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Interaction between dislocation and vacancies in magnesium oxide: Insights from atomistic
simulations and elasticity theory
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We determine the interaction between an 1/2〈110〉{1̄10} edge dislocation and charged vacancies in MgO, using
both molecular static simulations and the elasticity theory developed in the framework of the elastic dipole
approach. In this study, the confrontation of these two methods highlights the specific role of the dislocation
core structure on the interaction. We thus show that in MgO, the edge dislocation core, within a region across
the glide planes that expands over several Burgers vector, is strongly attractive for vacancies, especially those
of oxygen. However, the resulting pinning force on the dislocation remains weak and should not contribute to a
significant hardening.
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I. INTRODUCTION

Plastic properties of crystalline materials depend not only
on the nature of the defects present in the crystal but also
and more substantially on their mutual interactions [1]. In
metals, the interactions between point defects and dislocations
are well established and known to be responsible of differ-
ent mechanical behaviors. For instance, at low or moderate
temperature, there is a strong influence of point defects on
strain hardening or softening [2–6] and on strain ageing [7]. At
higher temperature, point-defect absorption or emission along
the dislocation lines allow the dislocation climb mechanism
[8–11] and can thus impact creep [12].

In ionic materials, the presence of different type of ions
leads to a more complex variety of interactions between dis-
locations and charged point defects [13,14], a well-known
example being the photolytic reaction in AgBr [15–17]. As
in metals, dislocations are supposed to be strong point-defect
sinks and induce short circuit pathways through the pipe
diffusion process [18–21] which may lead for instance to
the formation of jogs by vacancy absorption. However, the
specificity of ionic crystals is that dislocation cores can be
charged or can carry charges [13,14,22]. The consequence
of this electrically charged core is that an external electric
field can influence the dislocation motions and the plastic
deformation [23] and can increase the electrical conductivity
[24].
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The understanding of these peculiar effects in ionic mate-
rials requires a precise description of the dislocation core, and
a fine analysis of the interaction between a point defect and
the dislocation. As an example, whereas edge dislocations are
uncharged in typical rock salt crystals, the jogs or kinks re-
sulting from either dislocation-dislocation interaction or from
the vacancy adsorption carry charges [1,14,25].

In this work, we study the interaction between vacancies
and a 1/2〈110〉{1̄10} edge dislocation in magnesium oxide.
Indeed, in compounds such as MgO, the creep mechanism and
more generally the mechanical behavior is often interpreted
through the interactions between vacancies, impurities and
dislocations (see for instance Refs. [26–28] and references
therein). In particular, the experimentally observed harden-
ing or strain ageing is assumed to be controlled either by
impurities [29,30] or by intrinsic vacancies [31]. As an ex-
planation, one usually refers to either a strong pinning of
dislocations by point defects [29] or to a reduction of the
glide velocity for dislocations surrounded by an atmosphere
of charged impurity ions or vacancies [26]. Here we focus
on the interaction energies with a charged vacancy (V ′′

Mg and
V ˙̇

O, respectively the cationic and anionic vacancies) relying
on both molecular static simulations and the elasticity theory
[32–35] using the elastic dipole approach [36–44]. As shown
in the following, we extract the vacancy elastic dipole tensor,
defined as the negative derivative of the defect energy against
the strain on the crystal lattice, from atomistic simulations.
Doing so, we show that the charged vacancy can be fully
described within the framework of the elastic dipole tensor
which naturally captures the local deformation resulting from
the electrostatic repulsion between the firsts neighbor ions of
the vacancy. Our results highlight the necessity to account
for the exact dislocation core structure to properly infer the
nature of the interaction dislocation-vacancy. Relying on both
the elasticity theory and our atomistic simulations, we finally
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TABLE I. Properties of MgO as computed here with molecu-
lar statics (MS), compared to density-functional theory calculations
(DFT) [46,51] and experimental measurements. a0 is the lattice pa-
rameter, b = a0

√
2/2 is the Burgers vector, C11, C12, and C44 are the

elastic constants and B = (C11 + 2C12)/3 is the bulk modulus.

MS (DFT [46,51]) Experiments

a0 (Å) 4.218 (4.237) 4.212 [52]
b (Å) 2.983 (2.996) 2.978 [52]

C11 (GPa) 283 (279) 297.8±0.4 at 293 K [53]
295.9 at 300 K [54]
306.7 at 4.2 K [54]

C12 (GPa) 138 (93) 97±0.5 at 293 K [53]
95.40 at 300 K [54]
93.71 at 4.2 K [54]

C44 (GPa) 138 (146) 156.3±0.2 at 293 K[53]
153.9 at 300 K [54]
157.6 at 4.2 K [54]

B (GPa) 186 (155) 163.9±0.6 at 293 K [53]

discuss the pinning of the dislocation line by vacancies at low
temperatures.

II. METHODS AND MODELS

In this study, all atomistic calculations are performed
using classical molecular statics simulations. The ionic in-
teractions are based on rigid-ion pair potentials. The short
range interactions are modeled with a Buckingham form while
the long range interactions are classically described through
Coulombic terms. We use the parametrization proposed in
Ref. [45] for MgO, relying on partial ionic charges of ±1.7e.
Partly parameterized against ab initio calculations, the poten-
tial formulation is known to fairly reproduce a large set of
MgO intrinsic properties (Table I): lattice parameters, elastic
constants (although the rigid ion model satisfy the Cauchy
relation) [45], point-defect diffusion [45], dislocation core
properties [46] or the structure of low angle grain boundaries
[47]. Practically, we use the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) [48] for all sim-
ulations. As implemented in LAMMPS, the Coulomb part
is computed by means of a particle-particle particle-mesh
method [49] and the atomic relaxation are ensured by a Fast
Inertial Relaxation Engine algorithm [50] until a force crite-
rion of 1 meV/Å.

A. Vacancy elastic dipole

Within the framework of elasticity theory and the elas-
tic dipole approach, point defects are described by the local
deformation they induce on the crystal lattice [43,44]. The
elastic dipole tensor of point defects, quoted P is then the
negative derivative of the defect energy, δE , against the crystal
strain, ε:

P = −∂ (δE )

∂ε
. (1)

Among the various methods reviewed in Ref. [36] to extract
P from atomistic calculations, we use the definition derived
from the stress tensor. For an unstrained volume V , the elastic

FIG. 1. Atoms in a vicinity of a cationic vacancy, V ′′
Mg. Small

spheres show the positions of anions, and the bigger spheres show
the cations. The atoms are colored according to their elastic dipole
tensor.

dipole tensor can be deduced from the point-defect residual
stress, quoted σi j :

Pi j = −V σi j . (2)

Practically, P is determined from the computation of the
stress state of a periodic crystal in which only one vacancy is
introduced. Since vacancies are charged, simulation volumes
are neutralized with a uniform neutralizing background charge
density [42,55]. Because of the interaction between the defect
and its neutralizing background, it is worth noticing that the
elastic dipole tensor has to be corrected as described in Ap-
pendix A.

In MgO, as shown in Fig. 1 and as previously discussed by
Leslie and Gillan [42], the symmetry of the rock-salt structure
results in the elastic dipole tensors of both cationic and anionic
vacancies to be merely a multiple of the identity matrix with
P = pI. We give the elastic dipole component p in Table II.
The V ′′

Mg elastic dipole is found to be stronger than V ˙̇
O elastic

dipole. For both vacancy type, the elastic dipole is positive,
indicating that the relaxation volume around a vacancy is
also positive. Indeed, the relaxation volume � is conveniently
deduced from the elastic dipole tensor as � = tr(P)

3B = p/B.
As already discussed in Refs. [39–42], a positive dilatation
volume results, in ionic systems, from the strong coulombic
repulsion that prevails between the ionic neighbors of the
vacancy.

TABLE II. Elastic dipole component and relaxation volume for
an isolated vacancy in MgO computed with the empirical potential
[45].

V ′′
Mg V˙˙

O

p (eV) 5.35 4.88
� (Å3) 4.61 4.20
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FIG. 2. View of a simulation cell containing the dislocation
dipole, composed of a positive dislocation situated in (x+, y+) and
a negative one in (x−, y−), and a Mg vacancy, V ′′

Mg.

B. Simulation cells

The definition of the simulation setup follows the one
proposed in Ref. [25]. The simulated volume corresponds
to a dipole of edge dislocations of opposite Burgers vectors
b = ±1/2[110]. The orientation of the MgO crystal is chosen
to match the conventional reference frame (see for instance
Ref. [1]), i.e., the Burgers vector direction [110] is along x,
the dislocation line [001] is along z and the normal to the
glide plane [1̄10] is parallel to the y axis. In the following, we
quote (x+, y+) and (x−, y−) the positions of the positive and
negative dislocation respectively. To satisfy with the periodic
boundary conditions, the dislocations are located one above
the other (x+=x−) and distributed along y so that the distances
between them and their periodic images are equal. All calcula-
tions are performed within a constant volume (417 312 atoms)
of lengths, Lx ≈ Ly ≈ 80b ≈ 240 Å and Lz = 16a0 ≈ 67 Å.
In order to compute the interaction energy between a point
defect and an edge dislocation, we introduce a single charged
vacancy in the neighborhood of one of the dislocations as
illustrated Fig. 2. The use of a neutralizing background does
not affect the dislocation since its core is charge neutral.

III. DISLOCATION-VACANCY INTERACTION ENERGY

A. Atomistic simulations

From our atomistic simulations, we compute the
dislocation-vacancy interaction energy, E at

int, according to
the following expression:

E at
int = E − Edipole − δE . (3)

In Eq. (3), E and Edipole are respectively the energy of the
simulation cell for a dislocation dipole interacting with a
vacancy, and for the dislocation dipole only. δE corresponds
to the extraction energy of a given type of ion and is computed
as the difference between a perfect 3D-periodic crystal and
an equivalent system containing a single vacancy. One notes
that the extraction energy is merely linked to the sum of the

FIG. 3. Color maps of the interaction energy between the dis-
location dipole and (a) V ′′

Mg and (b) V˙˙
O computed by atomistic

simulations [Eq. (3)]. The dislocation core position (x+, y+) is high-
lighted in the figure by a purple “⊥”. The first plane above the
dislocation, ny=1, is the most attractive plane.

defect formation energy and the chemical potentials of ions
[56,57]. δE is thus computed with systems scaled on the size
of the cell containing the dislocation dipole. According to
our potential parametrization, we find δE = 17.89 eV for the
cationic vacancy and δE = 18.49 eV for the anionic vacancy.
Such values are very close to the point-defect extraction en-
ergy of an isolated defect embedded in an infinite volume
[58]. According to Eq. (3), the interaction energy is then
negative when a vacancy binds to an attractive atomic site. By
definition, the binding energy of a vacancy with a dislocation
corresponds to the opposite of the interaction energy.

The interaction energies are summarized in Fig. 3. As
expected in ionic crystals, because of the positive relaxation
volume of vacancies, the interaction is globally repulsive in
the compressive region above the dislocation glide plane,
whereas it is attractive in the tensile region below the glide
plane. Yet, we observe a strong attractive area close to the
dislocation glide plane [see the marked blue horizontal atomic
rows on Fig. 3]. It corresponds to vacancy sites on the two first
atomic planes, i.e., planes above and below the glide plane
quoted respectively ny=1 and ny=-1 [see arrows on Fig. 3].
The interaction energies reach values below −1 eV and are
maximum at the close vicinity of the core with −1.01 eV for
V ′′

Mg and −1.35 eV for V ˙̇
O (Table III). For these two planes

and whatever the nature of the vacancy, the attractive sites
spread beyond 22 atomic rows (≈11b). Thus, the attractive
region is larger than the dislocation core spreading (≈4b),
estimated from the atomic disregistry.

Previous investigations of dislocation-point-defects inter-
action in MgO already reported the occurrence of highly
attractive sites close to the core [18,33,34,59,60] emphasizing
that the strong attraction does not result from the rigid ion
potential used here (Table III). However, mostly dealing with
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TABLE III. Extremum values of the interaction energy for the
cationic and anionic vacancy in eV. The maximum attractive inter-
action is found for the configuration M1 and the maximum repulsive
interaction is found for the configuration M2 (Fig. 7).

V ′′
Mg V˙˙

O

Configurations: M1 M2 M1 M2

This works −1.01 0.62 −1.35 0.51
Woo et al. [59] 1.1a −1.09a 1.16a

0.77b −1.40b

Puls [33] 0.72a −1.51a

0.76b −1.42b

0.84c −1.61c

Zhang et al. [18] −1.7 −1.5

aShell model.
bPoint ion model.
cBreathing-shell model.

only few sites around the core, previous attempts [33,34,59] to
characterize the attraction of point defects by the dislocation
core did not capture the extension of this highly attractive
region.

B. Elasticity theory

Straight edge dislocation in MgO being uncharged, the
interaction between the vacancy and the dislocation can be
essentially described in the framework of the elasticity the-
ory using the elastic dipole approach. The interaction energy
of a point defect with a dislocation can be deduced from
Eq. (4) giving the interaction energy, E th

int, as a simple product
between the elastic dipole, Pi j , and the intensity at the point-
defect location of an external strain field, εext [42–44]:

E th
int = −Pi jε

ext
i j (4)

Assuming that the external strain field εext is the one cre-
ated by the dislocation at the vacancy site and introducing
the isotropic characteristic of V ′′

O and V ′′
Mg, the interaction

energy can be further simplified as the following:

E th
int = −pcell�. (5)

Since the vacancy elastic dipole component p is sensitive
to size effects, we used here the value pcell corresponding to
the non cubic simulation cell defined in Sec. III. The vacancy
elastic dipole components is then pcell = pxx = pyy = 5.55 eV
for V ′′

Mg and 5.07 eV for V ˙̇
O. � = tr(ε) refers to the dilatation

field of the edge dislocation. In the following, we use the
anisotropic elasticity theory to derive the dilatation field of
the dislocation. Indeed, we verified in Appendix B that the
dilatation field developed in the framework of anisotropy elas-
ticity [see Eq. (B7) in Appendix B] reproduces the dilatation
field extracted from our simulations. The comparison between
E th

int and our atomic results E at
int is shown Fig. 4. Apart from a

few atomic sites on planes above and below the glide plane,
we note that the elastic description of the interaction energy
matches the atomistic calculations within a few meV (i.e.,
5 meV which is indeed the accuracy of the molecular static
simulations given in the previous section). The largest energy
differences between E th

int [Eq. (5)] and E at
int [Eq. (3)] are around

FIG. 4. Difference between atomistic simulations [Eq. (3)] and
elasticity theory [Eq. (5)] for the interaction energy in the far field of
the dislocation dipole for (a) V ′′

Mg and (b) V˙˙
O.

0.07 eV and seem to be localized on the sides of the region of
dislocation core spreading.

IV. DISCUSSION

A. Vacancies in the far field of the dislocation

Far from the dislocation core, the elasticity theory is
expected to reproduce the interaction energies computed
atomistically. According to Fig. 4 E th

int is qualitatively in rea-
sonable agreement with E at

int although the global shape of the
interaction predicted by the theory seems to be more spread
than the one obtained by atomistic simulations.

To quantitatively assess this comparison, we have chosen to
compute the coefficient of determination, quoted R2, between
E at

int and E th
int within a 2b wide disk as a function of the distance

to the dislocation core (Fig. 5). R2, between a set of data y
(here E at

int) and the theoretical predictions ŷ (in our case E th
int)

writes:

R2 = 1 −
∑

i(yi − ŷi )2∑
i(yi − ȳ)2

(6)

with ȳ = (
∑n

i=1 yi )/n the average value of the data. R2 in that
convention may be negative, and tends to 1 when y = ŷ, i.e.,
when the predictions are in perfect agreement with the data.

Inside the dislocation core, there is strictly no correlation
(R2 � 0). However, above 2b, we note a monotonic trend with
a rapid increase of R2 which ultimately reaches almost 1 at
a distance of 10b whatever the vacancy type. Therefore, we
define the near field of the dislocation, as being the zone for
which R2 < 0.8, that is at � 5.5b from the dislocation core
(Fig. 5) . Oppositely, in the far field of the dislocation (above
5.5b, corresponding to the planes |ny| = 12) the agreement
between the atomistic simulations and the elasticity theory
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FIG. 5. Coefficient of determination, R2, between the interaction
energy, E at

int , computed from atomistic simulations [Eq. (3)] and E th
int ,

resulting from elasticity theory [Eq. (5)], as a function of the distance
to the dislocation core.

becomes remarkable. As an example, Fig. 6 shows that the
elasticity theory is able to capture the order of magnitude
of the interaction energy and its evolution as a function of
the vacancy sites along [110]. Hence above 5.5b, an elastic
treatment is able to reproduce both the intensity and the shape
of the interaction energy with a reasonable accuracy.

B. Vacancies in the near field of the dislocation

For the vacancy sites in the dislocation core region, i.e.,
below 4b, the elasticity theory is obviously not able to predict
the interaction energies (see Fig. 3 and Fig. 5). In particular,
above the glide plane, the first atomic layer (ny = 1) expected
to be repulsive corresponds atomistically to the most attractive
one (see configuration M1, blue squares compared to blue line,
in Fig. 7).

A close inspection of the relaxed configuration of V ˙̇
O

binded to the core, shows that neighbors cations benefit from
the local free volume accessible in the dislocation core to
strongly repel [see green arrows on Fig. 8(a)]. Indeed, due
to the local atomic arrangement and the core spreading of
the edge dislocation investigated here, we observe a region
[see region colored in red in Fig. 8(c)] for which the atomic
volume is locally in excess with respect to the bulk configura-
tion [Fig. 8(c) showing the atomic volume using the voronoi
formulation]. For vacancies binding in this tensile region,
the interaction energies is negative. This behavior follows
the classical mechanism of relaxation around a point defect
associated with a positive elastic dipole tensor in ionic crystals
[42]. For instance, layers adjacent to the glide plane, ny = 1
and ny = −1, are the zones containing the most free space
[Figs. 8(a) and 8(c)] and thus are the most attractive sites for
vacancies. Surprisingly, plane ny = 1 is even more attractive
than plane ny = −1 (Fig. 3). An explanation might result in
the second neighbors relaxation capabilities. Indeed, in case

FIG. 6. A comparison between atomistic simulations [symbols,
Eq. (3)] and elasticity theory [lines, Eq. (5)] at |ny| = 12, the limit
between the near and the far field of the dislocation, i.e., at 5.5b from
the core (Fig. 5), for the interaction energy between the dislocation
and (a) V ′′

Mg and (b) V˙˙
O.

of a vacancy in configuration M1, the neighbor ions belonging
to ny = 2 seem to undergo slight relaxation. In such a case
the compressed atoms will gain some space due to the local
rearrangement (Fig. 9), so the system energy will decrease.
Oppositely, for a vacancy belonging in plane ny = −1, the
neighbor ions belonging to the plane ny = −2 are already in a
tensile zone, so a gain in space will not be equally beneficial
than introducing a vacancy in configuration M1.

The interaction energy is thus strongly related to the free
volume of atoms induced by the core structure of the dis-
location which results from a complex relaxation scheme of
atoms. In the near field, since the elasticity theory treats the
dislocation as a singularity, such a behavior inherent of the
peculiar core structure of the dislocation and its spreading can
not be inferred by the elasticity theory.
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FIG. 7. A comparison between atomistic simulations [symbols,
Eq. (3)] and elasticity theory [continuous lines for ny = 1, dashed
lines for ny = 2, Eq. (5)] of the interaction energy between the
dislocation and (a) V ′′

Mg and (b) V˙˙
O. The interaction energy extrema

are spot by letters: M1 and M2.

This close correlation between the core structure and the
interaction energy is also visible for repulsive areas. For
instance, in Fig. 8(b), we show the atomic configuration M2

of V ˙̇
O. For such configuration, the vacancy is located at plane

ny = 2 corresponding to the layer of highest compression state
[Fig. 8(c)] and therefore corresponds to the most repulsive in-
teraction energy for a vacancy site (see yellow dots in Fig. 7).
It is almost the only strong unstable vacancy configuration in
close vicinity of the dislocation core (Fig. 3).

C. Implications

Experimentally, it has been reported that vacancies, and
especially ionic vacancy, can efficiently pin dislocations [31]
in MgO. Such an assumption can be revisited according to

FIG. 8. [(a) and (b)] Snapshot of the atomic configurations near
V˙˙

O and the dislocation core (x+, y+) determined by atomistic simu-
lations. (a) For configuration M1; (b) For configuration M2 (Fig. 7).
The red spheres represent the oxygen ions and the green ones the
magnesium ions. The arrows highlight the ion motions (yellow for
oxygen ions and green for magnesium ions). (c) Magnification of the
atomic configuration near the prefect dislocation core (x+, y+). The
atoms are colored according to the difference between the atomic
volume near the dislocation and the perfect atomic volume. The
atomic volume are determined using the voronoi formulation.

our atomistic calculations by computing the pinning force of
an edge 1/2〈110〉{1̄10} resulting from the interaction with V ′′

Mg

or V ˙̇
O.

By definition, the pinning force is the maximum of the
attractive interaction force, fp = max (| fint < 0|), between the
dislocation and the vacancy. fint is derived from the interaction

063602-6
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FIG. 9. Snapshot of the atomic configurations in the vicinity of
the dislocation core. The O atoms are represented by small red
spheres and the Mg atoms by larger green spheres. The bonds be-
tween the O atoms are shown. (a) Perfect dislocation core. [(b) and
(c)] The most stable configuration, for which V˙˙

O is situated in the
plan ny = 1. For a better readability the O atoms in vicinity of the
vacancy are colored in blue.

energy [61,62]:

fint = −∂Eint

∂x
. (7)

We thus extract the interaction force from our simulations by
numerically deriving the interaction energy, E at

int [Eq. (3)], in
such a way f at

int = −∂E at
int/∂x (see symbols in Fig. 10).

Moreover, in the dislocation far field, the elasticity theory
can accurately predict the interaction energy (Fig. 5), so the
interaction forces can be given by the following elastic for-
mulation:

f th
int (x, y) = −∂E th

int

∂x
= pκb

π

2xy[
(x4 + y4) − 2x2y2]

(x4 − 2
x2y2 + y4)2
(8)

with

κ = C12 − C11

C11

√
C11C44

(C11 − C12)(C11 + C12 + 2C44)
(9)

and


 = C2
11 − 6C11C44 − C12(C12 + 2C44)

(C11 − C12)(C11 + C12 + 2C44)
. (10)

Indeed, a comparison between f at
int and f th

int at the border
of the dislocation far field (|ny| = 12) [Figs. 10(a) and 10(b)]

FIG. 10. A comparison between atomistic simulations [symbols,
Eq. (7)] and elasticity theory [continuous lines for V ′′

Mg, dashed lines
for V˙˙

O, Eq. (8)] of the interaction forces at plane (a) ny = 12, (b) ny =
−12, i.e., the limit between the far field and the near field of the
dislocation and at plane (c) ny = 1, i.e., the most attractive plane in
the dislocation core.

shows that in the dislocation far field, Eq. (8) predicts interac-
tion forces in fairly good agreement with f at

int derived from our
atomistic calculations.
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From Eq. (8), one note that fint (x, y) = fint (−x,−y) and
fint (x, y) = − fint (x,−y). Therefore, for a vacancy situated
at ny = 12, the interaction is repulsive (Fig. 6), as well as
the force [Fig. 10(a)] while at plane ny = −12, the force is
attractive and is strictly the opposite of the repulsive force
occurring at ny = 12. As already pointed out, the singularity
of the core in the elasticity theory leads to an abrupt inversion
of the interaction force as the core is crossed whereas such a
discontinuity cancels in case of f at

int accounting for the spread-
ing of the core.

Yet, for vacancies far from the dislocation glide plane [as
illustrated Figs. 10(a) or 10(b)], the interaction force has prac-
tically vanished.

Since the interaction between a point defect and the dislo-
cation is strongest in the vicinity of the glide plane, it is more
relevant to focus on the atomic layers just above and below
the glide plane. For the ny = 1 plane, we already reported
that the strongest attractive sites spread over 22b from the
dislocation for both V ′′

Mg and V ˙̇
O (see blue squares for x∈

[−20Å,20Å] in Fig. 7). It is thus not surprising to find that
the interaction force reaches its highest values for vacancies
located in the first atomic layers [as illustrated Fig. 10(c)].
According to our simulations, f at

int reaches 0.097 eV/Å for
V ′′

Mg and 0.142 eV/Å for V ˙̇
O. The interaction force reaches its

maximum [Fig. 10(c)] at the border of the dislocation core
region (i.e., ≈6Å, consistently with a half-width of the core of
≈2b) and evolves smoothly throughout the dislocation core.
The spreading of the core region has thus an effect on the ac-
tual values of the pinning forces. Despite the dislocation core
being strongly attractive for vacancies (Fig. 3), the spreading
of the dislocation allows a gradual variation of E at

int in the core
region. Consequently, the pinning forces as computed with
our atomistic simulations for the ny = 1 plane are relatively
weak, at least weaker that any elastic prediction. It is worth
noticing that V ˙̇

O are stronger pinning points than V ′′
Mg in

agreement with the conclusions of Ref. [31]. However, with
a few tens of eV/Å, even anionic vacancies should be consid-
ered as weak pinning points. Hence the interaction of V ′′

Mg

or V ˙̇
O with edge dislocation might only slightly contribute

to the hardening in MgO. Interaction between dislocations
and tetragonal defects, such as impurity-vacancy dipole, are
expected to govern the mechanism of hardening in ionic crys-
tal. However, to our knowledge, the resulting pinning forces
have only been evaluated through various elastic treatments
[61,62]. Based on the previous investigation, the elasticity
theory of point-defect-dislocation interaction in the far field
region of the edge dislocation seems fairly robust but its
prediction in the vicinity of the dislocation may be largely
incorrect. As an example, the use of Eq. (8) for vacancies
binding in the core leads to overestimate the pinning forces
by a factor of 4 [as illustrated Fig. 10(c)]. A treatment purely
based on the elasticity theory as done in Refs. [61,62] is thus
questionable and may require an atomistic investigation in
order to infer reasonable values for the pinning forces.

To complete the discussion of the interaction of point de-
fects with dislocation in MgO, we shall add that one of the
striking results of our atomistic simulations is the occurrence
of a large region of attractive sites for vacancies. Such an oc-
currence of strong binding raft spread in the x[110] direction
may results in a sweep-up mechanism [63] from which the

dislocation might acquire and carry electric charges during its
glide. This peculiar region in the vicinity of the dislocation
core can also affect the diffusion by inducing short-circuit
pathways leading to potentially athermal pipe diffusion.

V. CONCLUSION

In this study, we quantified the interaction between
1/2〈110〉{1̄10} edge dislocations and vacancies in MgO using
molecular static simulations and elasticity theory. Using the
framework of the elastic dipole tensor to characterise a va-
cancy, we showed that in the far field of the dislocation (above
� 5.5b), the anisotropic elasticity theory accurately predicts
the interaction between the edge dislocation and vacancies.
Indeed, both the interaction energy and the interaction force
are well captured by elastic treatments. Otherwise, in the near
field of the dislocation that contains the most attractive and
repulsive sites, we show that the interaction strongly depends
on the dislocation core structure. Hence, the elasticity theory
describing the dislocation core as a singularity is not able
to reproduce the correct vacancy response in the near field.
Within a region across the glide planes that expands over
several Burgers vector, the edge dislocation core is strongly
attractive for vacancies, especially the anionic ones. However,
isolated vacancies remain weak pinning points which are not
expected to contribute significantly to the hardening observed
experimentally in MgO.
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APPENDIX A: CELL SIZE DEPENDENCY ON THE
ELASTIC DIPOLE TENSOR

In this study, the determination of the elastic dipole tensor
P have been carried out using standard cubic system orienta-
tion. Once one ion has been removed from the system, we
used the method described in Ref. [42] to account for the
introduction of an isolated charged vacancy.

As explained in Sec. II, the elastic dipole tensor is com-
puted through the evaluation of the stress tensor induced by
the vacancy in the volume V . As for the vacancy formation
energy, using periodic boundary conditions, the stress tensor
resulting from the insertion of a vacancy is therefore system
size dependent. Figure 11 shows the evolution of P as a
function of the cell size, L (see circles in Fig. 11). In case
of non neutral periodic system, the sensitivity of P to the
system size results from two major contribution, (1) the elastic
interaction between the defect and its periodic images [37], (2)
a coulombic interaction between the vacancy and the uniform
background charge introduced to ensure a proper convergence
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FIG. 11. Elastic dipole component plotted versus the inverse
of the cell size, L, for (a) the cationic vacancy and (b) the an-
ionic vacancy. The dots correspond to the uncorrected elastic dipole
component, directly extracted from our simulations, the small stars
correspond to the elastic dipole component corrected from the
Coulomb interaction and the large stars correspond to the elastic
dipole component corrected from the Coulomb and from the elastic
interaction.

of the electrostatic summation [42]. Indeed, both contribute to
a correction term to the energy given by:

δE elas ∝ 1

L3
, (A1)

δE coul = −α

2

q2

4πεmgoL
, (A2)

with here a Madelung constant α = 2.8373 and εmgo =
8.5ε0 the permittivity of MgO according to the potential
parametrization.

The elastic dipole tensor scaling with the strain derivative
of the energy, a similar correction has to be applied in order to
compute the corrected elastic dipole component p (P = pI).
Here we used thus, δpcoul ∝ 1

L and δpelas ∝ 1
L3 .

In Fig. 11, we distinguished the elastic dipole tensor cor-
rected only from the Coulomb effects (small purple stars in
Fig. 11) or the one obtained when all the interactions were
taken into account (see big yellow stars in Fig. 11). From these
results we can see that the Coulomb interaction is once again
predominant over the elastic interaction. The corrected value,
p, for the cationic and anionic vacancy are quoted in Table II.

APPENDIX B: DILATATION FIELD, A COMPARISON
BETWEEN ATOMISTIC SIMULATIONS AND ELASTICITY

THEORY

In order to determine the atomic dilatation field, �at, from
our minimized dislocation dipole system, we first compute
a per-atom-stress tensor, using a virial development for the
force acting on atom, divided by a atomic volume, expressed
as a voronoi volume. The reverse Hook law gives then:

�at = (s11 + 2s12)(σxx + σyy + σzz ) (B1)

with the s11 and s12 the compliances in the standard orientation
[64], linked to the stiffnesses (Table I) by:

s11 = C11 + C12

(C11 − C12)(C11 + 2C12)
(B2)

and

s12 = − C12

(C11 − C12)(C11 + 2C12)
. (B3)

The corresponding atomic dilatation field, Eq. (B1), is plotted
in Fig. 12(a).

In the frame of the elasticity theory, the dilatation of an
edge dislocation, �i, writes [64]:

�i(x, y) = κb

π

y(y2 − 
x2)

x4 − 2
x2y2 + y4
(B4)

with

κ = C12 − C11

C11

√
C11C44

(C11 − C12)(C11 + C12 + 2C44)
(B5)

and


 = C2
11 − 6C11C44 − C12(C12 + 2C44)

(C11 − C12)(C11 + C12 + 2C44)
. (B6)

In case of isotropic elasticity, 
 = −1 and κ = (C12 −
C11)/2C11, and the isotropic dilatation field, scaling with the
Poisson ratio ν = C12/(C11 + C12), becomes symmetric as
given in numerous textbooks as for instance in Ref. [1].

For a proper comparison between the elasticity theory and
the atomistic results, it is necessary to consider not only the
dislocation dipole but also its periodic images. In the follow-
ing, this is achieved by a simple summation at the position
(x′, y′):

�th =
R∑

n=−R

R∑
m=−R

(�1 + �2) (B7)

with �1 = �i(x′ − (x+ + nLx ), y′ − (y+ + mLy)) and �2 =
−�i(x′ − (x− + nLx ), y′ − (y− + mLy)). We further verified
that a summation over 10 periodic images is sufficient within
the accuracy of our atomistic simulations.
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FIG. 12. Dilatation around the dislocation situated in (x+, y+)
(a) �at computed from the atomistic simulations stress tensor
[Eq. (B1)], (b) �th developed in anisotropic elasticity theory, or (c) in
isotropic elasticity theory [Eq. (B7)]. The dislocation core position
(x+, y+) is highlighted in the figure by a purple ⊥.

A typical solution in case of anisotropic elasticity
[Eq. (B7)] is given as a color map in Fig. 12(b). Qualita-
tively, one can see on the color maps that there are only
mild differences between the dilatation determined with atom-
istic simulations [Fig. 12(a)] and the dilatation predicted by
anisotropic elasticity theory [Fig. 12(b)]. The shape of the
dilatation seem slightly sharper on the theory and the atomistic
results are more spread out. This discrepancy could be related

FIG. 13. Coefficient of determination, R2, between dilatation
from atomistic simulations and from elasticity theory, computed on a
disk of 2b wide, as a function of the distance to the dislocation core.

to the spreading of the edge dislocation core. Indeed, all the
elastic treatment performed assumes a Volterra dislocation,
i.e., the core is a singularity in the elastic media and conse-
quently do not account for a width of the shear distribution in
the vicinity of the dislocation core. In contrast, we can see that
the agreement is less pronounced between isotropic elasticity
[Fig. 12(c)] and atomistic simulations [Fig. 12(a)].

To be quantitative, we measured the coefficient of determi-
nation R2 between Eq. (B1) and Eq. (B7) at a given distance r
from the dislocation core (Fig. 13). Isotropic solution being
easily tractable, it is a common temptation to refer to its
expression. However, the isotropic solution, with a correlation
R2 below 0.8 (see purple squares in Fig. 13), fails to reproduce
the atomistic calculations even at large distance from the
dislocation core. In contrast, except in the dislocation core
region, the anisotropic dilatation field matches our simulation
results with a coefficient of determination reaching almost 1
at distance of a few b (see yellow dots in Fig. 13). One could
possibly increase the fidelity of the anisotropic dilatation field
by accounting for the spreading of the core. Nevertheless, if
one defines a accuracy criterion R2 = 0.8, the elasticity theory
provides a sufficient prediction (R2 � 0.9) even in an area
close to the dislocation core of half-width of nearly 2b.
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