c,1e
−s2/2 +O

(
e−s

2/4

s3

)
,

nc,1(s) = B+
c,1 sin(ac,1) +

2c

s
A+
c,1e
−s2/4 − 2c2

s2
B+
c,1e
−s2/2 sin(ac,1) +O

(
e−s

2/4

s3

)
,

bc,1(s) = B+
c,1 cos(ac,1),
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where
B+
c,1 = (| sin(c

√
π)|, | cos(c

√
π)|, 1),

and ac,1 = (a1,c,1, a2,c,1, 0), with

a1,c,1 =

{
3π
2 , if sin(c

√
π) ≥ 0,

π
2 , if sin(c

√
π) < 0,

a2,c,1 =

{
π
2 , if cos(c

√
π) ≥ 0,

3π
2 , if cos(c

√
π) < 0.

When α = 0, the solution of (4.6) can be solved explicitly in terms of parabolic cylinder
functions or confluent hypergeometric functions (see [GL19, AS64]). Another analytical
approach using Fourier analysis techniques has been taken in [GRV03], leading to the asymp-
totics

mc,0(s) =A+
c,0 −

2c

s
B+
c,0 +O

(
1/s2

)
,

nc,α(s) =B+
c,0 sin(ψc(s)) +O (1/s) ,

bc,α(s) =B+
c,0 cos(ψc(s)) +O (1/s) ,

(4.20)

where

ψj,c = bj,c +
s2

4
+ c2 ln(s), (4.21)

for some constants bj,c, j ∈ {1, 2, 3}. Moreover, denoting by Γ the Euler Gamma function,
A+
c,0 is explicitly given by

A+
1,c,0 = e−

πc2

2 ,

A+
2,c,0 = 1− e−

πc2

4

8π
sinh(πc2/2)|cΓ(ic2/4) + 2eiπ/4Γ(1/2 + ic2/4)|2,

A+
3,c,0 = 1− e−

πc2

4

8π
sinh(πc2/2)|cΓ(ic2/4)− 2e−iπ/4Γ(1/2 + ic2/4)|2.

(4.22)

On the other hand, for fixed j ∈ {1, 2, 3}, we can write φc,α in (4.17) as

φj,c,α(s) = aj,c,α +
s2

4
+ c2 ln(s) + C(c) +O

(
1/s2

)
,

so that we recover the logarithmic contribution in the oscillation in (4.21).

When α > 0, φc,α behaves like

φj,c,α(s) = aj,c,α +
βs2

4
+ C(α, c) +O

(
e−αs

2/2

αs2

)
,

and there is no logarithmic correction in the oscillations in the presence of damping.

Consequently, the phase function φc,α captures the different nature of the oscillatory
character of the solutions in both the absence and the presence of damping in the system of
equations.
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It can be seen that the terms A+
c,α, B+

c,α = (B+
j )3

j=1, B+
j sin(aj) and B+

j cos(aj), j ∈
{1, 2, 3}, and the error terms in Theorem 4.4-(ii) depend continuously on α ∈ [0, 1]. Therefore,
the asymptotics (4.15)–(4.16) show how the profile mc,α converges to mc,0 as α→ 0+ and to
mc,1 as α→ 1−. In particular, we recover the asymptotics in (4.20).

Finally, the amplitude of the leading order term controlling the wave-like behavior of
the solution mc,α(s) around A±c,α for values of s sufficiently large is of the order c e−αs

2/4/s,
from which one observes how the convergence of the solution to its limiting values A±c,α is
accelerated in the presence of damping in the system, as depicted in Figure 4.1.

4.2.2 Dependence on the parameters

Let us discuss now some results answering the second of our questions Q2. Bearing in mind
that A−c,α is expressed in terms of the coordinates of A+

c,α as A−c,α = (A+
1,c,α,−A+

2,c,α,−A+
3,c,α)

(see part (ii) of Theorem 4.3), we only need to focus on A+
c,α. When α = 1 or α = 0, the vector

A+
c,α is explicitly given in terms of the parameter c in formulas (4.19) and (4.22), respectively.

However, when α ∈ (0, 1), we do not have explicit expressions for these vectors. The purpose
of Theorems 4.5 and 4.6 below is therefore to establish the dependence of A±c,α with respect
to the parameters α and c. Theorem 4.5 provides the behavior of the limiting vector A+

c,α for
a fixed value of α ∈ (0, 1] and “small” values of c > 0, while Theorem 4.6 states the behavior
of A+

c,α for fixed c > 0, and α close to the limiting values α = 0 and α = 1.

Theorem 4.5 ([dLG15b]). Let α ∈ [0, 1], c > 0, and A+
c,α = (A+

j,c,α)3
j=1 be the unit vector

given in Theorem 4.4. Then A+
c,α is a continuous function of c ≥ 0. Moreover, if α ∈ (0, 1]

the following inequalities hold true.

|A+
1,c,α − 1| ≤ c2π

α

(
1 +

c2π

8α

)
,

∣∣∣∣∣A+
2,c,α − c

√
π(1 + α)√

2

∣∣∣∣∣ ≤ c2π

4
+

c2π

α
√

2

(
1 +

c2π

8
+ c

√
π(1 + α)

2
√

2

)
+

(
c2π

2
√

2α

)2

,

∣∣∣∣∣A+
3,c,α − c

√
π(1− α)√

2

∣∣∣∣∣ ≤ c2π

4
+

c2π

α
√

2

(
1 +

c2π

8
+ c

√
π(1− α)

2
√

2

)
+

(
c2π

2
√

2α

)2

.

In particular A+
c,α → (1, 0, 0) as c→ 0+, for any α ∈ [0, 1].

Theorem 4.6. Let c > 0, α ∈ [0, 1] and A+
c,α be the unit vector given in Theorem 4.4. Then

A+
c,α is a continuous function of α in [0, 1], and the following inequalities hold true.

|A+
c,α −A+

c,0| ≤ C(c)
√
α| ln(α)|, for all α ∈ (0, 1/2],

|A+
c,α −A+

c,1| ≤ C(c)
√

1− α, for all α ∈ [1/2, 1].

Here, C(c) is a positive constant depending on c but independent of α.
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As a by-product of Theorems 4.5 and 4.6, we obtain the following proposition which asserts
that the solutions mc,α of the LLG equation found in Theorem 4.3 are indeed associated to a
discontinuous initial data at least for certain ranges of α and c.

Proposition 4.7. With the same notation as in Theorems 4.3 and 4.4, the following state-
ments hold.

(i) For fixed α ∈ (0, 1] there exists c∗ > 0 depending on α such that

A+
c,α 6= A−c,α for all c ∈ (0, c∗).

(ii) For fixed c > 0, there exists α∗0 > 0 small enough such that

A+
c,α 6= A−c,α for all α ∈ (0, α∗0).

(iii) For fixed 0 < c 6= k
√
π with k ∈ N, there exists α∗1 > 0 with 1− α∗1 > 0 small enough

such that
A+
c,α 6= A−c,α for all α ∈ (α∗1, 1).

Remark 4.8. From (4.22) we get A+
c,0 6= A−c,0 for all c > 0. Based on the numerical results

in [dLG15b], we conjecture that A+
c,α 6= A−c,α for all α ∈ (0, 1) and c > 0.

In the next section we provide a framework to study the Cauchy problem associated with
LLG, when considering a perturbation of a self-similar solution mcα, as initial condition. In
addition, as an application of previous results, we will see that when α is close to 1, there are
multiple smooth solutions associated with the same initial condition.

4.2.3 Elements of the proofs of Theorems 4.3 and 4.4

Classical changes of variables from the differential geometry of curves allow us to reduce the
nine equations in the Serret–Frenet system into three complex-valued second order equations
(see [Dar93, Str50, Lam80]). These changes of variables are related to the stereographic
projection; this approach was used in [GRV03]. However, their choice of stereographic
projection has a singularity at the origin, which leads to an indetermination of the initial
conditions of some of the new variables. For this reason, we consider in the following lemma
a stereographic projection that is compatible with the initial conditions (4.8).

Lemma 4.9. Let (m,n, b) be a solution of the Serret–Frenet equations (4.6) with positive
curvature k and torsion τ . Then, for each j ∈ {1, 2, 3}, the function

fj(s) = e
1
2

� s
0 k(σ)ηj(σ) dσ, with ηj(s) =

(nj(s) + ibj(s))

1 +mj(s)
,

solves the equation

f ′′j (s) +

(
iτ(s)− k′(s)

k(s)

)
f ′j(s) +

k2(s)

4
fj(s) = 0,
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with initial conditions

fj(0) = 1, f ′j(0) =
k(0)(nj(0) + ibj(0))

2(1 +mj(0))
.

Moreover, the coordinates of m, n and b are given in terms of fj and f ′j by

mj(s) = 2

(
1 +

4

k(s)2

∣∣∣∣f ′j(s)fj(s)

∣∣∣∣2
)−1

−1, nj(s)+ ibj(s) =
4f ′j(s)

k(s)fj(s)

(
1 +

4

k(s)2

∣∣∣∣f ′j(s)fj(s)

∣∣∣∣2
)−1

.

The above relations are valid at least as long as mj > −1 and |fj | > 0.

Going back to our problem, Lemma 4.9 reduces the analysis of the solution {mc,α, nc,α, bc,α}
of the Serret–Frenet system (16) with curvature and torsion given by (4.7) and initial conditions
(4.8), to the study of three solutions to second order differential equation1

f ′′(s) +
s

2
(α+ iβ)f ′(s) +

c2

4
e−αs

2/2f(s) = 0, (4.23)

associated with three initial conditions, that we denote f1, f2 and f3. More precisely,

• For (m1, n1, b1) = (1, 0, 0) the associated initial condition for f1 is

f1(0) = 1, f ′1(0) = 0. (4.24)

• For (m2, n2, b2) = (0, 1, 0) the associated initial condition for f2 is

f2(0) = 1, f ′2(0) = c/2. (4.25)

• For (m3, n3, b3) = (0, 0, 1) the associated initial condition forf3 is

f3(0) = 1, f ′3(0) = ic/2. (4.26)

It is important to notice that, by multiplying (4.23) by e
αs2

2 f̄ ′ and taking the real part, it is
easy to see that

d

ds

[
1

2

(
e
αs2

2 |f ′|2 +
c2

4
|f |2

)]
= 0.

Thus,

E(s) : =
1

2

(
e
αs2

2 |f ′|2 +
c2

4
|f |2

)
= E0, ∀ s ∈ R, (4.27)

with E0 a constant defined by the value of E(0). Indeed, the energies associated to the initial
conditions (4.24)–(4.26) are respectively

E0,1 =
c2

8
, E0,2 =

c2

4
and E0,3 =

c2

4
. (4.28)

1We write f instead fc,α for notational simplicity.
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It follows from (4.28) and the formulas in Lemma 4.9, that

m1,c,α(s) = 2|f1(s)|2 − 1, n1,c,α(s) + ib1,c,α(s) =
4

c
eαs

2/4f̄1(s)f ′1(s), (4.29)

mj,c,α(s) = |fj(s)|2 − 1, nj,c,α(s) + ibj,c,α(s) =
2

c
eαs

2/4f̄j(s)f
′
j(s), j ∈ {2, 3}. (4.30)

Let us remark that by Lemma 4.9, formulas (4.29) and (4.30) are valid as long as mj > −1,
which is equivalent to the condition |fj | 6= 0. However, the trihedron {mc,α, nc,α, bc,α} is
defined globally and fj can also be extended globally as the solution of the linear equation
(4.23). Then, it is simple to verify that the functions given by the l.h.s. of formulae (4.29) and
(4.30) satisfy the Serret–Frenet system and hence, by the uniqueness of the solution, formulas
(4.29) and (4.30) are valid for all s ∈ R.

Unlike in the critical cases α = 0 and α = 1, if α ∈ (0, 1), no explicit solutions are known
for (4.23), and the term containing the exponential in this equation makes it difficult to use
the Fourier analysis methods in [GRV03] to study analytically the behavior of the solutions.
As fundamental step in the analysis of the behavior of the solutions to (4.23), we generalize
an idea from [GV04] consisting in introducing new real valued variables z, h and y defined by

z = |f |2, y = Re(f̄f ′) and h = Im(f̄f ′) (4.31)

in terms of solutions f of (4.23), that satisfies the linear system

z′ = 2y, (4.32)

y′ = β
s

2
h− αs

2
y + e−αs

2/2

(
2E0 −

c2

2
z

)
, (4.33)

h′ = −β s
2
y − αs

2
h. (4.34)

In particular, it follows from (4.27) that for all s ∈ R,

|f(s)| ≤
√

8E0

c
, |f ′(s)| ≤

√
2E0 e

−αs2/4, |z(s)| ≤ 8E0

c2
, |h(s)|+ |y(s)| ≤ 8E0

c
e−αs

2/4. (4.35)

As we will see later on, these variables are the “natural” ones in our problem, in the sense
that the components of the tangent, normal and binormal vectors can be written in terms of
these quantities as follows

m1,c,α = 2z1 − 1, n1,c,α =
4

c
eαs

2/4 y1, b1,c,α =
4

c
eαs

2/4 h1,

mj,c,α = zj − 1, nj,c,α =
2

c
eαs

2/4 yj , bj,c,α =
2

c
eαs

2/4 hj , j ∈ {2, 3},

where we have used the evident notation zj = |fj |2, yj = Re(f̄jf
′
j) and hj = Im(f̄jf

′
j).

It is important to emphasize that, in order to obtain error bounds in the asymptotic
analysis independent of the damping parameter α, we need uniform estimates for α ∈ [0, 1].
We begin our analysis by establishing the following result.
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Proposition 4.10. Let c > 0 and α ∈ [0, 1]. Let (z, y, h) be a solution of the system
(4.32)–(4.34). Then the limit z∞ : = lims→∞ z(s) exists and for all s ≥ s0 := 4

√
8 + c2, we

have

z(s)− z∞ = −4

s
(αy + βh)− 4γ

s2
e−αs

2/2 +R0(s), (4.36)

where

|R0(s)| ≤ C(E0, c)
e−αs

2/4

s3
, (4.37)

and γ := 2E0 − c2z∞/2.

The fact that z admits a limit at infinity, can be seen plugging (4.32) into (4.34), and
integrating from 0 to some s > 0, so that

z(s)− 1

s

� s

0
z(σ) dσ = − 4

βs

(
h(s)− h(0) +

α

2

� s

0
σh(σ) dσ

)
. (4.38)

Also, notice that

d

ds

(
1

s

� s

0
z(σ) dσ

)
= − 4

βs2

(
h(s)− h(0) +

α

2

� s

0
σh(σ) dσ

)
. (4.39)

Now, since from (4.35), we have |h(s)| ≤ (8E0/c) e
−αs2/4, both h and α

� s
0 σh(σ) dσ are

bounded functions, thus from (4.39) it follows that the limit of 1
s

� s
0 z exists, as s → ∞.

Hence, (4.38) and previous observations imply that the limit z∞ := lims→∞ z(s) exists and
furthermore

z∞ := lim
s→∞

z(s) = lim
s→∞

1

s

� s

0
z(σ).

The asymptotics in (4.36)–(4.37) follow integrating (4.39), using (4.32)–(4.34) and several
integrations by parts.

Formula (4.36) in Proposition 4.10 gives z in terms of y and h. Therefore, we can reduce
our analysis to that of the variables y and h. In fact, a first attempt could be to define
w = y + ih, so that from (4.33) and (4.34), we see that w solves(

we(α+iβ)s2/4
)′

= e(−α+iβ)s2/4

(
γ − c2

2
(z − z∞)

)
.

From (4.35) and (4.2.3), we see that the limit w∗ = lims→∞w(s)e(α+iβ)s2/4 exists (at least
when α 6= 0), and integrating (4.2.3) from some s > 0 to ∞, we find that

w(s) = e−(α+iβ)s2/4

(
w∗ −

� ∞
s

e(−α+iβ)σ2/4

(
γ − c2

2
(z − z∞)

)
dσ

)
.

In order to obtain an asymptotic expansion, we need to estimate
�∞
s e(−α+iβ)σ2/4(z − z∞),

for s large. This can be achieved using (4.35),∣∣∣∣� ∞
s

e(−α+iβ)σ2/4(z − z∞) dσ

∣∣∣∣ ≤ C(E0, c)

� ∞
s

e−ασ
2/2

σ
dσ (4.40)
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and the asymptotic expansion

� ∞
s

e−ασ
2/2

σ
dσ = e−αs

2/2

(
1

αs2
− 2

α2s4
+

8

α3s6
+ · · ·

)
.

However, this estimate diverges as α→ 0. The problem is that the bound used in obtaining
(4.40) does not take into account the cancellations due to the oscillations. Therefore, and in
order to obtain the asymptotic behavior of z, y and h valid for all α ∈ [0, 1], we need a more
refined analysis. The next key proposition provides the asymptotics for the system (4.32)–
(4.34), considering the cancellations due to oscillations (see Lemma 4.12 below). Theorems 4.3
and 4.4 are consequences of these asymptotics.

Proposition 4.11. There is s1 such that for all s ≥ s1,

y(s) = be−αs
2/4 sin(φ(s1; s))− 2αγ

s
e−αs

2/2 +O

(
e−αs

2/2

β2s2

)
,

h(s) = be−αs
2/4 cos(φ(s1; s))− 2βγ

s
e−αs

2/2 +O

(
e−αs

2/2

β2s2

)
,

where

φ(s1; s) = a+ β

� s2/4

s21/4

√
1 + c2

e−2αt

t
dt,

a ∈ [0, 2π) is a real constant, and b is given by b2 = (2E0 − c2z∞/4)z∞.

Let us give some details about the proof of this proposition. First, notice that plugging
the expression for z(s)− z∞ in (4.36) into (4.33), and introducing the new variables, u(t) =
eαty(2

√
t) and v(t) = eαth(2

√
t), we recast the system as(

u
v

)′
=

(
αK β(1 +K)
−β 0

)(
u
v

)
+

(
F
0

)
, (4.41)

with

K =
c2e−2αt

t
, F = γ

e−αt√
t

+
e−αt√
t
R1(2

√
t), R1(s) = −c

2

2
e−αs

2/2R0(s) +
2c2γe−αs

2

s2

In this way, we can see (4.41) as a non-autonomous system. It is straightforward to check
that the matrix

A =

(
αK β(1 +K)
−β 0

)
is diagonalizable, i.e. A = PDP−1, with D = diag(λ+, λ−)

P =

(−αK
2β − i∆1/2 −αK

2β + i∆1/2

1 1

)
, λ± =

αK

2
± iβ∆1/2, ∆ = 1 +K − α2K2

4β2
.
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Thus, defining ω = (ω1, ω2) = P−1(u, v), we see that ω1 = ω̄2, and we get

ω1(t) = e
� t
t1
λ+

(
ω1(t1) + ω∞ −

� ∞
t

e
−

� τ
t1
λ+G(τ) dτ

)
,

for some ω∞ ∈ C, where

G(t) = i
αK ′

4β∆1/2
(ω1 + ω̄1)− ∆′

4∆
(ω1 − ω̄1) + i

F

2∆1/2
.

Using Lemma 4.12, a careful analyze allows to deduce that

ω1(t) =
b

2
ei(βI(t)+a) − γ(β + iα)e−αt

2t1/2
+Rω1(t) with |Rω1(t)| ≤ C(E0, c)e

−αt

β2t
,

for some real constants a and b, with b ≥ 0 and a ∈ [0, 2π). Then the conclusion follows going
back to the definition of ω, so that (u, v) = P (ω1, ω̄1).

In the proof of Proposition 4.11, we have used the following key lemma that establishes
the control of certain integrals by exploiting their oscillatory character. The proof is based on
repeated integration by parts, in the spirit of the method of stationary phase.

Lemma 4.12. With the same notation as in the proof of Proposition 4.11.

(i) Let g ∈ C1((t1,∞)) such that

|g(t)| ≤ L/ta and |g′(t)| ≤ L
(
α

ta
+

1

ta+1

)
,

for some constants L, a > 0. Then, for all t ≥ t1 and l ≥ 1
� ∞
t

e
−

� τ
t1
λ+e−lατg(τ) dτ =

1

(lα+ iβ)
e
−

� t
t1
λ+e−lαtg(t) +G(t),

with |G(t)| ≤ C(l, a, c)Le−lαt/(βta).

(ii) If in addition g ∈ C2((t1,∞)),

|g′(t)| ≤ L/ta+1 and |g′′(t)| ≤ L
(

α

ta+1
+

1

ta+2

)
,

then |G(t)| ≤ C(l, a, c)Le−lαt/(βta+1).

Here C(l, a, c) is a positive constant depending only on l, a and c.

4.2.4 Elements of the proofs of Theorems 4.5 and 4.6

In this subsection, we provide some details about the dependence on the parameters c ad
α of the limit vector A+

c,α. In view of (4.29), (4.30) and (4.31), we reduce our study to the
properties of

z∞,c,α := lim
s→∞

|fc,α(s)|2,
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where fc,α is a solution of (4.23) with E0 > 0 defined in (4.27). We assume that the initial
conditions fc,α(0) and f ′c,α(0) depend smoothly on c and that they are independent of α, as
in (4.24), (4.25) and (4.26). Hence, Theorem 4.5 is a consequence of the following result.

Proposition 4.13. Let α ∈ [0, 1]. Then z∞,c,α is a continuous function of c ∈ (0,∞).
Moreover, if α ∈ (0, 1], the following estimate holds∣∣∣∣∣z∞,c,α −

∣∣∣∣fc,α(0) +
f ′c,α(0)

√
π√

α+ iβ

∣∣∣∣2
∣∣∣∣∣ ≤
√

2E0cπ

α

∣∣∣∣fc,α(0) +
f ′c,α(0)

√
π√

α+ iβ

∣∣∣∣+

(√
2E0cπ

2α

)2

.

The idea of the proof of Proposition 4.13 is that multiplying (4.23) by e(α+iβ)s2/4, we get

(f ′e(α+iβ)s2/4)′ = −c
2

4
f(s)e(−α+iβ)s2/4.

Hence, integrating twice, we have f(s) = f(0) +G(s) + F (s), where

G(s) = f ′(0)

� s

0
e−(α+iβ)σ2/4 dσ and F (s) = −c

2

4

� s

0
e−(α+iβ)σ2/4

� σ

0
e(−α+iβ)τ2/4f(τ) dτ dσ.

The result follows using the bounds in (4.35), letting s→∞ and noticing that

lim
s→∞

G(s) = f ′(0)

� ∞
0

e−(α+iβ)σ2/4 dσ = f ′(0)

√
π√

α+ iβ
.

The dependence of z∞,c,α on α, for fixed c, is more involved. The first step is to get some
bounds on the derivative with respect to α of the function fc,α.

Lemma 4.14. Let α ∈ (0, 1). There exists a constant C(c), depending on c but not on α,
such that for all s ≥ 0,∣∣∣∣ ∂∂αfc,α(s)

∣∣∣∣ ≤ C(c)s2√
α(1− α)

,

∣∣∣∣ ∂2

∂α∂s
fc,α(s)

∣∣∣∣ ≤ e−αs2/4 C(c)s2√
α(1− α)

. (4.42)

To obtain this estimate, it is enough to differentiate (4.23) with respect to α, multiply by
∂sη̄, take real part and integrate, to get

1

2
∂s
(
|∂sη|2

)
+
αs

2
|∂sη|2 +

c2

8
∂s
(
|η|2
)
e−αs

2/2 = Re(g∂sη̄).

Then (4.42) follows by invoking a Gronwall argument.

To conclude the idea of the proof of Theorem 4.6, let us set z(s, α) = zc,α(s), y(s, α) =
yc,α(s), z∞(α) = z∞,c,α. We also fix α1, α2 ∈ (0, 1] with α1 < α2. By classical results from
the ODE theory, the functions y(s, α), and z(s, α) are smooth in R× [0, 1) and continuous in
R× [0, 1] (see e.g. [CL55, Har64]). Hence, integrating (4.32) with respect to s, we deduce that

z∞(α2)− z∞(α1) = 2

� ∞
0

(y(s, α2)− y(s, α1)) ds = 2

� ∞
0

� α2

α1

∂µy(s, µ) dµ ds.
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To estimate the last integral, we remark that differentiating the relation y(s, µ) = Re(f̄(s, µ)∂sf(s, µ)),
with respect to µ, and using (4.35) and (4.42), we have

|∂µy(s, µ)| ≤ |∂µf(s, µ)||∂sf(s, µ)|+ |f(s, µ)||∂2
µsf(s, µ)| ≤ e−µs2/4 C(c)s2√

µ(1− µ)
.

Then, using that

� α2

α1

|∂µy(s, µ)| dµ ≤ C(c)
s2

√
α1

2
(√

1− α1e
−α1s2/4 −

√
1− α2e

−α2s2/4
)
,

and analyzing the involved integrals, we can deduce the estimates in Theorem 4.6.

4.3 The Cauchy problem for LLG in BMO

A natural question in the study of the stability properties of the family of solutions (mc,α)c>0

is whether or not it is possible to develop a well-posedness theory for the Cauchy problem
for (4.1) in a functional framework that allows us to handle initial conditions of the type
(4.11). In view of (4.11) and (4.12), such a framework should allow some “rough” functions
(i.e. function spaces beyond the “classical” energy ones) and step functions.

A few remarks about previously known results in this setting are in order. In the case α > 0,
global well-posedness results for (4.1) have been established in N ≥ 2 by Melcher [Mel12]
and by Lin, Lai and Wang [LLW15] for initial conditions with a smallness condition on the
gradient in the LN (RN ) and the Morrey M2,2(RN ) norm2, respectively. Therefore, these
results do not apply to the initial condition m0

c,α. When α = 1, global well-posedness results
for the heat flow for harmonic maps (HFHM) have been obtained by Koch and Lamm [KL12]
for an initial condition L∞-close to a point and improved to an initial data with small BMO
semi-norm by Wang [Wan11]. The ideas used in [KL12] and [Wan11] rely on techniques
introduced by Koch and Tataru [KT01] for the Navier–Stokes equation. Since m0

c,α has a
small BMO semi-norm if c is small, the results in [Wan11] apply to the case α = 1.

In this section we explain the main results in [dLG19] that allow us to adapt and extend
the techniques developed in [KL12, KT01, Wan11] to prove a global well-posedness result
for (4.1) with α ∈ (0, 1], for data m0 in L∞(RN ;S2) with small BMO semi-norm. As an
application of these results, we can establish the stability of the family of self-similar solutions
(mc,α)c>0 and derive further properties for these solutions. In particular, we can prove the
existence of multiple smooth solutions of (4.1) associated with the same initial condition,
provided that α is close to one.

Our approach to study the Cauchy problem for (4.1) consists in analyzing the Cauchy
problem for the associated dissipative quasilinear Schrödinger equation through the stereo-
graphic projection, and then “transferring” the results back to the original equation. To this

2We recall that v ∈M2,2(RN ) if v ∈ L2
loc(RN ) and ‖v‖M2,2 := sup

x∈RN

r>0

1

r(N−2)/2 ‖v‖L2(Br(x)) <∞.
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end, we introduce the stereographic projection from the South Pole:

P(m) =
m1 + im2

1 +m3
.

Letm be a smooth solution of (4.1) with m3 > −1, then its stereographic projection u = P(m)
satisfies the quasilinear dissipative Schrödinger equation (see e.g. [LN84] for details)

iut + (β − iα)∆u = 2(β − iα)
ū(∇u)2

1 + |u|2 . (DNLS)

At least formally, the Duhamel formula gives the integral equation:

u(x, t) = Sα(t)u0 +

� t

0
Sα(t− s)g(u)(s) ds, (IDNLS)

where u0 = u(·, 0) corresponds to the initial condition,

g(u) = −2i(β − iα)
ū(∇u)2

1 + |u|2

and Sα(t) is the dissipative Schrödinger semigroup (also called the complex Ginzburg–Landau
semigroup) given by Sα(t)φ = e(α+iβ)t∆φ, i.e.

(Sα(t)φ)(x) =

�
RN

Gα(x− y, t)φ(y) dy, with Gα(x, t) =
e
− |x|2

4(α+iβ)t

(4π(α+ iβ)t)N/2
. (4.43)

One difficulty in studying (IDNLS) is to handle the term g(u). We see that |g(u)| ≤ |∇u|2,
so we need to control |∇u|2. Koch and Taratu dealt with a similar problem when studying the
well-posedness for the Navier–Stokes equation in [KT01]. Their approach was to introduce
some new spaces related to BMO and BMO−1. Later, Koch and Lamm [KL12], and Wang
[Wan11] have adapted these spaces to study some geometric flows. Following these ideas, we
define the Banach spaces

X(RN × R+;F ) = {v : RN × R+ → F : v,∇v ∈ L1
loc(RN × R+), ‖v‖X <∞} and

Y (RN × R+;F ) = {v : RN × R+ → F : v ∈ L1
loc(RN × R+), ‖v‖Y <∞},

where

‖v‖X := sup
t>0
‖v‖L∞ + [v]X , with

[v]X := sup
t>0

√
t‖∇v‖L∞ + sup

x∈RN
r>0

(
1

rN

�
Qr(x)

|∇v(y, t)|2 dt dy
) 1

2

, and

‖v‖Y = sup
t>0

t‖v‖L∞ + sup
x∈RN
r>0

1

rN

�
Qr(x)

|v(y, t)| dt dy.
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Here Qr(x) denotes the parabolic ball Qr(x) = Br(x)× [0, r2] and F is either C or R3. The
absolute value stands for the complex absolute value if F = C and for the euclidean norm
if F = R3. We denote with the same symbol the absolute value in F and F 3. Here and in
the sequel we will omit the domain in the norms and semi-norms when they are taken in the
whole space, for example ‖ · ‖Lp stands for ‖ · ‖Lp(RN ), for p ∈ [1,∞].

The spaces X and Y are related to the spaces BMO(RN ) and BMO−1(RN ) and are well-
adapted to study problems involving the heat semigroup S1(t) = et∆. In order to establish
the properties of the semigroup Sα(t) with α ∈ (0, 1], we introduce the spaces BMOα(RN )
and BMO−1

α (RN ) as the space of distributions f ∈ S′(RN ;F ) such that the semi-norm and
norm given respectively by

[f ]BMOα = sup
x∈RN
r>0

( 1

rN

�
Qr(x)

|∇Sα(t)f |2
) 1

2
, ‖f‖BMO−1

α
= sup

x∈RN
r>0

( 1

rN

�
Qr(x)

|Sα(t)f |2
) 1

2
,

are finite.

On the one hand, the Carleson measure characterization of BMO functions (see [Ste93,
Chapter 4] and [LR02, Chapter 10]) yields that for fixed α ∈ (0, 1], BMOα(RN ) coincides
with the classical BMO(RN ) space3, that is for all α ∈ (0, 1] there exists a constant Λ > 0
depending only on α and N such that

Λ[f ]BMO ≤ [f ]BMOα ≤ Λ−1[f ]BMO.

On the other hand, Koch and Tataru proved in [KT01] that BMO−1 (or equivalently BMO−1
1 ,

using our notation) can be characterized as the space of derivatives of functions in BMO.
A straightforward generalization of their argument shows that the same result holds for
BMO−1

α . Hence, using the Carleson measure characterization theorem, we conclude that
BMO−1

α coincides with the space BMO−1 and that there exists a constant Λ̃ > 0, depending
only on α and N , such that

Λ̃‖f‖BMO−1 ≤ ‖f‖BMO−1
α
≤ Λ̃−1‖f‖BMO−1 .

The above remarks allows us to use several of the estimates proved in [KL12, KT01, Wan11]
in the case α = 1, to study the integral equation (IDNLS) by using a fixed-point approach.

The next result provides the global well-posedness of the Cauchy problem for (IDNLS)
with small initial data in BMO(RN ).

3

BMO(RN ) = {f : RN × [0,∞)→ F : f ∈ L1
loc(RN ), [f ]BMO <∞},

with the semi-norm

[f ]BMO = sup
x∈RN

r>0

 
Br(x)

|f(y)− fx,r| dy, where fx,r =

 
Br(x)

f(y) dy =
1

|Br(x)|

�
Br(x)

f(y) dy.
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Theorem 4.15 ([dLG19]). Let α ∈ (0, 1]. There exist constants C,K ≥ 1 such that for every
L ≥ 0, ε > 0, and ρ > 0 satisfying

8C(ρ+ ε)2 ≤ ρ, (4.44)

if u0 ∈ L∞(RN ;C), with

‖u0‖L∞ ≤ L and [u0]BMO ≤ ε, (4.45)

then there exists a unique solution u ∈ X(RN × R+;C) to (IDNLS) such that

[u]X ≤ K(ρ+ ε). (4.46)

Moreover,

(i) supt>0 ‖u‖L∞ ≤ K(ρ+ L).

(ii) u ∈ C∞(RN × R+) and (DNLS) holds pointwise.

(iii) lim
t→0+

u(·, t) = u0 as tempered distributions.

(iv) (Dependence on the initial data) Assume that u and v are respectively solutions to
(IDNLS) fulfilling (4.46) with initial conditions u0 and v0 satisfying (4.45). Then

‖u− v‖X ≤ 6K‖u0 − v0‖L∞ .

Although condition (4.44) appears naturally from the fixed-point used in the proof, it
may be no so clear at first glance. To better understand it, let us define for C > 0

S(C) = {(ρ, ε) ∈ R+ × R+ : C(ρ+ ε)2 ≤ ρ}.

We see that if (ρ, ε) ∈ S(C), then ρ, ε > 0 and

ε ≤
√
ρ√
C
− ρ. (4.47)

Therefore, the set S(C) is non-empty and bounded. The shape of this set is depicted in
Figure 4.2. In particular, we infer from (4.47) that if (ρ, ε) ∈ S(C), then ρ ≤ 1

C and ε ≤ 1
4C .

In addition, if C̃ ≥ C, then

S(C̃) ⊆ S(C).

Moreover, taking for instance ρ = 1/(32C), Theorem 5.6 asserts that for fixed α ∈ (0, 1], we
can take for instance ε = 1/(32C) (that depends on α and N , but not on the L∞-norm of the
initial data) such that for any given initial condition u0 ∈ L∞(RN ) with [u0]BMO ≤ ε, there
exists a global (smooth) solution u ∈ X(RN × R+;C) of (DNLS). Notice that u0 is allowed
to have a large L∞-norm as long as [u0]BMO is sufficiently small; this is a weaker requirement
that asking for the L∞-norm of u0 to be sufficiently small, since [f ]BMO ≤ 2‖f‖L∞ , for all
f ∈ L∞(RN ).
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1
4C

1
4C

1
C

ρ

ε

Figure 4.2: The shape of the set S(C).

Remark 4.16. The smallness condition in (4.46) is necessary for the uniqueness of the
solution. As we will see in Theorem 4.24, at least in dimension one, it is possible to construct
multiple solutions of (IDNLS) in X(RN × R+;C), if α is close enough to 1.

The proof of Theorem 5.6 uses fixed-point argument on the ball

Bρ(u0) = {u ∈ X(RN × R+;C) : ‖u− Sα(t)u0‖X ≤ ρ},

for some ρ > 0 depending on the size of the initial data. Indeed, we can write (IDNLS) as
u(t) = Tu0(u)(t), where

Tu0(u)(t) = Sα(t)u0 + T (g(u))(t) and T (f)(t) =

� t

0
Sα(t− s)f(s) ds.

There are three steps to establish that Tu0 is a contraction on Bρ(u0). The first one is to
prove that there exists C0 > 0 such that for all f ∈ BMO−1

α (RN ),

sup
t>0

√
t‖Sα(t)f‖L∞(RN ) ≤ C0‖f‖BMO−1

α
.

The proof in the case α = 1 is done in [LR02, Lemma 16.1]. For α ∈ (0, 1), decomposing
Sα(t) = Sα(t− s)Sα(s) and using the decay properties of the kernel Gα associated with the
operators Sα(t) (see (4.43)), we can check that the same proof still applies. Generalizing some
arguments given in [KT01] and [Wan11], we have that there exists C1 ≥ 1 such that for all
f ∈ Y (RN × R+;C),

‖T (f)‖X ≤ C1‖f‖Y .
The third step is to show that for all u ∈ X(RN × R+;C), we have ‖g(u)‖Y ≤ [u]2X , which is
a consequence of the definitions of the norms on X and Y .

By using the inverse of the stereographic projection P−1 : C → S2 \ {0, 0,−1}, that is
explicitly given by m = (m1,m2,m3) = P−1(u), with

m1 =
2 Reu

1 + |u|2 , m2 =
2 Imu

1 + |u|2 , m3 =
1− |u|2
1 + |u|2 ,

we can deduce from Theorem 5.6, the following global well-posedness result for (4.1).
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Theorem 4.17 ([dLG19]). Let α ∈ (0, 1]. There exist constants C ≥ 1 and K ≥ 4, such that
for any δ ∈ (0, 2], ε0 > 0 and ρ > 0 such that

8K4Cδ−4(ρ+ 8δ−2ε0)2 ≤ ρ, (4.48)

if m0 = (m0
1,m

0
2,m

0
3) ∈ L∞(RN ; S2) satisfies

inf
RN

m0
3 ≥ −1 + δ and [m0]BMO ≤ ε0, (4.49)

then there exists a unique solution m = (m1,m2,m3) ∈ X(RN × R+;S2) of (4.1) such that

inf
x∈RN
t>0

m3(x, t) ≥ −1 +
2

1 +K2(ρ+ δ−1)2
and [m]X ≤ 4K(ρ+ 8δ−2ε0). (4.50)

Moreover, we have the following properties.

i) m ∈ C∞(RN × R+;S2).

ii) |m(·, t)−m0| −→ 0 in S′(RN ) as t −→ 0+.

iii) Assume that m and n are respectively smooth solutions to (IDNLS) satisfying (4.50)
with initial conditions m0 and n0 fulfilling (4.49). Then

‖m− n‖X ≤ 120Kδ−2‖m0 − n0‖L∞ . (4.51)

Remark 4.18. The restriction (4.48) on the parameters is similar to (4.44), but we need to
include δ. To better understand the role of δ, we can proceed as before. Indeed, setting for
a, δ > 0,

Sδ(a) = {(ρ, ε0) ∈ R+ × R+ : aδ−4(ρ+ 8δ−2ε0)2 ≤ ρ},
we see that its shape is similar to the one in Figure 4.2. It is simple to verify that for any
(ρ, ε0) ∈ Sδ(a), we have the bounds ρ ≤ δ4/a and ε0 ≤ δ6/(32a), and the maximum value
ε∗0 = δ6/(32a) is attained at ρ∗ = δ4/(4a). Also, the sets are well-ordered, i.e. if ã ≥ a > 0,
then Sδ(ã) ⊆ Sδ(a).

We emphasize that the first condition in (4.49) is rather technical. Indeed, we need the
essential range of m0 to be far from the South Pole in order to use the stereographic projection.
In the case α = 1, Wang [Wan11] proved the global well-posedness using only the second
restriction in (4.49). It is an open problem to determinate if this condition is necessary in the
case α ∈ (0, 1).

The choice of the South Pole is of course arbitrary. By using the invariance of (4.1) under
rotations, we have the existence of solutions provided that the essential range of the initial
condition m0 is far from an arbitrary point Q ∈ S2. Precisely,

Corollary 4.19. Let α ∈ (0, 1], Q ∈ S2, δ ∈ (0, 2], and ε0, ρ > 0 such that (4.48) holds.
Given m0 = (m0

1,m
0
2,m

0
3) ∈ L∞(RN ;S2) satisfying

inf
RN
|m0 −Q|2 ≥ 2δ and [m0]BMO ≤ ε0,
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there exists a unique smooth solution m ∈ X(RN ×R+;S2) of (4.1) with initial condition m0

such that

inf
x∈RN
t>0

|m(x, t)−Q|2 ≥ 4

1 +K2(ρ+ δ−1)2
and [m]X ≤ 4K(ρ+ 8δ−2ε0).

Notice that Theorem 4.17 provides the existence of a unique solution in the set defined by
the conditions (4.50), and hence it does not exclude the possibility of the existence of other
solutions not satisfying these conditions. In fact, as we will see in Theorem 4.24, one can
prove a nonuniqueness result, at least in the case when α is close to 1.

We point out that our results are valid only for α > 0. If we let α → 0+, then our
estimates blows up. Indeed, we use that the kernel associated with the Ginzburg–Landau
semigroup e(α+iβ)t∆ belongs to L1 and its exponential decay. Therefore our techniques cannot
be generalized ( at least not in a simple way) to cover the critical case α = 0. In particular,
we cannot recover the stability results for the self-similar solutions in the case of Schrödinger
maps proved by Banica and Vega in [BV09, BV12, BV13].

As mentioned before, in [LLW15] and [Mel12] some global well-posedness results for (4.1)
with α ∈ (0, 1] were proved for initial conditions with small gradient in LN (RN ) and M2,2(RN ),
respectively. In view of the embeddings

LN (RN ) ⊂M2,2(RN ) ⊂ BMO−1(RN ),

for N ≥ 2, Theorem 4.17 can be seen as generalization of these results since it covers the case
of less regular initial conditions. The arguments in [LLW15, Mel12] are based on the method
of moving frames that produces a covariant complex Ginzburg–Landau equation.

Our existence and uniqueness result given by Theorem 4.17 requires the initial condition
to be small in the BMO semi-norm. Without this condition, the solution could develop a
singularity in finite time. In fact, in dimensions N = 3, 4, Ding and Wang [DW07] have
proved that for some smooth initial conditions with small (Dirichlet) energy, the associated
solutions of (4.1) blow up in finite time.

Another consequence of Theorem 4.17 is the existence of self-similar solutions of expander
type in RN , i.e. a solution m satisfying

m(x, t) = m(λx, λ2t), ∀λ > 0, (4.52)

or, equivalently, m(x, t) = f
(
x√
t

)
, for some f : RN −→ S2 profile of m. In particular we

have the relation f(y) = m(y, 1), for all y ∈ RN . From (4.52) we see that, at least formally,
a necessary condition for the existence of a self-similar solution is that initial condition
m0 be homogeneous of degree 0, i.e. m0(λx) = m0(x), for all λ > 0. Since the norm in
X(RN × R+;R3) is invariant under this scaling, i.e. ‖mλ‖X = ‖m‖X , ∀λ > 0, where mλ

is defined by (4.52), Theorem 4.17 yields the following result concerning the existence of
self-similar solutions.
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Corollary 4.20. With the same notations and hypotheses as in Theorem 4.17, assume
also that m0 is homogeneous of degree zero. Then the solution m of (4.1) provided by
Theorem 4.17 is self-similar. In particular there exists a smooth profile f : RN → S2 such
that m(x, t) = f(x/

√
t), for all x ∈ RN and t > 0.

Remark 4.21. Analogously, Theorem 5.6 leads to the existence of self-similar solutions for
(DNLS), provided that u0 is a homogeneous function of degree zero.

For instance, in dimensions N ≥ 2, Corollary 4.20 applies to the initial condition m0(x) =
H(x/|x|), with H a Lipschitz map from SN−1 to S2 ∩ {(x1, x2, x3) : x3 ≥ −1/2}, provided
that the Lipschitz constant is small enough, since [m0]BMO ≤ 4‖H‖Lip.

Other authors have considered self-similar solutions for the harmonic map flow (i.e. (4.1)
with α = 1) in different settings. Actually, equation (HFHM) can be generalized for maps
m : M× R+ → N , with M and N Riemannian manifolds. Biernat and Bizoń [BB11]
established results when M = N = Sd and 3 ≤ d ≤ 6. Also, Germain and Rupflin [GR11]
have investigated the case M = Rd and N = Sd, in d ≥ 3. In both works the analysis is done
only for equivariant solutions and does not cover the case M = RN and N = S2.

4.4 LLG with a jump initial data

In this section we want to apply our well-posedness result to the self-similar solutions mc,α

with initial conditions m0
c,α := A+

c,αχR+ +A−c,αχR− . Let us remark that the first term in the

definition of [v]X allows us to capture a blow-up rate of 1/
√
t for ‖∇v(t)‖L∞ , as t→ 0+. This

is exactly the blow-up rate for the self-similar solutions found in (4.10). The integral term
in the semi-norm [·]X is also well-adapted to these solutions. Indeed, for any α ∈ (0, 1] and
c ≥ 0, we have

[m0
c,α]BMO ≤ 2c

√
2π/
√
α and [mc,α]X ≤ 4c/α

1
4 . (4.53)

Let us start by considering a more general problem: LLG equation, in dimension one,
with a jump initial data, defined as follows ∂tm = βm× ∂xxm− αm× (m× ∂xxm), on R× R+,

m0
A± := A+χR+ +A−χR− ,

where A± are two given unitary vectors in S2. In the context of the initial value problem
(4.54), the smallness condition in the BMO semi-norm is equivalent to the smallness of the
angle between A+ and A−. From Theorem 4.17 we can establish two important consequences
of (4.54).

The first one is the that from the uniqueness statement in Theorem 4.17, we can deduce
that the solution to (4.54) provided by Theorem 4.17 is a rotation of a self-similar solution
mc,α for an appropriate value of c. Precisely,
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Theorem 4.22 ([dLG19]). Let α ∈ (0, 1]. There exist L1, L2 > 0, δ∗ ∈ (−1, 0) and ϑ∗ > 0
such that the following holds. Let A+, A− ∈ S2 and let ϑ be the angle between them. If
0 < ϑ ≤ ϑ∗, then there exists a solution m of (4.1) with initial condition m0

A±. Moreover,

there exists 0 < c <
√
α

2
√
π

, such that m coincides up to a rotation with the self-similar

solution mc,α, i.e. there exists R ∈ SO(3), depending only on A+, A−, α and c, such that
m = Rmc,α, and m is the unique solution satisfying

inf
x∈R
t>0

m3(x, t) ≥ δ∗ and [m]X ≤ L1 + L2c.

The second one concerns the stability of the self-similar solutions. Indeed, from the
dependence of the solution with respect to the initial data established in (4.51) and the
estimates in (4.53), we obtain the following result: For any given m0 ∈ S2 close enough to
m0

A± , the solution m of (4.1) associated with m0 given by Theorem 4.17 must remain close
to a rotation of a self-similar solution mc,α, for some c > 0. In particular, m remains close to
a self-similar solution. The precise statement is provided in the following theorem.

Theorem 4.23 ([dLG19]). Let α ∈ (0, 1]. There exist constants L1, L2, L3 > 0, δ∗ ∈ (−1, 0),
ϑ∗ > 0 such that the following holds. Let A+, A− ∈ S2 with angle ϑ between them. If
0 < ϑ ≤ ϑ∗, then there is c > 0 such that for every m0 satisfying

‖m0 −m0
A±‖L∞ ≤

c
√
π

2
√
α
,

there exists R ∈ SO(3), depending only on A+, A−, α and c, such that there is a unique
global smooth solution m of (4.1) with initial condition m0 that satisfies

inf
x∈R
t>0

(Rm)3(x, t) ≥ δ∗ and [m]X ≤ L1 + L2c.

Moreover,

‖m−Rmc,α‖X ≤ L3‖m0 −m0
A±‖L∞ .

In particular,

‖∂xm− ∂xRmc,α‖L∞ ≤
L3√
t
‖m0 −m0

A±‖L∞ , for all t > 0.

Let us now discuss the multiplicity of solutions for (4.54). As seen before, when α = 1,
the self-similar solutions are explicitly given by

mc,1(x, t) = (cos(cErf(x/
√
t)), sin(cErf(x/

√
t)), 0), for all (x, t) ∈ R× R+,

for all c > 0, where Erf is the non-normalized error function Erf(s) =
� s

0 e
−σ2/4 dσ. In

particular,
~A±c,1 = (cos(c

√
π),± sin(c

√
π), 0)
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ϑc,1
π

c

Figure 4.3: The angle ϑc,α as a function of c for α = 1.

and the angle between A+
c,1 and A−c,1 is given by ϑc,1 = arccos(cos(2c

√
π)).

Figure 4.3 shows that there are infinite values of c that allow to reach any angle in [0, π].
Therefore, using the invariance of (4.1) under rotations, in the case when α = 1, one can
easily prove the existence of multiple solutions associated with a given initial data of the
form m0

A± for any given vectors A± ∈ S2. In the case that α is close enough to 1, we can
use a continuity argument to prove that we still have multiple solutions. More precisely, we
can establish that for any given initial data of the form m0

A± , with angle between A+ and
A− in the interval (0, π), if α is sufficiently close to one, then there exist at least k-distinct
solutions of (4.1) associated with the same initial condition, for any given k ∈ N. In other
words, given any angle ϑ ∈ (0, π) between two A+ and A−, we can generate any number of
distinct solutions by considering values of α sufficiently close to 1. Precisely,

Theorem 4.24 ([dLG19]). Let k ∈ N, A+, A− ∈ S2 and let ϑ be the angle between A+ and
A−. If ϑ ∈ (0, π), then there exists αk ∈ (0, 1) such that for every α ∈ [αk, 1] there are at
least k distinct smooth self-similar solutions {mj}kj=1 in X(R× R+;S2) of (4.1) with initial

condition m0
A±. These solutions are characterized by a strictly increasing sequence of values

{cj}kj=1, with ck →∞ as k →∞, such that mj = Rjmcj ,α, where Rj ∈ SO(3). In particular

√
t‖∂xmj(·, t)‖L∞(R) = cj , for all t > 0. (4.55)

Furthermore, if α = 1 and ϑ ∈ [0, π], then there is an infinite number of distinct smooth
self-similar solutions {mj}j≥1 in X(R× R+;S2) of (4.1) with initial condition m0

A±.

It is important to remark that in particular Theorem 4.24 asserts that when α = 1,
given A+,A− ∈ S2 such that A+ = A−, there exists an infinite number of distinct solutions
{mj}j≥1 in X(R × R+;S2) of (4.1) with initial condition m0

A± such that [m0
A± ]BMO = 0.

This particular case shows that a condition on the size of X-norm of the solution as that
given in (4.49) in Theorem 4.17 is necessary for the uniqueness of solution. We recall that for
finite energy solutions of (HFHM) there are several nonuniqueness results based on Coron’s
technique [Cor90] in dimension N = 3. Alouges and Soyeur [AS92] successfully adapted
this idea to prove the existence of multiple solutions of the (LLGα), with α > 0, for maps
m : Ω −→ S2, with Ω a bounded regular domain of R3. In our case, since {cj}kj=1 is strictly
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increasing, we have at least k different smooth solutions. Notice also that the identity (4.55)
implies that the X-norm of the solution is large as j →∞.

4.5 Shrinkers

We now discuss the backward self-similar solutions to (4.1), i.e. the shrinker solutions of the
form

m(x, t) = f

(
x√
T − t

)
, x ∈ R, t ∈ (−∞, T ).

As in Section 4.2, we can reduce our problem to the study of the ODE

αf ′′ + α|f ′|2f + β(f × f ′)′ − xf ′

2
= 0, on R, (4.56)

which is the same equation that we obtained for the expanders, expect for the minus sign in
the last term. Following similar arguments, we get

Theorem 4.25 ([dLG20]). Let α ∈ (0, 1]. Assume that f ∈ H1
loc(R;S2) is a weak solution to

(4.4). Then f belongs to C∞(R;S2) and there exists c ≥ 0 such that |f ′(x)| = ceαx
2/4, for all

x ∈ R. Moreover, the set of nonconstant solutions to (4.56) is {Rfc,α : c > 0,R ∈ SO(3)},
where is fc,α is given by the solution of the Serret–Frenet system

f ′ = kg,

g′ = −kf + τh,

h′ = −τg.
(4.57)

with curvature and torsion

k(x) = ce
αx2

4 and τ(x) = −βx
2
,

and initial conditions f(0) = (1, 0, 0), g(0) = (0, 1, 0), and h(0) = (0, 0, 1).

As done for the expanders, we provide now some properties of these solutions, that are
obtained by studying the Serret–Frenet system (4.57).

Theorem 4.26 ([dLG20]). Let α ∈ (0, 1], c > 0, T ∈ R and fc,α as above. Set

m̃c,α(x, t) = fc,α

(
x√
T − t

)
, t < T. (4.58)

Then we have the following statements.

(i) The function m̃c,α belongs to C∞(R× (−∞, T );S2), solves (4.1) for t ∈ (−∞, T ), and

|∂xm̃c,α(x, t)| = c√
T − t

e
αx2

4(T−t) , for all (x, t) ∈ R× (−∞, T ).
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(ii) The profile fc,α = (f1,c,α, f2,c,α, f3,c,α) satisfies that f1,c,α is even, while f2,c,α and f3,c,α

are odd.

(iii) There exist constants ρj,c,α ∈ [0, 1], Bj,c,α ∈ [−1, 1], and φj,c,α ∈ [0, 2π), for j ∈ {1, 2, 3},
such that we have the following asymptotics for the profile fc,α:

fj,c,α(x) =ρj,c,α cos(cΦα(x)− φj,c,α)− βBj,c,α
2c

xe−αx
2/4

+
β2ρj,c,α

8c
sin(cΦα(x)− φj,c,α)

� ∞
x

s2e−αs
2/4ds+

β

α5c2
O(x2e−αx

2/2),

(4.59)
for all x ≥ 1, where

Φα(x) =

� x

0
e
αs2

4 ds.

Moreover, the constants satisfy the identities ρ2
1,c,α + ρ2

2,c,α + ρ2
3,c,α = 2, B2

1,c,α +B2
2,c,α +

B2
3,c,α = 1 and ρ2

j,c,α +B2
j,c,α = 1, for j ∈ {1, 2, 3}. In addition,

f ′j,c,α(x) = −cρj,c,α sin(cΦα(x)− φj,c,α)eαx
2/4

+
β2ρj,c,α

8
cos(cΦα(x)− φj,c,α)eαx

2/4

� ∞
x

s2e−αs
2/4ds+

β

α5c
O(x2e−αx

2/4),

for all x ≥ 1 and j ∈ {1, 2, 3}.
(iv) The solution m̃c,α = (m̃1,c,α, m̃2,c,α, m̃3,c,α) satisfies the following pointwise convergences

lim
t→T−

(m̃j,c,α(x, t)− ρj,c,α cos
(
cΦα

( x√
T − t

)
− φj,c,α

)
= 0, if x > 0,

lim
t→T−

(m̃j,c,α(x, t)− ρ−j,c,α cos
(
cΦα

( −x√
T − t

)
− φj,c,α

)
= 0, if x < 0,

for j ∈ {1, 2, 3}, where ρ−1,c,α = ρ1,c,α, ρ−2,c,α = −ρ2,c,α and ρ−3,c,α = −ρ3,c,α.

(v) For any ϕ ∈W 1,∞(R;R3), we have

lim
t→T−

�
R
m̃c,α(x, t) · ϕ(x)dx = 0.

In particular m̃c,α(·, t)→ 0 as t→ T−, as a tempered distribution.

Let us first recall that the existence of smooth solutions to (4.1) on short times can be
established as in the case of the heat flow for harmonic maps [LW08], using that (4.1) is a
strongly parabolic system [GH93, Ama86]. In particular, in the one-dimensional case, for any
initial condition m0 ∈ C∞(R,S2), there exists a maximal time 0 < Tmax ≤ ∞ such that (4.1)
admits a unique, smooth solution m ∈ C∞(R× [0, Tmax);S2). Moreover, if Tmax <∞, then

lim
t→T−max

‖∂xm(·, t)‖L∞(R) =∞.
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Therefore, for any c > 0 and T ∈ R, taking (4.1) with initial condition at time T − 1

m0(·, T − 1) := fc,α(·),

the solution is given by m̃c,α in Theorem 4.26, for t ∈ [T − 1, T ), and blows up at time T .
Indeed, from (i), for c > 0 and for all x ∈ R,

lim
t→T−

|∂xm̃c,α(x, t)| = lim
t→T−

c√
T − t

e
αx2

4(T−t) =∞.

Part (iii) of the above theorem provides the asymptotics of the profile m̃c,α at infinity, in
terms of a fast oscillating principal part, plus some exponentially decaying terms. Notice that
for the integral term in (4.59), we have (see e.g. [AS64])

� ∞
x

s2e−αs
2/4ds ∼ 2xe−αx

2/4

α

(
1 +

2

αx2
− 4

α2x4
+ · · ·

)
, as x→∞.

It is also important to mention in the asymptotics (4.59), the big-O does not depend on the
parameters, i.e. there exists a universal constant C > 0, such that the big-O in (4.59) satisfies

|O(x2e−αx
2/2)| ≤ Cx2e−αx

2/2, for all x ≥ 1.

In this manner, the constants multiplying the big-O are meaningful and in particular, big-O
vanishes when β = 0 (i.e. α = 1). Let us remark that the behavior of the profile for x ≥ −1
follows from the symmetries of the profile established in part (ii). Finally, by plugging (4.59)
in (4.58), we obtain a precise description of the fast oscillating nature of the blow up of the
solution m̃c,α.

In Figure 4.4 we have depicted the profile m̃c,α for α = 0.5 and c = 0.5, where we can see
this oscillating behavior. Moreover, the plots in Figure 4.4 suggest that the limit sets of the
trajectories are great circles on the sphere S2 when x→ ±∞. This is indeed the case. In our
last result we establish analytically that m̃c,α oscillates in a plane passing through the origin
whose normal vector is given by B±c,α = (B1,c,α, B2,c,α, B3,c,α), as x→ ±∞, respectively.

Theorem 4.27 ([dLG19]). Using the constants given in Theorem 4.26, let P±c,α be the planes
passing through the origin with normal vectors B±c,α, respectively. Let C±c,α be the circles in
R3 given by the intersection of these planes with the sphere, i.e. C±c,α = P±c,α ∩ S2. Then the
following statements hold.

(i) For all |x| ≥ 1, we have

dist(m̃c,α(x), C±c,α)) ≤ 15
√

2β

cα2
|x|e−αx2/4. (4.60)

In particular

lim
t→T−

dist(m̃c,α(x, t), C+
c,α)) = 0, if x > 0, and lim

t→T−
dist(m̃c,α(x, t), C−c,α)) = 0, if x < 0.

(4.61)
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Figure 4.4: Profile fc,α for c = 0.5 and α = 0.5. The figure on the left depicts profile for
x ∈ R+ and the normal vector Bc,α ≈ (−0.72,−0.3, 0.63). The figure on the center shows
the profile for x ∈ R; the angle between the circles C±c,α is ϑc,α ≈ 1.5951. At the right, the
projection of limit cycles C±c,α on the plane R2.
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Figure 4.5: Functions f1,c,α, g1,c,α and h1,c,α for c = 0.5 and α = 0.5 on R+. The limit at
infinity in (iii) is B1,c,α ≈ −0.72.

(ii) Let ϑc,α = arccos(1− 2B2
1,c,α) be the angle between the circles C±c,α. For c ≥ β√π/√α,

we have

ϑc,α ≥ arccos

(
−1 +

2πβ2

c2α

)
. (4.62)

In particular

lim
c→∞

ϑc,α = π, for all α ∈ (0, 1], and lim
α→1

ϑc,α = π, for all c > 0.

Theorem 4.27 establishes the convergence of the profile fc,α to the great circles C±c,α as
shown in Figure 4.4. Moreover, (4.60) gives us an exponential rate for this convergence.
In terms of the solution m̃c,α to the LLG equation, this provides a more precise geometric
information about the way that the solution blows up at time T , as seen in (4.61). The
existence of limit cycles for related ferromagnetic models have been investigated for instance
in [WBY85, BMSB87] but to the best of our knowledge, this is the first time that this type of
phenomenon has been observed for the LLG equation. In Figure 4.4 can see that ϑc,α ≈ 1.5951
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for α = 0.5 and c = 0.5, where we have chosen the value of c such that the angle is close to
π/2.

In addition, (4.62) in Theorem 4.27 provides some geometric information about behavior
of the limit circles with respect to the parameters c and α. In particular, we deduce that they
converge to the same plane as c→∞, for fixed α ∈ (0, 1], and the same happens as α→ 1,
for fixed c > 0.

4.5.1 Comparison with the limit cases

In the case α = 1, the torsion vanishes, and it easy to deduce that the profile is explicitly
given by the plane curve

fc,1(x) = (cos(cΦ1(x)), sin(cΦ1(x)), 0).

In particular, we see that the asymptotics in Theorem 4.26 are satisfied with ρ1,c,1 = 1,
ρ2,c,1 = 1, ρ3,c,1 = 0, φ1,c,1 = 0, φ2,c,1 = 3π/2, φ3,c,1 ∈ [0, 2π).

As mentioned in Subsection 4.2.1, the case α = 0 is more involved, but the solution
{fc,0, gc,0,hc,0} of the system (16) can still be explicitly determined in terms of confluent
hypergeometric functions, using that the curvature is constant k(x) = c, for all x ∈ R. This
leads to the asymptotics [GRV03, dLG15b, GL]

fc,0(x) = Ac −
2c

x
Bc cos

(
x2

4
+ c2 ln(x)

)
+O

(
1

x2

)
, (4.63)

as x→∞, for some vectors Ac ∈ S2 and Bc ∈ R3. In particular, we see that fc,0 converges
to the point Ac, as x →∞. Hence, there is a drastic change in the behavior of the profile
in the cases α = 0 and α > 0: In the first case fc,0 converges to a point at infinity, while in
the second case (4.60) tells us that fc,α converges to a great circle. In this sense, there is a
discontinuity in the behavior of mc,α at α = 0.

Going back to Theorem 4.26, it is seems very difficult to get asymptotics for the constants
in (4.59). As explained before, our strategy for the constants appearing in the asymptotics
for the expanders relied on obtaining uniform estimates and using continuity arguments.
In particular, using the fact that the constants in (4.63) are explicit, we were able to get
good information about the constants in the asymptotics when α was close to 0. Due to the
above mentioned discontinuity of fc,α at α = 0, it seems unlike to use this argument in the
asymptotics for the shrinkers.

Finally, let us also remark that we cannot use continuation arguments to find the behavior
of the circles for c small. This is expected since for c = 0, the explicit solution to Serret–Frenet
system is given by

f0,α(x) = (1, 0, 0),

g0,α(x) = (0, cos(βx2/4),− sin(βx2/4)),

h0,α(x) = (0, sin(βx2/4), cos(βx2/4)).

for all x ∈ R.
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4.5.2 Ideas of the proofs

The asymptotics in Theorem 4.26 are simpler to obtain than the ones in Theorem 4.4, since
we do not have to keep uniform estimates in α. For simplicity, we will drop the subscripts c
and α, if there is no possible confusion. Taking into account the block structure of the nine
equation in the Serret–Frenet system (4.57), it suffices to analyze the following system of
three equations: 

f ′ = ceαx
2/4g,

g′ = −ceαx2/4f − βx

2
h,

h′ =
βx

2
g.

(4.64)

Integrating h′, we get

h(x)− h(0) ==
β

2c

� x

0
se−

αs2

4 f ′(s)ds =
β

2c

(
xe−

αx2

4 f(x)−
� x

0

(
1− αs2

2

)
e−

αs2

4 f(s)ds
)
,

(4.65)
where we have used integration by parts. Notice that

�∞
0 (1− αs2/2)e−αs

2/4f(s) ds is well-
defined, since α ∈ (0, 1] and |f | ≤ 1. Therefore, the existence of B := limx→∞ h(x) follows
from (4.65). Moreover,

B := h(0)− β

2c

� ∞
0

(
1− αs2

2

)
e−αs

2/4f(s)ds.

Integrating again h′ in (4.64) from x ∈ R to ∞, and arguing as above, we conclude that

h(x) = B +
βx

2c
e−αx

2/4f(x) +
β

2c

� ∞
x

(
1− αs2

2

)
e−αs

2/4f(s)ds,

and we can deduce that for all x ≥ 1

|h(x)−B| ≤ 6β

cα
xe−αx

2/4.

On the other hand, setting w = f + ih and using (4.64), we obtain that w satisfies the
ODE

w′ + iceαx
2/4w = −iβx

2
h(x).

Multiplying by the integrating factor icΦα, and integrating by parts using that iceicΦα(x) =
(eicΦα(x))

′
e−αx

2/4, we finally get

eicΦαw(x) = w(0)− βxh(x)

2c
eicΦα(x)−αx2/4 +

β

2c

� x

0
eicΦα(s)−αs2/4(β

2
s2g(s) + (1− αs

2

2
)h(s)

)
ds.

Since α ∈ (0, 1], from the above identity if follows the existence of the limit

W := lim
x→∞

eicΦα(x)w(x),
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and the exponential rate

|w(x)− e−icΦα(x)W | ≤ 10β

cα2
xe−αx

2/4,

for all x ≥ 1. Using again (4.64), and after several integrations by parts, we finally obtain
the asymptotics in part (iii) in Theorem 4.26. Parts (iv) and ((v)) are straightforward
consequences of these asymptotics.

The proof of Theorem 4.27 is based on the following formula.

Lemma 4.28. The constants given by Theorem 4.26 satisfy the following identity

B1,c,αρ1,c,αe
iφ1,c,α +B2,c,αρ2,c,αe

iφ2,c,α + b3,∞ρ3,c,αe
iφ3,c,α = 0. (4.66)

Indeed, using again the asymptotics in Theorem 4.26 and that (f + ig) · h = 0, we have

h1(x)ρ1e
−i(cΦα(x)−φ1) + h2(x)ρ2e

−i(cΦα(x)−φ2) + h3(x)ρ3e
−i(cΦα(x)−φ3) = o(1),

so that we deduce (4.66) dividing by e−icΦα(x) and letting x→∞.

To prove (4.60), the first step is to estimate the distance between the profile m̃ and the
plane P+. Since B is the normal vector of this plane and |Bc,α| = 1, we have

dist(m̃(x),P+) = |m̃1(x)B1 + m̃2(x)B2 + m̃3(x)B3|.

To compute the leading term, using (4.66), we conclude that

3∑
j=1

ρj cos(cΦα(x− φj) = Re

(
eicΦα(x)

(
3∑
j=1

ρjBje
iφj

))
= 0.

Thus, the asymptotics in Theorem 4.26 give us, for x ≥ 1,

dist(m̃(x),P+)) ≤ 10β

cα2
xe−αx

2/4(ρ1B1 + ρ2B2 + ρ3B3) ≤ 15β

cα2
xe−αx

2/4, (4.67)

where we have used that

ρjBj ≤
1

2
(ρ2
j +B2

j ) =
1

2
.

Finally, (4.60) follows from estimate (4.67), by using some elementary geometric arguments.
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Chapter 5

The nonlocal Gross–Pitaevskii
equation

In this final chapter we consider a nonlocal family of Gross–Pitaevskii equations with nonzero
conditions at infinity, in the one dimensional case. We present here a result in collaboration
with P. Mennuni [dLM20], that provides conditions on the nonlocal interaction such that there
is a branch of traveling waves solutions with nonvanishing conditions at infinity. Moreover,
we show that the branch is orbitally stable. In this manner, this result generalizes known
properties for the contact interaction given by a Dirac delta function.

As a by-product of our analysis, we provide a simple condition to ensure that the solution
to the Cauchy problem is global in time, improving a previous result in [dL10].

5.1 The nonlocal equation

In order to describe the dynamics of a weakly interacting Bose gas of bosons of mass m, Gross
[Gro63] and Pitaevskii [Pit61] derived in the Hartree approximation, that the wavefunction Ψ
governing the condensate satisfies

i~∂tΨ(x, t) = − ~2

2m
∆Ψ(x, t) + Ψ(x, t)

�
RN
|Ψ(y, t)|2V (x− y) dy, on RN × R, (5.1)

where V describes the interaction between bosons. In the most typical first approximation, V
is considered as a Dirac delta function, which leads to the standard local Gross–Pitaevskii
equation. This local model with nonvanishing condition at infinity has been intensively used,
due to its application in various areas of physics, such as superfluidity, nonlinear optics and
Bose-Einstein condensation [JR82, JPR86, KL98, Cos98]. It seems then natural to analyze
equation (5.1) for more general interactions. Indeed, in the study of superfluidity, supersolids
and Bose-Einstein condensation, different types of nonlocal potentials have been proposed
[DK03, SK04, ABJ07, YY01, CMKF09].

89
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To obtain a dimensionless equation, we take the average energy level per unit mass E0 of
a boson, and we set

ψ(x, t) = exp

(
imE0t

~

)
Ψ(x, t).

Then (5.1) turns into

i~∂tψ(x, t) = − ~2

2m
∆ψ(x, t)−mE0ψ(x, t) + ψ(x, t)

�
RN
|ψ(y, t)|2V (x− y) dy. (5.2)

Defining the rescaling

u(x, t) =
1

λ
√
mE0

(
~√

2m2E0

)N
2

ψ

(
~x√

2m2E0

,
~t
mE0

)
,

from (5.2) we deduce that

i∂tu(x, t) + ∆u(x, t) + u(x, t)

(
1− λ2

�
RN
|u(y, t)|2V(x− y) dy

)
= 0,

with

V(x) = V

(
~x√

2m2E0

)
.

If we assume that the convolution between V and a constant is well-defined and equal to a
positive constant, choosing λ2 = (V ∗ 1)−1, equation (5.2) is equivalent to

i∂tu+ ∆u+ λ2u(V ∗ (1− |u|2)) = 0 on RN × R.

More generally, we consider the nonlocal Gross–Pitaevskii equation with nonzero initial
condition at infinity in the form{

i∂tu+ ∆u+ u(W ∗ (1− |u|2)) = 0 on RN × R,
u(0) = u0,

(NGP)

where |u0(x)| → 1, as |x| → ∞.

If W is a real-valued even distribution, (NGP) is a Hamiltonian equation whose energy
given by

E(u(t)) =
1

2

�
RN
|∇u(t)|2 dx+

1

4

�
RN

(W ∗ (1− |u(t)|2))(1− |u(t)|2) dx

is formally conserved.
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5.2 The Cauchy problem

In the case thatW is the Dirac delta function, (NGP) corresponds to the local Gross–Pitaevskii
equation and the Cauchy problem in this instance has been studied in [BS99], Gérard [Gér06],
Gallo [Gal08b], among others. During my Ph.D. thesis, I gave sufficient conditions, covering
a variety of nonlocal interactions, such that the associated Cauchy problem was globally
well-posed, in any dimension. For the sake of simplicity, we recall here only the results
dimensions 1 ≤ N ≤ 3.

To state main result in [dL10], we first recall that for a tempered distribution V ∈ S′(R),
we can define the convolution with a function in Lp(R), with 1 ≤ p <∞, through the Fourier
transform, as the bounded extension on Lp(R) of the operator

V ∗ f := F−1(V̂ f̂), f ∈ S(R).

In this manner, the set

Mp(R) = {V ∈ S′(R) : ∃C > 0, ‖V ∗ f‖Lp(R) ≤ C‖f‖Lp(R), ∀f ∈ Lp(R)}

is a Banach space endowed with the operator norm denoted by ‖ · ‖Mp . Thus V̂ ∈ M2(RN )

is equivalent to V ∈ L∞(RN ), with ‖V̂‖L∞(R) = ‖V‖M2 . In addition, these spaces satisfy that

M1(RN ) ⊆ Mp(RN ) ⊆ M2(RN ) for all 1 ≤ p ≤ 2. We refer to [Gra08] for further details
about the properties of Mp(R).

Two examples to bear in mind are Dirac delta δ0 and the integrable functions. Indeed,
since δ0 is the identity for the convolution, it belongs to Mp(RN ), for all p ∈ [1,∞). The fact
that L1(RN ) ⊂Mp(RN ), for all p ∈ [1,∞), follows from the Young inequality.

We are interested in studying the dynamics of (NGP), allowing different potentials W.
For this reason, we set the following energy space, independent of W,

E(R) = {v ∈ H1
loc(RN) : 1− |v|2 ∈ L2(RN), ∇v ∈ L2(RN)}.

Then the energy

E(v) =
1

2

�
RN
|∇v|2 dx+

1

4

�
RN

(W ∗ (1− |v|2))(1− |v|2) dx

is finite, for all (v,W) ∈ E(RN )×M2(RN ).

Theorem 5.1 ([dL10]). Let 1 ≤ N ≤ 3, φ0 ∈ E(RN ) ∩ L∞(RN ), with ∇φ ∈ H∞(RN ). Let
W ∈M2(RN )∩M3(RN ) be an even distribution. Assume that one of the following is satisfied.

(i) W ∈M1(RN ) and W ≥ 0 in a distributional sense.

(ii) There exists σ > 0 such that Ŵ ≥ σ a.e. on RN .

(iii) N ≥ 2 and Ŵ ≥ 0 a.e. on RN .
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Then, for every w0 ∈ H1(RN ) there exists a unique solution Ψ ∈ C(R, φ0 +H1(R)) to (NGP)
with the initial condition Ψ0 = φ0 + w0. Moreover, the energy is conserved, as well as the
momentum as long as infx∈R |Ψ(x, t)| > 0.

In the case (ii), we also have the growth estimate

‖Ψ(t)− φ0‖L2(RN ) ≤ C|t|+ ‖Ψ0 − φ0‖L2(RN ), (5.3)

for any t ∈ R, where C > 0 is a constant depending only on E(Ψ0), ‖Ŵ‖L∞ , φ0 and σ.

In order to show Theorem 5.1, we first proved the local well-posedness. This was based
on the fact that (NGP) can be recast as u = w + φ0, where w solves{

i∂tw + ∆w + f(w) = 0 on RN × R,
w(0) = w0,

(5.4)

with f(w) = g1(w) + g2(w) + g3(w) + g4(w), where

g1(w) = ∆φ+ (W ∗ (1− |φ|2))φ,

g2(w) = −2(W ∗ 〈φ,w〉)φ,
g3(w) = −(W ∗ |w|2)φ− 2(W ∗ 〈φ,w〉)w + (W ∗ (1− |φ|2))w,

g4(w) = −(W ∗ |w|2)w.

Then the local existence was proved using Strichartz estimates and the Banach fixed-point
theorem. This argument provided a local solution on a maximal interval (−Tmin, Tmax), as
well as blow-up alternative for the norm ‖w(t)‖H1(RN ). Using the conservation of the energy,
deduced that sup{‖∇w(t)‖L2(RN ) : t ∈ (−Tmin, Tmax)} remained bounded, so that it was
sufficient to show that

sup{‖w(t)‖L2(RN ) : t ∈ (−Tmin, Tmax)} <∞, (5.5)

to conclude that the solution was global.

Let us recall the argument in the case ((ii)), that uses an idea introduced in [BV08] for
the local Gross–Pitaevskii equation. By invoking the Plancherel theorem and the conservation
of energy, we have

σ‖|φ+ w(t)|2 − 1‖2L2(RN ) ≤
�
RN

(W ∗ (|φ+ w(t)|2 − 1))(|φ+ w(t)|2 − 1) dx ≤ 4E0, (5.6)

where E0 = E(φ0 + w0). On the other hand, from (5.4),

1

2

∣∣∣∣ ddt‖w(t)‖2L2

∣∣∣∣ =

∣∣∣∣Im�
RN

(∆φ+ φ(W ∗ (1− |φ+ w(t)|2))w(t) dx.

∣∣∣∣
≤‖∆φ‖L2‖w(t)‖L2 + ‖Ŵ‖L∞‖φ‖L∞‖|φ+ w(t)|2 − 1‖L2‖w(t)‖L2 .

(5.7)
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By combining (5.6) and (5.7), and integrating between 0 and t, we infer the linear growth

‖w(t)‖L2 ≤
(
‖∆φ‖L2 + ‖Ŵ‖L∞‖φ‖L∞

√
4E0

σ

)
|t|+ ‖w0‖L2 ,

for any t ∈ (−Tmin, Tmax), which implies the global existence of the solution.

The proof of (5.5) in the case (iii) uses the Gagliardo–Nirenberg inequality

‖f‖2L4(RN ) ≤ C‖∇f‖
N/2
L2 ‖f‖2−N/2L2 ,

which gives, after some computations,

1

2

∣∣∣∣ ddt‖w(t)‖2L2

∣∣∣∣ ≤ C(E0,W)(1 + ‖w(t)‖2L2 + ‖w(t)‖3−N/2
L2 ).

Therefore we can conclude, for instance using a Gronwall argument, that ‖w(t)‖L2 remains
bounded iff 3−N/2, i.e. N ≥ 2.

In the one-dimensional case, we have introduced in [dLM20] a condition to improve
Theorem 5.1 in dimension N = 1, based on the following estimate.

Lemma 5.2 ([dLM20]). Assume that W ∈M2(R) satisfies

Ŵ(ξ) ≥ (1− κξ2)+, a.e. on R, (5.8)

for some κ ≥ 0. Let v ∈ E(R) and set η := 1− |v|2. Then

‖η‖2L∞ + ‖η‖2L2 ≤ 16κ̃E(v)(1 + 8κ̃E(v) + 2
√

2κ̃E(v)),

with κ̃ = κ+ 1.

The basic idea is that for v ∈ E(R), setting η = 1− |v|2 and using the Plancherel identity,
we get

η2(x) = 2

� x

−∞
ηη′ ≤

�
R

(η2 + η′2) =
1

2π

�
R

(1 + ξ2)|η̂|2dξ. (5.9)

By (5.8), we have 1 ≤ Ŵ(ξ) + κξ2 a.e. on R, so that the term on the right-hand side of (5.9)
can be bounded by

1

2π

�
R

(1 + ξ2)|η̂|2 ≤ 1

2π

�
R

(Ŵ(ξ) + κ̃ξ2)|η̂|2 = 4E(v) + κ̃

�
R
η′2.

The rest of the proof consists in showing that ‖η′‖L2(R) can be also bounded in terms of the
energy.

Theorem 5.3 ([dLM20]). Let φ0 and W be as in Theorem 5.1, but instead of (i), (ii) or (ii),
we assume that there exists κ ≥ 0 such that

Ŵ(ξ) ≥ (1− κξ2)+, a.e. on R.

Then we have the same conclusion as in Theorem 5.3, including the growth estimate (5.3),

with a constant C depending only on E(Ψ0), ‖Ŵ‖L∞, φ0 and κ.
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Let us remark if Ŵ ∈ L∞(R) is even and of class C2 in a neighbor of the origin, with

Ŵ ≥ 0 a.e. on R, then (5.8) is satisfied.

We discuss now some examples such that Theorems 5.1 and 5.3 guarantee global existence.

(i) We consider a generalization of the model proposed by Shchesnovich and Kraenkel
[SK04]

Ŵ(ξ) =
1

(1 + a|ξ|2)b/2
, a, b > 0,

We have Ŵ ∈ L∞(RN ) and W ∈ L1(RN ), provide that b > N − 1. Moreover, Ŵ is of
class C2 if b > 1. Therefore, under these conditions, we have global existence.

(ii) For β > 2α > 0, we consider Wα,β = β
β−2α(δ0 − αe−β|x|), so its Fourier transform is

Ŵα,β(ξ) =
β

β − 2α

(
1− 2αβ

|ξ|2 + β2

)
,

and thus we also have global existence for this potential.

We now recall the following results about the energy space E(RN ), for 1 ≤ N ≤ 3; we
refer to [Gér06, G´, Gal08b] for their proofs.

Lemma 5.4. Let u ∈ E(RN ). Then there exists φ ∈ C∞b ∩ E(RN ) with ∇φ ∈ H∞(RN ), and
w ∈ H1(RN ) such that u = φ+ w.

Lemma 5.5. E(RN ) is a complete metric space with the pseudometric distance

d(v1, v2) = ‖v′1 − v′2‖L2(R) + ‖|v1| − |v2|‖L2(R),

E(RN ) +H1(RN ) ⊂ E(RN ) and the maps

u ∈ E(RN ) 7→ ∇u ∈ L2(RN ), u ∈ E(RN ) 7→ 1− |u|2 ∈ L2(RN ),

(u,w) ∈ E(RN )×H1(RN ) 7→ u+ w ∈ E(RN )

are continuous.

By using these lemmas we can conclude that

Theorem 5.6. Assume that W satisfies the conditions in Theorem 5.1 or in Theorem 5.3.
Then for every Ψ0 ∈ E(R), there exists a unique Ψ ∈ C(R, E(R)) global solution to (NGP)
with the initial condition Ψ0. Moreover, the energy is conserved

5.3 Traveling waves

There have been extensive studies concerning the existence and stability of traveling waves
in the case of the contact interaction W = δ0, more commonly refereed to as dark solitons
due to the nonzero boundary condition, (see [BS99, BGS09, BOS04, BGS15b, CM17, Mar13]
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and the references therein). However, there are very few mathematical results concerning
general nonlocal interactions with nonzero conditions at infinity. More precisely, we focus
now on solutions of the form

Ψc(x, t) = u(x− ct),
representing a traveling wave propagating at speed c. Hence, the profile u satisfies the nonlocal
equation

ic∂x1u+ ∆u+ u(W ∗ (1− |u|2)) = 0, in RN . (TWW,c)

By taking the conjugate of the function, we assume without loss of generality that c ≥ 0.

Let us remark that when considering vanishing boundary conditions at infinity, this kind
of equation has been studied extensively [GV80, Caz03, MVS13] and long-range dipolar
interactions in condensates have received recently much attention [LMS+09, CMS08, AS11,
BJ16, LS]. However, the techniques used in these works cannot be adapted to include solutions
satisfying |u(x)| → 1, as |x| → ∞.

When W is given by a Dirac delta function, equation (TWδ0,c) reduces to

ic∂x1u+ ∆u+ u(1− |u|2) = 0, in RN . (5.10)

In dimension N = 1, this equation can be solved explicitly. As explained in [BGS08b], if
c ≥
√

2, the only solutions in E(R) are the trivial ones (i.e. the constant functions of modulus
one) and if 0 ≤ c <

√
2, the nontrivial solutions are given, up to invariances (translations and

a multiplications by constants of modulus one), by

uc(x) =

√
2− c2

2
tanh

(√
2− c2

2
x

)
− i c√

2
. (5.11)

Thus, there is a family of dark solitons belonging to NE(R) for c ∈ (0,
√

2) and there is one
stationary black soliton associated with the speed c = 0. Notice also that the values of uc(∞)
and uc(−∞) are different.

In the higher dimension case, we have the following existence and nonexistence results.

Theorem 5.7 ([Mar13, BR]).

� Let N = 2. For almost every c ∈ (0,
√

2), there is a nonconstant to (5.10) in E(R2).

� Let N = 3. For every c ∈ (0,
√

2), there is a nonconstant to (5.10) in E(R3).

Theorem 5.8 ([BMR94, BS99, Gra03, Gra04]). Let v ∈ E(RN ) be a solution of (5.10).
Assume that one of the following cases hold

(i) c = 0.

(ii) c >
√

2.

(iii) N = 2 and c =
√

2.

Then v is a constant function of modulus one.
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It would be reasonable to expect to generalize in some way these theorems to the nonlocal
equation (TWW,c). The aim of the papers [dL12] and [dLM20] was to investigate existence
and nonexistence results depending on W. Before explaining our results, we give some
motivation about the critical speed. Let us proceed formally and consider a constant function
u0 of modulus one. Since (NGP) is invariant by a change of phase, we can assume u0 = 1.
Then the linearized equation of (NGP) at u0 is given by

i∂tũ−∆ũ+ 2W ∗ Re(ũ) = 0. (5.12)

Writing ũ = ũ1 + iũ2 and taking real and imaginary parts in (5.12), we get

−∂tũ2 −∆ũ1 + 2W ∗ ũ1 = 0,

∂tũ1 −∆ũ2 = 0,

from where we deduce that

∂2
ttũ− 2W ∗ (∆ũ) + ∆2ũ = 0. (5.13)

By imposing ũ = ei(ξ·x−wt), w ∈ R, ξ ∈ RN , as a solution of (5.13), we obtain the dispersion
relation

w(ξ) = ±
√
|ξ|4 + 2Ŵ(ξ)|ξ|2, (5.14)

Supposing that Ŵ is positive and continuous at the origin, we get in the long wave regime,
i.e. ξ ∼ 0,

w(ξ) ∼ (2Ŵ(0))1/2|ξ|.
Consequently, in this regime we can identify (2Ŵ(0))1/2 as the speed of sound waves (also
called sonic speed). In order to simplify our computations, we can normalize the equation

so that the critical speed is fixed. Indeed, rescaling the equation, we can replace Ŵ(ξ) by

Ŵ(ξ)/Ŵ(0) in (NGP). Therefore, we assume from now on that Ŵ(0) = 1 and hence that the
critical speed is

c∗ =
√

2.

Let us mention that the dispersion relation (5.14) was first observed by Bogoliubov [Bog47]
on the study of Bose–Einstein gas. Under some physical considerations, he argued that the
gas should move with a speed less than c∗ to preserve its superfluid properties. In terms of
equation (TWW,c), this leads to the conjecture that there are no nontrivial solution if c >

√
2.

For the sake of simplicity, we explain our results assuming from now on that W ∈
M2(RN )∩M3(RN ) is a real-valued even tempered distribution, with Ŵ is of class C3

b (R), i.e.
of class C3 whose first 3 derivatives are bounded.

Theorem 5.9 ([dL12]). Let 2 ≤ N ≤ 3. Assume that the map ξ → ξj∂kŴ(ξ) is bounded on
RN , for all j, k ∈ {1, . . . , N}, and that

Ŵ(ξ) ≥ max

{
1,

2

N − 1

} N∑
k=2

|ξk∂kŴ(ξ)|+ |ξ1∂1Ŵ(ξ)|, for all ξ ∈ RN .

If c >
√

2, then there is no nonconstant solution to (TWW,c).
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Concerning the static waves, we have the following result.

Theorem 5.10 ([dL12]). Let 2 ≤ N ≤ 3. Assume that the map ξ → ξj∂kŴ(ξ) is bounded
on RN , for all j, k ∈ {1, . . . , N}, and that

ξj∂jŴ(ξ) ≤ 0, for all ξ ∈ RN ,

for all j ∈ {1, . . . , N}. Then there is no nonconstant solution to (TWW,c) for c = 0.

Let us give some examples of application of Theorem 5.9.

(a) In the case W = δ0, we have ∇Ŵ = 0. Thus these theorems recover Theorem 5.8 in the
cases (i) and (ii), i.e. nonexistence for all c ∈ {0} ∪ (

√
2,∞).

(b) Consider the potential

Wε =
1

a
(δ + εf), ε ≥ 0,

where f is an even real-valued function, such that f, |x|2f, |x|∇f ∈ L1(RN ), and
a = 1 + εf̂(0). Then, we can compute ε0 > 0 in term of f , such that for all ε ∈ [0, ε0)
there is nonexistence of nontrivial solutions to (TWW,c) in E(RN ), for any c ∈ (

√
2,∞),

in dimensions 2 ≤ N ≤ 3.

(c) For the potential

Ŵ(ξ) =
1

(1 + a|ξ|2)b/2
,

we deduce nonexistence of nontrivial solutions of (TWW,c) in E(RN ), in the following
cases:

(1) N = 2, b ≤ 1/2, c ∈ (cs,∞).

(2) N = 2, b > 1/2, c ∈ (cs,
√

2 + 2/b).

(3) N = 3, b ≤ 1, c ∈ (cs,∞).

(4) N = 3, b > 1, c ∈ (cs,
√

2 + 2/b).

(5) N = 2 or 3, c = 0.

We recall that Theorem 5.8-(i) follows from a Pohozaev identity. Gravejat in [Gra03] proved
Theorem 5.8-(ii) by combining the respective Pohozaev identity with an integral equality
obtained from the Fourier analysis of the equation satisfied by the function η := 1− |u|2. Our
results are derived in the same spirit.

Let us suppose that u ∈ E(RN ) is a solution to (TWW,c) with speed c. The first step is to
apply the elliptic regularity theory to (TWW,c), in order to show that u is smooth. Moreover,
η := 1− |u|2 and ∇u belong to Wk,p(RN ), for all k ∈ N, 2 ≤ p ≤ ∞, and

|u(x)| → 1, ∇u(x)→ 0, as |x| → ∞.
Furthermore, there exists a smooth lifting of u. More precisely, there exist R0 > 0 and a
smooth real-valued function θ defined on B(0, R0)c, with ∇θ ∈W k,p(B(0, R0)c), for all k ∈ N,
2 ≤ p ≤ ∞, such that

ρ ≥ 1

2
and u = ρeiθ on B(0, R0)c.
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The most technical part of the proof is to establish rigorously that the following Pohozaev
identities hold

E(u) =

�
RN
|∂1u|2 +

1

4(2π)N

�
RN

ξ1∂1Ŵ |η̂|2 dξ,

E(u) =

�
RN
|∂ju|2 −

c

2

�
RN

(u1∂1u2 − u2∂1u1 − ∂1(χθ)) +
1

4(2π)N

�
RN

ξj∂jŴ |η̂|2 dξ,

for all j ∈ {2, . . . , N}. Here the function χ ∈ C∞(RN ) is a cut-off function satisfying |χ| ≤ 1,
χ = 0 on B(0, 2R0) and χ = 1 on B(0, 3R0)c. Indeed, to prove these formulas by using
classical arguments, we would need that xjη ∈ L2(RN ). We handle this difficulty by carefully
analyzing the integrals involved in the Fourier variable.

On the other hand, using (TWW,c), we obtain the equation for η,

∆2η − 2∆(W ∗ η) + c2∂2
11η = −∆F + 2c∂1(divG), in RN .

where G := v1∇v2 − v2∇v1 − ∇(χθ) and F := 2|∇v|2 + 2η(W ∗ η) + 2cG1. This equation
allows us to get the following integral identities, for all j ∈ {2, . . . , N},

�
RN

(|∇v|2 + η(W ∗ η)) = −c `j,c
1 + `j,c

�
RN

(v1∂1v2 − v2∂1v1 − ∂1(χθ)), (5.15)

where `j,c are constants depending on Ŵ and c. Finally, by combining the Pohozaev identities
and (5.15), we can write an algebraic system for the quantities involved (kinetic and potential
energy, momentum and nonlocal remainder terms), and then invoke the Farkas’ lemma to
obtain the desired nonexistence results.

5.4 Existence of traveling waves in dimension one

Concerning the existence of solutions to (TWW,c), it does not seem possible to find explicit
solution to (TWW,c), in the presence of a nonlocal interaction W . In the article [dLM20], we
have found sufficient conditions on W in order to prove the existence of a branch of solutions,
by using a variational approach.

Before going any further, let us state the assumptions that we need on W.

(H1) W is an even tempered distribution with Ŵ ∈ C3
b (R), and Ŵ(ξ) ≥ (1− ξ2/2)+, for all

ξ ∈ R. Moreover,
Ŵ(0) = 1 and (Ŵ)′′(0) > −1.

(H2) Ŵ admits a meromorphic extension to the upper half-plane H := {z ∈ C : Im(z) > 0},
and the only possible singularities of Ŵ on H are simple isolated poles belonging to
the imaginary axis, i.e. they are given by {iνj : j ∈ J}, with νj > 0, for all j ∈ J ,

0 ≤ Card J ≤ ∞, and their residues Res(Ŵ, iνj) are purely imaginary numbers satisfying

iRes(Ŵ, iνj) ≤ 0, for all j ∈ J,
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Also, there exists a sequence of rectifiable curves (Γk)k∈N∗ ⊂ H, parametrized by
γk : [ak, bk]→ C, such that Γk ∪ [−k, k] is a closed positively oriented simple curve that
does not pass through any poles. Moreover,

lim
k→∞

|γk(t)| =∞, for all t ∈ [ak, bk], and lim
k→∞

length(Γk) sup
t∈[ak,bk]

Ŵ(γk(t))

|γk(t)|4
= 0.

(5.16)

Let us remark that since δ̂0 = 1, the assumptions (H1)–(H2) are trivially fulfilled in the case
W = δ0. Let us make some further remarks about these hypotheses. Assumption (H1) ensures
that the critical speed exists and that the energy functional is nonnegative and well defined
in E(R).

As explained before, the condition Ŵ(0) = 1 is just a choice of normalization. The

condition Ŵ(ξ) ≥ (1 − ξ2/2)+ in hypothesis (H1) can be seen as a coercivity property for
the energy. In particular, it allows us to use the key energy estimates in Lemma 5.2. The
condition (Ŵ)′′(0) > −1 is crucial to show that the behavior of a solution of (TWW,c) can be
formally described in terms of the solution of the Korteweg–de Vries equation

(1 + (Ŵ)′′(0))A′′ − 6A2 −A = 0, (5.17)

at least for c close to
√

2.

The more technical and restrictive assumption (H2) is used only to prove that the curve
associated with the minimizing problem is concave. Indeed, we use some ideas introduced by
Lopes and Mariş [LM08] to study the minimization of the nonlocal functional�

RN
m(ξ)|ŵ(ξ)|2dξ +

�
RN

F (w(x))dx,

under the constraint
�
RN G(w)dx = λ, λ ∈ R, for a class of symbols m (see (2.16) in [LM08]).

Here N ≥ 2, F and G are local functions, and the minimization is over w ∈ Hs(R). The

results in [LM08] cannot be applied to the symbol m(ξ) = Ŵ(ξ) nor to the minimization over
functions with nonvanishing conditions at infinity (nor N = 1). However, we can still apply
the reflexion argument in [LM08], which will lead us to show that�

R
(W ∗ f)f ≥

�
R

(W ∗ f̃)f̃ , (5.18)

for all odd functions f ∈ C∞c (R), where f̃ is given by f̃(x) = f(x) for x ∈ R+, and
f̃(x) = −f(x) for x ∈ R−. Using the sine and cosine transforms

f̂s(ξ) =

� ∞
0

sin(xξ)f(x)dx, f̂c(ξ) =

� ∞
0

cos(xξ)f(x)dx,

inequality (5.18) is equivalent to the condition� ∞
0
Ŵ(ξ)(|f̂s(ξ)|2 − |f̂c(ξ)|2)dξ ≥ 0, (5.19)

for all odd functions f ∈ C∞c (R). By using Cauchy’s residue theorem, it can be verified that
assumption (H2) implies that inequality (5.19) holds.
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5.4.1 The variational approach

It can be seen, at least formally, that

icu′ + u′′ + u(W ∗ (1− |u|2)) = 0, in R. (TW1dW,c)

corresponds to the Euler–Lagrange equation associated with the problem of minimizing the
energy, under the constraint of fixed momentum

p(v) =
1

2

�
R
〈iv′, v〉

(
1− 1

|v|2
)
,

that is well-defined in the nonvanishing energy space

NE(R) = {v ∈ E(R) : inf
R
|v| > 0}.

In this manner, the speed c appears as a Lagrange multiplier.

Let us now describe our minimization approach for the existence problem. For q ≥ 0, we
consider the minimization curve

Emin(q) := inf{E(v) : v ∈ NE(R), p(v) = q}.
We can show that this curve is well-defined and that is nondecreasing. We also set

q∗ = sup{q > 0 | ∀v ∈ E(R), E(v) ≤ Emin(q)⇒ inf
R
|v| > 0}.

If (H2) is also fulfilled and q ∈ (0, q∗), we showed that minimum associated with Emin(q) is
attained and that the corresponding Euler–Lagrange equation satisfied by the minimizers
is exactly (TW1dW,c). More precisely, we have the existence of a family of solutions of
(TW1dW,c) parametrized by the momentum.

Theorem 5.11 ([dLM20]). Assume that (H1) and (H2) hold. Then q∗ > 0.027 and for all
q ∈ (0, q∗) there is a nontrivial solution u ∈ NE(R) to (TW1dW,c) satisfying p(u) = q, for
some c ∈ (0,

√
2).

It is important to remark that the constant q∗ is not necessarily small. For instance, in
the case W = δ0, the explicit solution (5.11) allows us to compute the momentum of uc, for
c ∈ (0,

√
2), and to deduce that q∗ = π/2. Moreover Emin can be determined and its profile

is depicted in Figure 5.1. Notice that Emin is constant on (q∗,∞) and that in this interval
the minimum is not attained (see e.g. [BGS08b]). Since (H1)–(H2) are satisfied by W = δ0,
and since there is uniqueness (up to invariances) of the solutions to (TWδ0,c), we deduce that
the branch of solutions given by Theorem 5.11 corresponds to the dark solitons in (5.11), for
c ∈ (0,

√
2). In the general case, we do not know if the solution given by Theorem 5.11 is

unique (up to invariances). Actually, the uniqueness for nonlocal equations such as (TW1dW,c)
can be difficult to establish (see e.g. [Alb95, Lie77]) and it would be an interesting subject to
investigate.

To establish Theorem 5.11, we analyze two problems. First, we provide some general
properties of the curve Emin. Then, we study the compactness of the minimizing sequences
associated with Emin. The next result summarizes the properties of Emin.
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Figure 5.1: Curve Emin and solitons in the case W = δ0.

Theorem 5.12 ([dLM20]). Suppose that W satisfies (H1). Then the following statements
hold.

(i) The function Emin is even and Lipschitz continuous on R, with

|Emin(p)− Emin(q)| ≤
√

2|p− q|, for all p, q ∈ R.

Moreover, it is nondecreasing and subadditive on R+.

(ii) There exist constants q1, A1, A2, A3 > 0 such that
√

2q−A1q
3/2 ≤ Emin(q) ≤

√
2q−A2q

5/3 +A3q
2, for all q ∈ [0, q1].

(iii) If (H2) is satisfied, then Emin is concave on R+.

(iv) We have q∗ > 0.027. If Emin is concave on R+, then Emin is strictly increasing on
[0, q∗), and for all v ∈ E(R) satisfying E(v) < Emin(q∗), we have v ∈ NE(R).

(v) Assume that Emin is concave on R+. Then Emin(q) <
√

2q, for all q > 0, Emin is
strictly subadditive on R+, and the right and left derivatives of Emin, denoted by E+

min

and E−min respectively, satisfy

0 ≤ E+
min(q) ≤ E−min(q) <

√
2.

Furthermore, E+
min(q)→ E+

min(0) =
√

2, as q→ 0+.

To prove the existence of solutions we use a concentration-compactness argument. Applying
Theorem 5.12, we show that the minimum is attained at least for q ∈ (0, q∗), so that the set

Sq = {v ∈ NE(R) : E(v) = Emin(q) and p(v) = q}
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is nonempty, and thus there are nontrivial solutions to (TW1dW,c). Hence, we can rely on the
Cazenave–Lions [CL82] argument to show that the solutions are orbitally stable. Precisely,
we say that the set Sq is orbitally stable in (E(R), d) if for all Ψ0 ∈ E(R) and for all ε > 0,
there exists δ > 0 such that if

d(Ψ0,Sq) ≤ δ,
then the solution Ψ(t) of (NGP) associated with the initial condition Ψ0 satisfies

sup
t∈R

d(Ψ(t),Sq) ≤ ε.

Now we can state our main result concerning the existence and stability of traveling waves.

Theorem 5.13 ([dLM20]). Suppose that W satisfies (H1) and that Emin is concave on R+.
Then the set Sq is nonempty, for all q ∈ (0, q∗). Moreover, every u ∈ Sq is a solution of
(TW1dW,c) for some speed cq ∈ (0,

√
2) satisfying E+

min(q) ≤ cq ≤ E−min(q). Also, cq →
√

2 as
q→ 0+.

Furthermore, if W ∈M3(R), then Sq is orbitally stable in (E(R), d).

In this manner, it is clear that Theorem 5.11 is an immediate corollary of Theorems 5.12
and 5.13, and that the branch of solutions given by Theorem 5.11 is orbitally stable. In
particular, we recover the orbital stability proved by several authors for the solitons given
in (5.11) (see e.g. [Lin02, BS99, Chi13] and the references therein).

We point out that we have not discussed what happens with the minimizing curve for
q ≥ q∗. As mentioned before, for all q > q∗, the curve Emin(q) is constant for W = δ0

(see Figure 5.1) and Sq is empty. Moreover, the critical case q = q∗ is associated with
the black soliton and its analysis is more involved (see e.g. [BGSS08b, GS15b]). Numerical
simulations lead us to conjecture that similar results hold for a potential satisfying (H1)-(H2),
i.e. that Emin(q) is constant and that Sq is empty on (q∗,∞), and that there is a black soliton
when q = q∗. In addition, in the performed simulations the value q∗ is close to π/2 (see
Subsection 5.4.3). Furthermore, these simulations also show that (H2) is not necessary for the
concavity of Emin nor the existence of solutions of (TW1dW,c). As seen from Theorem 5.12,
we have only used (H2) as a sufficient condition to ensure the concavity of Emin. If for some
W satisfying (H1), one is capable of showing that Emin is concave, then the existence and
stability of solutions of (TW1dW,c) is a consequence of Theorem 5.13.

In addition to the smoothness of the obtained solutions, it is possible to study further
properties of these solitons such as their decay at infinity and uniqueness (up to invariances).
Another related open problem is to show the nonexistence of traveling waves for c >

√
2.

These are open questions that could lead to further works.

We end this subsection by giving some examples of potentials satisfying conditions (H1)–
(H2)

(i) For β > 2α > 0, we consider Wα,β = β
β−2α(δ0 − αe−β|x|), so its Fourier transform is

Ŵα,β(ξ) =
β

β − 2α

(
1− 2αβ

ξ2 + β2

)
,
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so that Ŵα,β(0) = 1, and it is simple to check that (H1) is satisfied. To verify (H2), it

is enough to notice that the only singularity on H of the meromorphic function Ŵα,β is
the simple pole ν1 = iβ and that

iRes(Ŵα,β, iβ) = − αβ

β − 2α
< 0.

Since Ŵα,β is bounded on H away from the pole, we conclude that (H2) is fulfilled.
We recall that, by the Young inequality, L1(R) is a subset of M3(R). Therefore
Wα,β ∈M3(R) and Theorem 5.13 applies.

(ii) For α ∈ [0, 1), we take the potential Wα = 1
1−α(δ0 − αV), where

V(x) = − 3

π
ln(1− e−π|x|), and V̂(ξ) =

3(ξ coth(ξ)− 1)

ξ2
.

It can be seen that V̂ is a smooth even positive function on R, decreasing on R+, with
V̂(0) = 1 and decaying at infinity as 3/ξ. Thus, condition (H1) is satisfied. As a function
on the complex plane, V̂ is a meromorphic function whose only singularities on H are
given by the simple poles {iπ`}`∈N∗ , and

iRes(Ŵα, iπ`) = iRes(−V̂, iπ`) = − 3

π`
.

To check (H2), we define for k ≥ 2, the functions γ1,k(t) = (k + 1/2)π + it, t ∈ [0, (k +
1/2)π], γ2,k(t) = t + i(k + 1/2)π, t ∈ [(k + 1/2)π,−(k + 1/2)π], and γ3,k(t) = −(k +
1/2)π + it, t ∈ [(k + 1/2)π, 0], so that the corresponding curve Γk is given by the three
sides of a square and Γk does not pass through any poles. Using that for x, y ∈ R (see
e.g. [AS64])

| coth(x+ iy)| =
∣∣∣cosh(2x) + cos(2y)

cosh(2x)− cos(2y)

∣∣∣1/2,
we can obtain a constant C > 0, independent of k, such that |V̂(γj,k(t))| ≤ C, for all
t ∈ [aj,k, bj,k], for j ∈ {1, 2, 3}, where [aj,k, bj,k] is the domain of definition of γj,k. As
a conclusion, (H2) is fulfilled. Since V ∈ L1(R), we conclude that Wα ∈ M3(R) and
therefore we can apply Theorem 5.13 to this potential.

(iii) We can also construct perturbations of previous examples. For instance, using the
function V defined above, we set

Ŵσ,m(ξ) =
2m2π2

m2π2 + 2σ

(
1− V̂(ξ)

2
+

σ

ξ2 +m2π2

)
,

for σ ∈ R and m ∈ N∗, so that the poles on H are still iπN∗. It follows that for
σ > −π2m2/2, the potential satisfies (H1) for σ ∈ (−π2m2/2, 3], and that (H2) holds if
σ ≤ 3. Therefore Theorem 5.13 applies.
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5.4.2 Ideas of the proofs

To study the minimizing sequences associated with the curve Emin, we use a concentration-
compactness argument. A key point to obtain the compactness of these sequences is that
the momentum can be controlled by the energy. This kind of inequality is crucial in the
arguments when proving the existence of solitons by variational techniques in the caseW = δ0

(see [BGS09, CM17]). More precisely, for an open set Ω ⊂ R and u = ρeiθ ∈ NE(R), we need
to be able to control the localized momentum

pΩ(u) :=
1

2

�
Ω
ηθ′,

by some localized version of the energy. By the Cauchy inequality, setting as usual η = 1−|u|2,
we have

√
2|pΩ(u)| ≤ 1

4

�
Ω
η2 +

1

2

�
Ω
θ′2 ≤ 1

4

�
Ω
η2 +

1

2inf
Ω
ρ2

�
Ω
ρ2θ′2,

but it is not clear how to define a localized version of energy, due the to the nonlocal
interactions. We propose to introduce the localized energy

EΩ(u) :=
1

2

�
Ω
|u′|2 +

1

4

�
R

(W ∗ ηΩ)ηΩ, with ηΩ := η1Ω.

Notice that if Ω = R, then EΩ(u) = E(u) and pΩ(u) = p(u). Since ηΩ can be discontinuous
(and thus not weakly differentiable) when Ω is bounded, we also need to introduce a smooth
cut-off function as follows: for Ω0 an open set compactly contained in Ω, i.e. Ω0 ⊂⊂ Ω, we
set a function χΩ,Ω0 ∈ C∞(R) taking values in [0, 1] and satisfying χΩ,Ω0 ≡ 1 on Ω0 and
χΩ,Ω0 ≡ 0 on R \ Ω. In the case Ω = Ω0 = R, we simply set χΩ,Ω0 ≡ 1.

Lemma 5.14. Let Ω,Ω0 ⊂ R be two smooth open sets with Ω0 ⊂⊂ Ω and let χΩ,Ω0 ∈ C∞(R)
as above. Let u ∈ E(R) and assume that there is some ε ∈ (0, 1) such that 1− ε ≤ |u|2 ≤ 1 + ε
on Ω. Then √

2|pΩ(u)| ≤ EΩ(u)

1− ε + ∆Ω,Ω0(u),

where the remainder term ∆Ω,Ω0(u) satisfies the estimate

|∆Ω,Ω0(u)| ≤ C(‖η‖L2(Ω\Ω0) + ‖ηχ′Ω,Ω0
‖L2(Ω\Ω0) + ‖ηχ′Ω,Ω0

‖2L2(Ω\Ω0)).

Here C = C(E(u), ε) is a constant depending on E(u) and ε, but not on Ω nor Ω0. In
particular, in the case Ω = Ω0 = R, we have

|p(u)| ≤ E(u)√
2(1− ε)

.

Let us give the proof of Lemma 5.14 in the simplest case Ω = R to explain how the
condition Ŵ(ξ) ≥ (1 − ξ2/2)+ appears. In this case ηΩ = η, so that using the Plancherel
theorem, this assumption gives us for any σ > 0,

σ

4

�
R

(
η2 − (W ∗ η)η

)
=

σ

8π

�
R
|η̂|2
(

1− Ŵ(ξ)
)
≤ σ

16π

�
R
ξ2|η̂|2 =

σ

8

�
R

(η′)2.
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Therefore, using the Cauchy inequality and that 1− ε ≤ ρ2 ≤ 1 + ε,

√
2|p(u)| ≤ σ

4

�
R
η2 +

1

2σ(1− ε)

�
R
ρ2θ′2

=
σ

4

�
R

(
η2 − (W ∗ η)η

)
+
σ

4

�
R

(W ∗ η)η +
1

2σ(1− ε)

�
R
ρ2θ′2

≤
√

1− ε2

1− ε

�
Ω

(ρ′2
2

+
ρ2θ′2

2

)
+

1

4
√

1− ε2

�
R

(W ∗ η)η ≤ E(u)√
2(1− ε)

,

where we have used that η′2 ≤ 4(1 + ε)ρ′2 and taken σ = 1/
√

1− ε2.

Concerning the properties of Emin(q), it is simply to prove that Emin is well-defined
on R, that is a continuous function and that Emin ≤

√
2q. Moreover, as a consequence of

Lemma 5.14, we get the following estimates near the origin.

Proposition 5.15. There are constants q0 > 0 and K0 > 0 such that
√

2q−K0q
3/2 ≤ Emin(q), for all q ∈ [0, q0).

We also need upper estimates for the curve, which is much more involved, and requires
using the soliton KdV equation (5.17), namely

A(x) := −1

4
sech2

( x
2ω

)
.

In fact, we expect that the solitons we are looking for behave as (1 + ε2A(εx))eiεϕ(εx), where
ϕ′ = −

√
2A.

Lemma 5.16. Let vε(x) = (1 + ε2A(εx))eiεϕ(εx). Then

E(vε) =
ω

3

(
ε3 − ε5

4

)
+O(ε6) and p(vε) =

√
2ω

6

(
ε3 − ε5

10

)
, (5.20)

where O(ε7)/ε7 is a function that is bounded in terms of ‖Ŵ‖W 3,∞ , uniformly for all ε ∈ (0, 1].

From (5.20), we obtain the upper bound for Emin(q) in Theorem 5.12-(ii). In particular,
assuming that Emin is concave, we deduce that Emin(q) <

√
2q, for all q > 0. We then

introduce the quantity

Σq := 1− Emin(q)√
2q

,

that is strictly positive for q > 0. Setting

Xq,δ := {v ∈ NE(R) : |p(v)− q| ≤ δ and |E(v)− Emin(q)| ≤ δ},
and invoking again Lemma 5.14, we thus infer that for all L > 1, there is δ0 > 0 such that for
all δ ∈ [0, δ0] and for all v ∈ Xq,δ, there exists x̄ ∈ R such that∣∣1− |v(x̄)|2

∣∣ ≥ Σq

L
.

This property allows us to avoid the vanishing case of the function η := 1 − |v|2, in the
concentration-compactness argument. The dichotomy is handle by using the concavity of the
curve Emin.
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5.4.3 Numerical simulations

In this subsection, we numerically illustrate the properties of the minimizing curve through
some simulations.

First, we show our results for the examples (i) and (ii) in Section 5.1. In Figures 5.2
and 5.3, we can see Emin and the modulus of the solitons associated with q = 0.05, q = 0.55,
q = 1.1 and q = 1.5, for the potentials

Wα,β =
β

β − 2α
(δ0 − αe−β|x|), (5.21)

with α = 0.05, β = 0.15, and

Wα =
1

1− α
(
δ0 +

3α

π
ln(1− e−π|x|)

)
, (5.22)

with α = 0.8. In both cases, we observe that Emin is concave and that the line
√

2q is a
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Figure 5.2: Curve Emin and solitons for the potential in (5.21), with α = 0.05 and β = 0.15.

tangent to the curve. We notice that the shapes of the solitons in Figure 5.3 and the solitons
in Figure 5.1 are quite similar. On the other hand, the solitons in Figure 5.2 are very different,
they have values greater than 1 and exhibit a bump on R+. Notice also that the curves Emin

for both potentials seem to be constant for q > 1.55.

We end this manuscript showing some numerical simulations for two interesting potentials.
The first one has been proposed in [VFK14] as simple model for interactions in a Bose–Einstein
condensate. It is given by a contact interaction δ0 and two Dirac delta functions centered at
±σ,

Wσ = 2δ0 −
1

2
(δσ + δ−σ) . (5.23)

Noticing that Ŵσ(ξ) = 2− cos(σξ), we see that for σ > 0, Wσ fulfills (H1), and that Ŵσ is
analytic in C, but is exponentially growing on H. Thus, Wσ does not satisfy the assumption
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Figure 5.3: Curve Emin and solitons for the potential in (5.22), with α = 0.8.

(5.16) in (H2). Nevertheless, the results of the simulation depicted in Figure 5.4 show that
Emin is concave, and in that case Theorem 5.13 gives the orbital stability of the solitons
illustrated in Figure 5.4.
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Figure 5.4: Curve Emin and solitons for the potential in (5.23), with σ = 10.

Finally, we consider the potential

Ŵa,b,c(ξ) = (1 + aξ2 + bξ4)e−cξ
2
, (5.24)

that it has been proposed in [BR99, RSC18] to describe a quantum fluid exhibiting a roton-
maxon spectrum such as Helium 4. Indeed, as predicted by the Landau theory, in such a
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fluid, the dispersion curve (5.14) cannot be monotone and it should have a local maximum
and a local minimum, that are the so-called maxon and roton, respectively. In Figure 5.5, we
see the dispersion curve associated with potential (5.24), with a = −36, b = 2687, c = 30. In
this case, there is a maxon at ξm ∼ 0.33 and a roton at ξr ∼ 0.53. For these values, neither

0

0.2

0.4

0.6

0.8

1

0 0.2 ξm ξr 0.8 1
ξ

ω(ξ)

Figure 5.5: Dispersion curve associated with potential (5.24), with a = −36, b = 2687, c = 30.
Here ξm ∼ 0.33 and ξr ∼ 0.53.

(H1) nor (H2) are satisfied. However, we observe in Figure 5.6 that the energy curve is still
concave, and that the straight line

√
2q is still a tangent to the curve. Moreover, we found

the same critical value as before for the momentum, i.e. q∗ ∼ 1.55.
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Figure 5.6: Curves Emin and solitons for the potential in (5.24), with a = −36, b = 2687,
c = 30.
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[BDS09] F. Béthuel, R. Danchin, and D. Smets. On the linear wave regime of the Gross-
Pitaevskii equation. J. Anal. Math., 110(1):297–338, 2009.

[BGLV19] D. Bresch, M. Gisclon, and I. Lacroix-Violet. On Navier–Stokes–Korteweg and
Euler–Korteweg Systems: Application to Quantum Fluids Models. Arch. Ration.
Mech. Anal., 233(3):975–1025, 2019.
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applications. Année 2016–2017, pages Exp. No. XVIII, 27. Ed. Éc. Polytech.,
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[LR02] P. G. Lemarié-Rieusset. Recent developments in the Navier-Stokes problem,
volume 431 of Chapman & Hall/CRC Research Notes in Mathematics. Chapman
& Hall/CRC, Boca Raton, FL, 2002.

[LRT76a] M. Lakshmanan, T. Ruijgrok, and C. Thompson. On the dynamics of a continuum
spin system. Phys. A, 84(3):577–590, 1976.

[LRT76b] M. Lakshmanan, T. W. Ruijgrok, and C. Thompson. On the dynamics of a
continuum spin system. Physica A: Statistical Mechanics and its Applications,
84(3):577–590, 1976.

[LS] Y. Luo and A. Stylianou. Ground states for a nonlocal cubic-quartic Gross-
Pitaevskii equation. Preprint http://arxiv.org/abs/1806.00697.

[LU68] O. A. Ladyzhenskaya and N. N. Ural’tseva. Linear and quasilinear elliptic
equations. Translated from the Russian by Scripta Technica, Inc. Translation
editor: Leon Ehrenpreis. Academic Press, New York, 1968.

[LW08] F. Lin and C. Wang. The analysis of harmonic maps and their heat flows. World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.

[LW10] F. Lin and J. Wei. Traveling wave solutions of the Schrödinger map equation.
Comm. Pure Appl. Math., 63(12):1585–1621, 2010.

[Mad26] E. Madelung. Quantumtheorie in Hydrodynamische form. Zts. f. Phys., 40:322–
326, 1926.

[Mar06] Y. Martel. Linear problems related to asymptotic stability of solitons of the
generalized KdV equations. SIAM J. Math. Anal., 38(3):759–781, 2006.
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Birkhäuser Verlag, Basel, 2007. Blow-up, global existence and steady states.

[RRS09] I. Rodnianski, Y. A. Rubinstein, and G. Staffilani. On the global well-posedness
of the one-dimensional Schrödinger map flow. Anal. PDE, 2(2):187–209, 2009.

[RSC18] J. Reneuve, J. Salort, and L. Chevillard. Structure, dynamics, and reconnection
of vortices in a nonlocal model of superfluids. Phys. Rev. Fluids, 3(11):114602,
2018.



123

[SK04] V. S. Shchesnovich and R. A. Kraenkel. Vortices in nonlocal Gross-Pitaevskii
equation. J. Phys. A, 37(26):6633–6651, 2004.

[Skl79] E. Sklyanin. On complete integrability of the Landau-Lifshitz equation. Technical
Report E-3-79, Leningrad Department of Steklov Institute of Mathematics of the
USSR Academy of Sciences, 1979.

[SS98] J. Shatah and M. Struwe. Geometric wave equations, volume 2 of Courant Lecture
Notes in Mathematics. Amer. Math. Soc., Providence, 1998.

[SSB86] P.-L. Sulem, C. Sulem, and C. Bardos. On the continuous limit for a system of
classical spins. Comm. Math. Phys., 107(3):431–454, 1986.

[Ste93] E. M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscilla-
tory integrals, volume 43 of Princeton Mathematical Series. Princeton University
Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Mono-
graphs in Harmonic Analysis, III.

[Str50] D. J. Struik. Lectures on Classical Differential Geometry. Addison-Wesley Press,
Inc., Cambridge, Mass., 1950.

[Str88] M. Struwe. On the evolution of harmonic maps in higher dimensions. J. Differential
Geom., 28(3):485–502, 1988.

[Str96] M. Struwe. Geometric evolution problems. In Nonlinear partial differential
equations in differential geometry (Park City, UT, 1992), volume 2 of IAS/Park
City Math. Ser., pages 257–339. Amer. Math. Soc., Providence, RI, 1996.

[SU83] R. Schoen and K. Uhlenbeck. Boundary regularity and the Dirichlet problem for
harmonic maps. J. Diff. Geom., 18:253–268, 1983.

[SW18] C. Song and Y. Wang. Uniqueness of Schrödinger flow on manifolds. Comm.
Anal. Geom., 26(1):217–235, 2018.

[SZ06] J. Shatah and C. Zeng. Schrödinger maps and anti-ferromagnetic chains. Comm.
Math. Phys., 262(2):299–315, 2006.

[Tao16] T. Tao. Finite time blowup for high dimensional nonlinear wave systems with
bounded smooth nonlinearity. Commun. Partial Differential Equations, 41(8):1204–
1229, 2016.

[Tay11] M. Taylor. Partial differential equations III, volume 117 of Applied Mathematical
Sciences. Springer-Verlag, New-York, Second edition, 2011.

[TW77] J. Tjon and J. Wright. Solitons in the continuous Heisenberg spin chain. Phys.
Rev. B, 15(7):3470–3476, 1977.

[VFK14] H. Veksler, S. Fishman, and W. Ketterle. Simple model for interactions and
corrections to the Gross-Pitaevskii equation. Phys. Rev. A, 90(2):023620, 2014.



124 Bibliography

[VV01] A. Vargas and L. Vega. Global wellposedness for 1D non-linear Schrödinger
equation for data with an infinite L2 norm. J. Math. Pures Appl. (9), 80(10):1029–
1044, 2001.

[Wan11] C. Wang. Well-posedness for the heat flow of harmonic maps and the liquid
crystal flow with rough initial data. Arch. Ration. Mech. Anal., 200(1):1–19, 2011.

[WBY85] F. Waldner, D. R. Barberis, and H. Yamazaki. Route to chaos by irregular periods:
Simulations of parallel pumping in ferromagnets. Phys. Rev. A, 31:420–431, 1985.

[Wei12] D. Wei. Micromagnetics and Recording Materials. SpringerBriefs in Applied
Sciences and Technology. Springer Berlin Heidelberg, 2012.

[YY01] S. Yi and L. You. Trapped condensates of atoms with dipole interactions. Phys.
Rev. A, 63(5):053607.1–053607.14, 2001.

[ZG84] Y. Zhou and B. Guo. Existence of weak solution for boundary problems of systems
of ferro-magnetic chain. Sci. China Ser. A, 27(8):799–811, 1984.


	Introduction
	Preamble.  The Landau–Lifshitz equation
	Solitons
	The hydrodynamical formulations
	The dissipative model

	The Cauchy problem for the LL equation
	The Cauchy problem for smooth solutions
	Ideas of the proof 
	Local well-posedness for smooth solutions to the HLL equation

	Local well-posedness in the energy space in dimension one

	Asymptotic regimes for the anisotropic LL equation
	The Sine–Gordon regime
	The Cauchy problem for the Sine–Gordon equation
	Sketch of the proof of Theorem 2.1

	The cubic NLS regime
	Sketch of the proof of Theorem 2.12

	Stability of sum of solitons
	Sum of solitons and the hydrodynamical formulation
	Orbital stability in the energy space
	Main elements in the proof of Theorem 3.1

	Asymptotic stability

	Self-similar solutions for the LLG equation
	Self-similar solutions
	Expanders in dimension one
	Asymptotics for the profile
	Dependence on the parameters
	Elements of the proofs of Theorems 4.3 and 4.4
	Elements of the proofs of Theorems 4.5 and 4.6

	The Cauchy problem for LLG in BMO
	LLG with a jump initial data
	Shrinkers
	Comparison with the limit cases
	Ideas of the proofs


	The nonlocal Gross–Pitaevskii equation
	The nonlocal equation
	The Cauchy problem
	Traveling waves
	Existence of traveling waves in dimension one
	The variational approach
	Ideas of the proofs
	Numerical simulations


	Bibliography

