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The histone demethylase Phf2 acts as a molecular
checkpoint to prevent NAFLD progression during
obesity
Julien Bricambert1,2,3, Marie-Clotilde Alves-Guerra1,2,3, Pauline Esteves1,2,3, Carina Prip-Buus1,2,3,

Justine Bertrand-Michel4, Hervé Guillou 5, Christopher J. Chang6,7, Mark N. Vander Wal6,

François Canonne-Hergaux8,9,10,16, Philippe Mathurin11,12,16, Violeta Raverdy13,14,15, François Pattou 13,14,15,

Jean Girard1,2,3, Catherine Postic1,2,3 & Renaud Dentin 1,2,3

Aberrant histone methylation profile is reported to correlate with the development and

progression of NAFLD during obesity. However, the identification of specific epigenetic

modifiers involved in this process remains poorly understood. Here, we identify the histone

demethylase Plant Homeodomain Finger 2 (Phf2) as a new transcriptional co-activator of the

transcription factor Carbohydrate Responsive Element Binding Protein (ChREBP). By speci-

fically erasing H3K9me2 methyl-marks on the promoter of ChREBP-regulated genes, Phf2

facilitates incorporation of metabolic precursors into mono-unsaturated fatty acids, leading to

hepatosteatosis development in the absence of inflammation and insulin resistance. More-

over, the Phf2-mediated activation of the transcription factor NF-E2-related factor 2 (Nrf2)

further reroutes glucose fluxes toward the pentose phosphate pathway and glutathione

biosynthesis, protecting the liver from oxidative stress and fibrogenesis in response to diet-

induced obesity. Overall, our findings establish a downstream epigenetic checkpoint, whereby

Phf2, through facilitating H3K9me2 demethylation at specific gene promoters, protects liver

from the pathogenesis progression of NAFLD.
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Non Alcoholic Fatty Liver Disease (NAFLD), one of the
most prevalent metabolic disorders worldwide1,2, is
characterized by multiple distinct injurious mechanisms,

which are unified under the concept of multiple parallel hits
hypothesis3. All of these factors, including accumulation of
lipotoxic intermediates, inflammation, oxidative stress, hepato-
cyte apoptosis, and fibrogenesis, act in a complex way to enhance
the development and progression of the hepatic lesions through
the NAFLD spectrum3. Although various genetic factors con-
tribute to NAFLD development4, it is now widely accepted that
environmental factors, by directly altering the epigenome, are also
key determinants5,6. Overall, excessive nutrient intake precipitates
dynamic epigenetic modifications in some specific pattern of gene
expression, causing an individual to become prone to diet-related
metabolic disorders7–11. The fact that aberrant histone methyla-
tion profiles can be associated with metabolic syndrome rein-
forces the concept that histone lysine methylation state has a
central role in this process12,13. Accordingly, the expression of
specific histone lysine methyltransferases (KMT) and demethy-
lases (KDMs) is altered during hepatosteatosis development14.
Although these findings suggest that epigenomic control is crucial
for NAFLD development, the exact nature of those epigenetic
modifiers remains partially unknown9.

In this study, we identify the histone demethylase plant
homeodomain finger two (Phf2), which belongs to the KDM7
histone demethylase family, as a component of the ChREBP-
assembled transcriptional complex, a transcription factor pre-
viously implicated in hepatic steatosis development15,16. While
Phf2 has been demonstrated to play roles in glucose metabolism
in hepatocytes and pro-inflammatory response in macrophages
using in vitro experimental approaches, the physiological roles of
Phf2 are still unclear, partially because Phf2 is ubiquitously
expressed in various metabolic tissues and appears to work as a
coactivator with multiple transcription factors. Supporting its
potential metabolic function, it has been recently shown that Phf2
also controls adipogenesis and fat storage through the regulation
of CEBPα and PPARγ transcriptional activities in adipose tis-
sue17,18. Indeed, mice with targeted disruption of Phf2 or Arid5b
(AT-rich interactive domain D), a specific Phf2 coactivator
partner19,20, display a reduction of white adipose tissue mass21 as
a result of reduced PPARγ activity 22. Overall, it seems that Phf2
could work in multiple organs as a determinant regulator of
glucose and lipid homeostasis. However, the regulation of Phf2
activity in hepatocytes and its contribution to the physiopathol-
ogy of obesity and type 2 diabetes and more specifically to the
development and/or progression of NAFLD are currently
unknown.

Our study highlights, both in mice and human, a role for active
Phf2-mediated H3K9me2 demethylation as a molecular check-
point in the regulation of a subset of metabolic and anti-oxidative
gene programs by interfering with the activity of the transcription
factors ChREBP and NF-E2-related factor 2 (Nrf2). As a con-
sequence, Phf2 activation protects the liver from inflammation,
oxidative stress, insulin resistance, and fibrosis development
during the pathogenesis progression of NAFLD during obesity.
These findings link Phf2 to sugar sensing in hepatocytes and may
allow for novel therapeutic approaches to treat related-metabolic
liver disorders.

Results
Identification of Phf2 as a ChREBP interacting protein. During
identification of transcriptional co-regulators for the transcription
factor ChREBP in hepatocytes using mass spectrometry analysis,
the jmjC domain containing histone demethylase Phf2, which is
highly expressed in the liver, was purified (Supplementary Fig. 1a

and b). This association was confirmed by reciprocal co-
immunoprecipitation studies using either ectopically expressed
proteins in 293T cells or with endogenous proteins in the liver of
fed C57Bl/6J mice (Supplementary Fig. 1c). In the search for Phf2
molecular function, FLAG-tagged Phf2, immunoprecipitated
from 293T cells, demethylated H3K9me2 histone methyl mark on
recombinant histones, core histones or mono-nucleosomes, but
had no effect on other histone methylation marks tested (Fig. 1a,
b and Supplementary Fig. 1d). This specific histone demethylase
activity was further confirmed by immunostaining of H3K9me2
histone mark in Phf2 overexpressing hepatocytes (Fig. 1c).
Accordingly, mutation of histidine 248, predicted to be part of the
Fe(II) binding site of Phf2 jmjC domain23, impaired this activity
(Fig. 1b). ChIP-sequencing (ChIP-seq) demonstrated that Phf2
peaks (~79%) predominantly localized and covered the tran-
scription start site (TSS) on its target gene promoters (Fig. 1d, e).
Correlating with Phf2 tags distribution, the intensity of H3K9me2
methyl marks was predominantly decreased at the TSS of Phf2-
bound promoters, further supporting its specific H3K9me2
demethylase activity (Fig. 1e, right panel). The majority of Phf2-
bound promoters (90%) were also H3K4me3 and RNA-polII
positive, suggesting that they were either “poised” for transcrip-
tion or transcriptionally active (Fig. 1d, e). Accordingly, in vitro
peptide pull down assay showed that Phf2 bound specifically to
H3K4me3 histone tails (Fig. 1f). In contrast, a Phf2 mutant
lacking its methyl lysine-binding PHD domain (Phf2ΔPHD) did
not bind H3K4me3 histone tails, and more importantly did not
retain its histone demethylase activity toward mono-nucleosomes
(Fig. 1f). This reveals that the PHD finger-mediated targeting of
Phf2 to H3K4me3-containing nucleosomes is required to deme-
thylate H3K9me2 methyl marks. Bioinformatics analysis also
revealed that the most statistically predicted Phf2 binding sites
were E-box and ARE-response elements (Fig. 1g). Accordingly,
gene ontology analysis of Phf2-bound promoters indicated that
Phf2 was recruited to the promoter of genes involved in the
regulation of metabolic processes, cell cycle and response to
oxidative stress (Fig. 1h). Supporting this observation, microarray
analysis, conducted on Phf2 overexpressing hepatocytes,
demonstrated that Phf2 affected the expression of specific tran-
scriptional networks under the control of several key metabolic
transcription factors, such as ChREBP, PPARγ, Nrf2, or HIF1α
(Fig. 1i).

Phf2 activation promotes NAFLD development. To evaluate its
function, Phf2 was overexpressed for 3 weeks in the liver of
C57BL/6J mice. Phf2 overexpression led to hepatic steatosis
development as shown by increased liver weight (Supplementary
Table 1) and by oil red O staining of liver sections (Fig. 2a).
Microarray analysis demonstrated that Phf2 overexpression led to
the differential regulation of 921 genes (fold ± 1.5 and p < 0.05).
Among them, 25% were involved in the control of metabolic
processes (Supplementary Fig. 2a–d). In this context, metabolic
tracing studies, using 14C-labeled glucose and oleate as substrates,
demonstrated that Phf2 overexpression increased hepatic fatty
acid (FA) uptake, esterification and de novo lipogenesis (DNL)
rates (Supplementary Table 1). In agreement, expression of genes
that promote FA uptake and activation, in addition to their
intracellular trafficking and esterification was enhanced in Phf2
mice (Supplementary Fig. 3a, b). Expression of genes involved in
DNL and lipid sequestration was also upregulated (Supplemen-
tary Fig. 3a, b). Finally, hepatic TG secretion rate was also
decreased in Phf2 mice correlating with reduced expression of
MTP and ApoB involved in VLDL assembly and secretion
(Supplementary Fig. 3a–c). Overall, Phf2 overexpression by
controlling metabolic rerouting and lipid sequestration favors
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Fig. 1 Characterization of Phf2 histone demethylase activity. a, b Demethylase activity of either FLAG-tagged wild-type (wt) or H248A mutant of Phf2
immunoprecipitated (IP) from 293T cell lysates, was assessed using either recombinant methylated histones (a), core histones or mononucleosomes
(mono) (b) as substrates (n= 3). For panel a, a densitrometric analysis of H3K9 mono, di or trimethylation levels normalized to histone H3 levels was
performed, values are expressed as fold over the means of the CTRL transfected cells. c Primary hepatocytes were transfected with FLAG-tagged Phf2
expression vector for 24 h. Cells were then fixed and immunostained with the indicated antibody. Representative images shown (n= 3). Scale bars= 40
μm. d Genomic distribution of Phf2 and Venn diagrams showing overlap between Phf2-bound, RNA polII-bound and H3K4me3-marked promoters after
ChIP-sequencing experiment from primary cultured hepatocytes incubated with 100 nM insulin and 25mM glucose for 24 h. e Tag density plots displaying
Phf2, H3K4me3, or H3K9me2 tags distribution relative to the transcriptional start site (TSS). f (Left panel) Peptide pull-down assay, mixing purified FLAG-
tagged wt or ΔPHD Phf2 from 293T cells lysates with biotinylated histones tails. Pull-downs were analyzed by immunoblotting. (Right panel) Phf2
demethylase activity assessed using mononucleosomes as substrates (n= 4). g Top enriched motifs of Phf2 ChIP-seq peaks (n= 11,882). h Gene ontology
analysis of Phf2-bound promoters from Phf2 ChIP-seq analysis. i Top enriched affected transcriptional networks in the liver of Phf2 overexpressing mice.
Phf2 was overexpressed through adenoviral gene delivery in the liver of C57BL/6 J mice for 3 weeks. Microarray analysis was then performed to identify
affected transcriptional networks. a Error bars represent mean ± SEM, *P < 0.01 Phf2 compared to CTRL (unpaired t-test)
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hepatic steatosis development as revealed by increased liver tri-
glyceride (TG), diacylglycerol (DAG), and cholesterol ester con-
tents (Supplementary Table 1).

Despite severe lipid deposition, no modification in PKCɛ
activity (Fig. 2b), and subcellular localization (Supplementary

Fig. 3d) was observed despite increased DAG content at both the
plasma membrane and in the cytosol (Fig. 2c). Furthermore, total
ceramide content, which can also trigger hepatocyte’s PKCɛ
activation, was not altered in liver of Phf2 mice compared to GFP
(Supplementary Table. 1). In addition, serum levels of alanine
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aminotransferase (ALAT) and aspartate aminotransferase
(ASAT), which sign liver injury, were not modified (Supplemen-
tary Table 1). Macrophage infiltration (Supplementary
Fig. 3e), and expression of pro-inflammatory cytokines such as
Tnfα, IL6, and IL1β were even decreased Fig. 2d). Phf2 mice had
lower post-prandial blood glucose and insulin levels (Supple-
mentary Table 1). They were also more sensitive to insulin (ITT),
more tolerant to glucose (OGTT) than controls, and exhibited
decreased serum insulin levels during the glycemic burst (Fig. 2e,
f). Pyruvate tolerance test (PTT) also revealed that insulin-
mediated suppression of hepatic glucose production was
potentiated upon Phf2 overexpression (Supplementary
Fig. 3f). Furthermore, Phf2 mice showed enhanced liver PI3K/
Akt signaling as evidenced by increased Akt, p70S6K, or GSK3β
phosphorylation (Fig. 2g). However, no modification of the PI3K/
Akt signaling was observed in the epididymal white adipose
tissue (WAT) and skeletal muscle of liver-specific Phf2 over-
expressing mice after insulin stimulation, suggesting absence of
change in peripheral insulin sensitivity (Supplementary Fig. 3g).
Supporting this conclusion, glycogen content in skeletal
muscles was not altered after liver-specific Phf2 overexpression
(Supplementary Table 1). Overall, this demonstrates that
Phf2-mediated hepatosteatosis development is associated with
exacerbated liver insulin sensitivity and is dissociated from
inflammation.

To further identify metabolic pathways controlling the
observed tolerance to lipotoxicity, the impact of Phf2 over-
expression on liver lipid composition was examined by lipidomic
analysis. Strikingly, liver of Phf2 mice contained elevated levels of
mono-unsaturated FA (MUFAs) and significantly less saturated
FA (SFA) esterified into all of lipid species tested such as DAG,
TG, cholesterol esters (Fig. 2h), and even ceramides (Supple-
mentary Fig. 3h). Overall, as lipotoxicity is generally attributed to
SFAs, their conversion into specific MUFAs could be instru-
mental in the protective effect of Phf2 from inflammation and
insulin resistance, by decreasing their intracellular concentrations.
This implicated the desaturation of SFA, a limiting step catalyzed
by the family of stearoyl-CoA desaturase (SCDs), as a potential
mechanism underlying the phf2-driven lipid compositional
changes. Consistently, SCD1 expression (Supplementary Fig. 3a, b)
and activity (Supplementary Fig. 3i) were enhanced in phf2 mice.
To further examine the impact of SCD1-mediated SFA desatura-
tion in the resistance to lipotoxicity, SCD1 expression was
inhibited in primary cultured hepatocytes. As previously
observed in vivo, Phf2 overexpression increased SCD1 expression
and favored the conversion of SFA into MUFA (Fig. 2i).
Consequently the percentage of SFA content significantly
decreased after Phf2 overexpression in all lipid species (Fig. 2j).
As a result, Phf2 overexpression, although increasing both DAG
and TG content (Supplementary Fig. 3j), protected hepatocytes
from palmitate-induced insulin resistance and inflammation
(Fig. 2i, k and Supplementary Fig. 3k). In contrast, SCD1
silencing (Fig. 2i), without affecting DAG or TG content
(Supplementary Fig. 3j), abolished Phf2-driven SFA desaturation,

as revealed by increased percentage of SFA and reduced MUFA
content in hepatocyte (Fig. 2j). As a result, sensitivity to
palmitate-induced inflammation and insulin resistance were
restored in Phf2 overexpressing hepatocytes (Fig. 2i, k).
Altogether, our results suggest that Phf2-mediated SFA
desaturation into DAG and TG protects the liver from
inflammation and insulin resistance despite hepatic steatosis
development.

Phf2 diverts glucose fluxes to protect liver from oxidative
damages. Metabolic tracing studies further demonstrated that
hepatic glucose and FA oxidation rates were enhanced in Phf2
mice (Fig. 3a). As a consequence, hepatic glutamate and
succinate-driven mitochondrial respiration was increased in Phf2
mice, indicating higher mitochondrial oxidative capacity
(Fig. 3b). Intriguingly, although these alterations could lead to
ROS overproduction, since more substrate-derived electrons are
entering the mitochondrial respiration chain, Phf2 mice did not
show increase in ROS levels, protein carbonylation or proteasome
activity (Fig. 3c and Supplementary Fig. 4a). As lipotoxicity,
through ROS production, is one of the major events involved in
NAFLD progression24, these results further suggest that Phf2
activation, by improving oxidative stress defenses, could protect
liver from the adverse consequences of lipid deposition (Sup-
plementary Fig. 4b). Supporting an anti-oxidative stress response,
metabolomic KEGG pathway analysis revealed that the pentose
phosphate pathway shunt (PPP), serine, glycine, and glutathione
biosynthesis showed a strong enrichment in Phf2 mice (Fig. 3d, e
and Supplementary Fig. 4c). Accordingly, increased expression of
glucose 6-phosphate dehydrogenase (G6PDH) and transketolase
(TKT) further demonstrated that glucose flux is consumed to feed
into the PPP, providing NADPH to sustain ROS-scavenger glu-
tathione peroxidases (Gpx) activity (Fig. 3f–h). In addition,
enhanced expression of phosphoglycerate dehydrogenase
(phgdh), glutamate–cysteine ligase (GCLC), and glutathione
synthetase (GSS) diverts glycolytic carbons (3-phosphoglycerate)
into the serine, glycine, and glutathione (GSH) biosynthetic
pathways to sustain GSH synthesis (Fig. 3i, Supplementary Fig. 4c
and Supplementary Table 1). Therefore, Phf2 contributes, in
addition to its role in lipid partitioning, to the protective effect
against oxidative stress, by rerouting glycolytic flux and by reg-
ulating the activity of ROS detoxifying enzymes.

Phf2 acts as a new ChREBP epigenetic activator. In keeping
with the observation that Phf2 interacts with ChREBP (Supple-
mentary Fig. 1), bioinformatic analyses highlighted that Phf2
overexpression affected ChREBP transcriptional networks.
Indeed, a significant proportion of ChREBP target genes (49.94%)
were increased in response to Phf2 overexpression (Supplemen-
tary Fig. 5a, b). Furthermore, ChREBP ChIP-seq indicated that
74% of ChREBP-bound promoters corresponded to those binding
Phf2, and that ChREBP and Phf2 genomic distribution covered
the TSS of their common target gene promoter (Fig. 4a and

Fig. 2 Liver-specific Phf2 overexpression causes quick-onset hepatosteatosis. a–h Mice, injected with either GFP or Phf2 overexpressing adenovirus, were
studied 3 weeks later in the fed state. a Phf2 mice develop hepatic steatosis as shown by increased liver size and by oil red O staining of liver sections. Scale
bars= 100 μm (n= 10 per group). b Measurement of PKCε activity (n= 6 per group). c Liver DAG content in the cytosol and at the plasma membrane (n
= 8 per group). d Relative expression of liver pro-inflammatory genes (n= 10 per group). e Insulin tolerance test (n= 10 per group). f Oral glucose
tolerance test and insulin levels during the OGTT test (n= 10 per group). g Western blot analysis of the PI3K/Akt signaling pathway in liver (n= 20 per
group). h Heatmap visualization of relative SFA, MUFA, and PUFA content in liver DAG, TG, and cholesterol ester species (n= 10 per group). i–k Isolated
primary hepatocytes overexpressing Phf2 and in which SCD1 expression was inhibited were incubated in the presence of palmitate (480 μM) for 24 h. i
Representative western blots of the pro-inflammatory signaling pathway (n= 4). j Percentage of hepatocyte SFA, MUFA and PUFA content in indicated
culture conditions (n= 3). k Representative western blot analysis of the PI3K/Akt signaling (n= 4). All error bars represent mean ± SEM. Statistical
analyses were made using unpaired t-test. *P < 0.01 GFP compared to Phf2, **P < 0.05 GFP compared to Phf2. #P < 0.01 NCD compared to HFHS
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Supplementary Fig. 5c). Accordingly, ChIP experiments con-
firmed that Phf2 is co-recruited with ChREBP on glycolytic and
lipogenic gene promoter (Fig. 4b). Altogether, this suggests that
Phf2 may interact with ChREBP for recruitment to the tran-
scriptional complex. Supporting this hypothesis, Phf2 is
recruited to the promoter of ChREBP-regulated genes in response
to glucose stimulation, whereas its binding is significantly reduced
after ChREBP silencing (Fig. 4c). These results demonstrate that
the binding of Phf2 on the ChoRE-containing promoter is
dependent on ChREBP. Consistent with a potential ChREBP
coactivator function, Phf2 overexpression increased LPK and
SCD1 promoter activity in vivo (Fig. 4d). In contrast, Phf2 si-
lencing inhibited glycolytic and lipogenic gene expression and
consequently decreased DNL and TG content (Supplementary
Fig. 5d, e). At the chromatin level, in response to glucose sti-
mulation, Phf2 silencing abolished H3K9me2 demethylation at
the SCD1 promoter (Fig. 4e). Consistently, SCD1 chromatin
promoter accessibility was decreased and the recruitment of
ChREBP and the RNA polII were impaired (Fig. 4e). Collectively,
this suggests that Phf2 contributes to the regulation of ChREBP

function by erasing H3K9me2 methyl-marks at the promoter of
its target genes to increase transcription. Supporting this
conclusion, ChREBP silencing abolished Phf2 action by
reducing DNL and TG content in hepatocytes (Supplementary
Fig. 5f, g).

Interestingly, there are now several examples where JmjC
domain-containing histone demethylases with previously defined
roles in histone demethylation also appear to demethylate non-
histone proteins to regulate their abundance, stability or
activity25. This realization that JmjC domain-containing
demethylases potentially play widespread roles in protein
demethylation raises an important question of whether Phf2
primary biological functions, in the regulation of ChREBP
activity, is currently attributed to demethylase reactions toward
histones or other uncharacterized non-histone proteins. To
answer this question, a W29A mutant of Phf2 was overexpressed
in cultured hepatocytes. This W29A mutation, localized within
Phf2’s PHD domain, has been previously shown to abolish
H3K4me3 binding of Phf2 to the promoter of its target genes26.
Accordingly, ChIP experiments, performed in cultured
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hepatocytes, confirmed that Phf2 W29A is no longer recruited on
the promoter of glycolytic and lipogenic genes compared with
WT Phf2 (Supplementary Fig. 6a). At the chromatin level,
H3K9me2 demethylation at the SCD1 promoter was not
increased by Phf2 W29A overexpression compared to WT Phf2
(Supplementary Fig. 6b). Consistently, both chromatin accessi-
bility and ChREBP recruitment at the SCD1 promoter were not
increased by Phf2 W29A overexpression (Supplementary Fig. 6c,
d). As a consequence, Phf2 W29A is unable to enhance the
expression of glycolytic and lipogenic genes and increase
hepatocyte TG content (Supplementary Fig. 6e, f). The fact that
Phf2 W29A conserved its histone demethylase activity toward
recombinant proteins (Supplementary Fig. 6g), demonstrates that
Phf2 contributes to the regulation of ChREBP function by erasing
H3K9me2 methyl-marks at the promoter of ChREBP target
genes, ruling out non-histone protein demethylation in this
process. Supporting this conclusion, a H248A Phf2 mutant, with
no histone demethylase activity (Fig. 1b), is also unable to
stimulate ChREBP transcriptional activity in hepatocytes despite
being functionally recruited on the promoter of ChREBP-
regulated genes (Supplementary Fig. 6h–j).

Phf2 and ChREBP regulate Nrf2 activity to enhance oxidative
stress defenses. In the search for the mediator of Phf2 action
against oxidative stress, bioinformatic analysis revealed that Nrf2
transcriptional network, which plays a central role in the defense
against oxidative stress27, was significantly affected by Phf2
overexpression (Fig. 1h, i). Accordingly, Nrf2 protein content
were increased in the liver of Phf2 mice (Fig. 5a). Furthermore,
the activity of a Nrf2-reporter construct (ARE-luc) (Supplemental
Fig. 7a) and the expression of specific Nrf2-regulated genes (p62
or NQO1) were enhanced upon Phf2 overexpression (Fig. 5a). In
this context, our data demonstrated that Nrf2 was the major
mediator of Phf2-beneficial effects, since its silencing, by reducing
the expression of ROS scavenger proteins, reduced Phf2-mediated
NADPH and GSH biosynthesis and, as a consequence, restored
palmitate-induced ROS production and apoptosis (Fig. 5b–d). At
the chromatin level, ChIP-seq analysis showed that Phf2 and
ChREBP are functionally co-recruited to the promoter of Nrf2 in
response to glucose stimulation (Fig. 5e). Supporting their role in
controlling Nrf2 activity, Phf2 silencing reduced H3K9me2
demethylation at the Nrf2 promoter (Fig. 5f). Consistently, Nrf2
chromatin promoter accessibility and the recruitment of ChREBP
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and the RNA polII were decreased, reducing Nrf2 transcriptional
activity in response to glucose stimulation (Fig. 5g). In addition,
ChREBP silencing abolished Phf2-driven Nrf2 activation and
restored sensitivity to palmitate-induced ROS production and
apoptosis in Phf2 overexpressing hepatocytes (Fig. 5h–j). Finally,
these effects of Phf2, in regulating Nrf2 transcriptional activity,
are also dependent on its H3K9me2 histone demethylase activity,
since Phf2 H248A or W29A mutants are unable to enhance Nrf2
activity and protect hepatocytes from palmitate-induced ROS
production and hepatocyte apoptosis (supplementary Fig. 7b–g).

Phf2 protects the liver from fibrogenesis in an Nrf2-dependent
manner. To investigate the contribution of Nrf2 to the protective
effects of Phf2 during NAFLD progression, Phf2 was over-
expressed in the liver of wild type (WT) or Nrf2 knockout (Nrf2-
KO) mice (Fig. 6a). Phf2 overexpression increased hepatic TG
content and enhanced MUFA/SFA ratio in a similar manner
regardless of the genotype (Supplementary Fig. 8a and Supple-
mentary Table 2). No pro-inflammatory response was observed in
liver of WT or Nrf2-KO mice in response to Phf2 overexpression
(Supplementary Fig. 8b). Both WT and Nrf2-KO mice over-
expressing Phf2 were also more tolerant to glucose (OGTT)
compared to GFP and elicited decreased serum insulin levels
during the glycemic burst (Fig. 6b). In addition, Phf2 over-
expressing WT and Nrf2-KO mice were more sensitive to insulin

(ITT) compared to GFP mice in both genotypes (Fig. 6b). Hepatic
insulin sensitivity was also improved to the same level in both
Phf2 overexpressing WT and Nrf2-KO mice compared to GFP, as
evidenced by increased Akt or GSK3β phosphorylation (Fig. 6a).
However, enhanced expression of coll-Ia1, α-SMA or TIMP-1
demonstrated that Phf2 overexpression promoted the progression
into fibrosis only in the context of Nrf2 deficiency (Fig. 6c and
Supplementary Fig. 8c). Concomitantly, circulating levels of
ALAT and ASAT, as well as the number of apoptotic cells and
fibrotic areas were only increased in the liver of Nrf2-KO mice
overexpressing Phf2 (Fig. 6d and Supplementary Table 2). In
Nrf2-KO mice, Phf2 overexpression no longer induced anti-
oxidative stress response compared to WT mice as evidence by
reduced NADPH and GSH biosynthesis (Fig. 6e and Supple-
mentary Fig. 8d). As it is generally accepted that ROS play a key
role in chronic liver injury, their reduced detoxification, illu-
strated with elevated levels of liver hydrogen peroxide (H2O2) and
protein carbonylation, is likely to contribute to the severe liver
injury observed in Nrf2-KO mice overexpressing Phf2 (Fig. 6f, g).
Overall, these results demonstrate that enhanced Nrf2 activity is
determinant to prevent the progression into fibrosis in the con-
text of Phf2-induced hepatic steatosis development.

Phf2 protects mice from obesity, insulin resistance, and
fibrogenesis. To test whether deregulation of Phf2 activity occurs
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during NAFLD progression, its expression was measured during
high fat and high sucrose diet-induced obesity (HFHSD). In this
context, Phf2 expression was gradually decreased in the liver of
mice fed a HFHSD diet when compared to mice fed on a normal
chow diet (NCD) (Fig. 7a). To determine if decreased Phf2
activity could indeed favor the entry of NAFLD into fibrosis after
HFHSD feeding, Phf2 expression was stably inhibited, specifically
in the liver, through the use of an associated adenovirus (AAV)
strategy (Fig. 7b). To achieve this specificity, an unspecific shRNA
(USi) or Phf2 shRNA (Phf2i) were expressed under the control of
the albumin promoter. As a result, Phf2 silencing enhanced liver
fibrosis development when compared to USi mice upon HFHSD
feeding (Fig. 7b, c). The expression of Col1a1, TIMP1, and a-
SMA was also increased in liver of Phf2i mice compared to USi
mice along with collagen deposition, number of fibrotic areas and
hepatocyte apoptosis (Fig. 7c–e). In addition, serum levels of
ALAT and ASAT were further increased in Phf2i mice (Fig. 7f).

Phf2 silencing also increases liver oxidative damages compared to
USi mice facilitating the conversion of NAFLD into fibrosis upon
HFHSD feeding (Fig. 7g, h).

Consequently, to determine whether Phf2 activation could
protect liver from fibrosis development during obesity, Phf2
(FLAG-tagged) was stably overexpressed specifically in the liver,
through a similar AAV strategy. To achieve hepatic specificity,
GFP or FLAG-Phf2 expression was under the control of the
albumin promoter (Fig. 8a). Compared to GFP, Phf2 mice were
fully protected from HFHSD-induced obesity, despite the fact
that detailed analysis of food intake, using lean body mass as a
covariate, revealed that they were hyperphagic on both NCD and
HFHSD (Supplementary Table 3). In addition, compared to
HFHSD-GFP mice, which exhibited a pro-inflammatory response
in the liver (increased Il-6, Il-1β, or Tnf-α expression), Phf2 mice
were protected from inflammation (Supplementary Fig. 9a). In
addition, Phf2 mice did not develop fasting hyperglycemia and
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fasting hyperinsulinemia as compared to HFHSD-GFP mice
(Supplementary Table 3). Furthermore, OGTT and ITT tests
confirmed that HFHSD Phf2 mice had an overall improved
glucose tolerance and insulin sensitivity compared to GFP mice
fed on the same diet (Fig. 8b). Interestingly, Phf2 mice were also
protected from the development of insulin resistance in liver,
WAT, and skeletal muscle upon HFHSD feeding compared to
GFP mice, suggesting that the overall improvement of their
insulin sensitivity results from sustain activation of the PI3K/Akt
signaling in these tissues (Fig. 8a and Supplementary Fig. 9b).
More importantly, liver histological analyses revealed that
HFHSD Phf2 mice were protected against fibrogenesis compared
to HFHSD GFP mice, in which collagen deposition (Fig. 7c),
number of fibrotic area and hepatocyte apoptosis (Fig. 8d) were

increased along with the expression of Col1a1, TIMP1, and a-
SMA (Supplementary Fig. 9c). Supporting these data, serum
levels of ALAT and ASAT were not increased in Phf2 mice after
HFHSD feeding (Supplementary Table 3). Overall, Phf2 over-
expression, by increasing the activity of Nrf2 transcriptional
network (Fig. 8a), enhanced oxidative stress defenses and
consequently protected the liver from oxidative damages during
HFHSD feeding (Fig. 8e, f).

Phf2 expression is increased in the liver of obese patients with
steatosis. Finally, to evaluate the relevance of deregulated Phf2
activity during non alcoholic fatty liver (NAFL) progression in
human, liver biopsies from lean subjects with no fatty liver
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(NoFL) or obese patients with same BMI and same degree of
hepatic steatosis (60%), were obtained from the Biological Atlas
of Severe Obesity (ABOS) cohort (Supplementary Tables 4 and 5).
The obese and steatotic cohort was further subdivided into two
groups showing either simple steatosis or NASH based on their
histological scoring. Compared to NoFL and NASH patients,
Phf2 expression was only increased in the liver of insulin-
sensitive steatotic patients (Fig. 9a). Correlating with Phf2
expression, H3K9me2 levels at the SCD1 and Nrf2 promoters
were reduced in the liver of steatotic patients (Fig. 9b). Accord-
ingly, ChREBP and RNA polII recruitment to these two pro-
moters was enhanced (Fig. 9b). Therefore, SCD1 activity was
increased in the liver of steatotic patients as evidence by enhanced
MUFA/SFA ratio (Fig. 9c). Furthermore, Nrf2 and Nrf2-regulated
gene expression was also potentiated (Fig. 9d). As a consequence,
despite the same percentage of liver fat content, protein carbo-
nylation was not increased in the liver of steatotic patients as
compared to NASH patients (Fig. 9e). This apparent protection
against oxidative stress in the liver of steatotic patients was cor-
related with reduced expression of pro-fibrogenic genes as com-
pared to NASH patients (Fig. 9f). Overall, our data reveal in

human that Phf2 activation, and subsequent H3K9me2 deme-
thylation at the promoter of ChREBP-regulated genes, occurs
during hepatosteatosis development to protect the liver from
oxidative stress and fibrosis development (Fig. 9g).

Discussion
Emerging evidence that epigenetic processes convert alterations
in metabolism into heritable pattern of gene expression has
profound implications in understanding metabolic dis-
orders8,10,28. Several studies have shown that NAFLD develop-
ment and progression are correlated with changes in the pattern
of histone methylation profiles. In this line of evidence, hepatic
lipid accumulation leads to the aberrant histone H3K4 and H3K9
methylation in PPARα and lipid catabolism related genes, sug-
gesting that histone methylation may contribute to hepatic stea-
tosis and disease progression29. However, the exact nature of
those epigenetic modifiers involved in the development and
progression of the NAFLD spectrum remains partially unknown
to date. Among all epigenetic modifiers, members of the KDM7
histone demethylase family, by removing repressive histone
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methylation marks on the chromatin, are believed to act as
transcriptional coactivators26,30. This suggests that their functions
might be dependent on their selective association with specific
transcription factors. Accordingly, our study unravels that Phf2
interacts with ChREBP and enhances ChREBP-driven transcrip-
tion. Overall, Phf2-mediated H3K9me2 demethylation at
ChREBP-regulated gene promoters favors DNL and TG accu-
mulation in the liver. Supporting its metabolic function, Phf2 has
been shown to stimulate fat storage in adipocytes, by coactivating
FXR and CEBPα activity17,19. Moreover, mice with targeted dis-
ruption of Arid5b (AT-rich interactive domain D), a specific Phf2
coactivator partner19,20, display a reduction of their white adipose
tissue mass21 as a result of reduced PPARγ activity 22. Overall,
our study supports that Phf2 and Arid5b work together in mul-
tiple organs as determinant regulators of lipid homeostasis. More
importantly, while triggering hepatic TG accumulation, Phf2
concomitantly protects the liver from lipotoxicity by buffering the
accumulation of detrimental FA. This reinforces the concept of
lipoexpediency, in which optimizing lipid signals generated by
DNL redirects fat toward benefit, even in the setting of lipid
overload31–34. Our study particularly provides novel mechanistic
insight into SCD1 action through the identification of Phf2 as a
key target regulator of its expression and likely effector of its
beneficial effect. Indeed, by modifying the MUFA/SFA balance in
favor of MUFA synthesis, Phf2 decreases hepatic inflammation
and insulin resistance. This supports studies showing that lipo-
toxicity, generally attributed to SFA, can be prevented by addition
of MUFA35–38. In fact, according to this model, when present and
stored in the proper location and time, specific lipid species may
trigger signals that modulate adaptation to stress34. The effect of
liver-specific Phf2 overexpression seems to be restricted to the
liver, since no change in the PI3K/Akt signaling was detected in
adipose tissue or skeletal muscle upon insulin stimulation. In this
context, clamp study could be of interest to draw definitive
conclusion in a follow up study regarding this restricted impact of
liver-specific Phf2 overexpression on peripheral insulin
sensitivity.

Our study further highlights the importance of Phf2 in reg-
ulating oxidative stress defenses. Central to these processes, Nrf2
is considered as one of the major transcription factors involved in
the defense against oxidative stress39–41. In fact, Nrf2 expression
is gradually down regulated in the end-stages of human liver
diseases42 and its deficiency in mice results in fibrosis develop-
ment43–45. Therefore, the control of Nrf2 activity appears to be an
important homeostatic mechanism that protects liver from
nutrient-induced NAFLD progression46,47. Accordingly, our
study specifically uncovers a new epigenetic mechanism for the
control of Nrf2 activity, in which Phf2, by promoting H3K9me2
demethylation, enhances ChREBP-driven Nrf2 expression. In
addition, and independently of the regulation of its expression,
Nrf2 activity is also regulated through ubiquitination and sub-
sequent degradation in a Keap1-dependent manner48. The
autophagy-adapter p62 has been particularly shown to interact
with the Nrf2-binding site of Keap1 and competitively inhibits
the Keap1-Nrf2 interaction. In this setting, it has been described
that Serine 351 (S351) of p62 is phosphorylated in a PI3K/ Akt
/mTORC1-dependent fashion, causing p62’s affinity for Keap1 to
rise49. As a result, Nrf2 protein is stabilized and is then able to
induce the expression of anti-oxidant enzymes50,51. Interestingly,
our study further demonstrates that Phf2 overexpression by
increasing mTORC1 activity (Fig. 2g) enhances S351 p62 phos-
phorylation and decreases Keap1 protein levels (Fig. 5a). Alto-
gether, our results demonstrate that, in addition to its direct effect
on Nrf2 expression, Phf2 overexpression, by stimulating the
PI3K/Akt/mTORC1 signaling pathway may thus further partici-
pate in the stabilization and induction of Nrf2 and help the

expression of genes involved in the PPP, glutathione biosynthesis
and anti-oxidative stress response.

Consistently, the down-regulation of Phf2 activity in the liver
of NASH patients from the ABOS cohort positively correlates
with low liver Nrf2 protein content and the high risk of pro-
gression into fibrosis. However, despite an active pro-fibrogenic
response due to impaired anti-oxidant capacities, Nrf2 KO mice
overexpressing Phf2 did not developed insulin-resistance as a
result of enhanced oxidative stress. In the contrary, these mice are
even more sensitive to insulin compared to Nrf2 KO mice
overexpressing the GFP. These results are in agreement with the
phenotype observed in Gpx1 KO mice, in which a decrease in
ROS detoxification capacity enhances insulin sensitivity52. From
this, one of the most important implications to our work is the
concept that inflammation, insulin resistance and oxidative stress
are prerequisite for fibrosis development should be reconsidered.
This is somehow unexpected because it is commonly believed that
oxidative stress is always linked to insulin resistance46,53.
Through the use of Nrf2 KO mice, our results suggest that as long
as the liver is able to manage the excess of lipids, by either con-
verting them into MUFA and stored them into lipid droplets, it
will be protected from inflammation and insulin resistance,
despite the progression into fibrosis due to impaired ROS
detoxification capacities. Consequently, we should not system-
atically consider fibrosis development as a direct consequence of
inflammation and insulin resistance, which further reinforce the
concept of multiple parallel hits hypothesis for explaining the
NAFLD spectrum3. In human, when it comes to NAFLD pro-
gression, our study highlights the fact that lipid composition is
critical for regulating inflammation and insulin sensitivity
whereas anti-oxidative stress defenses, under the control of Nrf2
transcriptional activity, are crucial for controlling fibrosis
development.

In conclusion, our findings establish in mice and human, a new
epigenetic checkpoint, whereby Phf2 induction, through facil-
itating H3K9me2 demethylation at ChREBP regulated-gene
promoters, protects liver from the accumulation of pathogenic
lipids and ROS during NAFLD (Fig. 10). Taking into account
Phf2 expression and activity as a reliable biomarker, our study
could also lead to disease stratification, from simple steatosis to
NASH and fibrosis, providing new tracks in NAFLD pathogen-
esis. In addition, since epigenetic modifications are reversible,
novel therapies intended to modulate epigenetic abnormalities are
trend today. In this line of evidence, given the availability of small
molecules to specifically activate jmjC-containing histone deme-
thylases54–56, our study sheds light in the identification of Phf2 as
potential “druggable” epigenetic target to prevent NAFLD
progression.

Methods
Antibodies. The following antibodies were used in this study for either western
blotting, ChIP-sequencing, immunohistochemistry and chromatin immunopreci-
pitation. SOD2 (The Binding site, PC096), Gpx1 and Gpx4 (gift from L. Chavatte),
ChREBP (Novus, NB400), SCD1 (Cell Signaling, C12H5), Phf2 (Cell Signaling,
D45A2), H3K9me1 (Abcam, ab8896), H3K9me2 (Abcam, ab1220), H3K9me3
(Abcam, ab8898), histone H3 (Diagenode, C15200011), p(S473)-AKT (Cell sig-
naling, D9E), Akt (Cell Signaling, 9272), P-p70S6K (Cell Signaling, 108D2),
p70S6K (Cell Signaling, 49D7), p-GSK3β (Cell Signaling, D17D2), GSK3β (Cell
Signaling, 27C10), LPK (Abcam, ab6191), ACC (Cell Signaling, 3662), FAS (Cell
signaling, C20G5), p62 (gift from A. F. Burnol), Nrf2 (Santa Cruz Biotechnology,
13032), G6PDH (Cell Signaling, 12263), TKT (Cell Signaling, 8616), α-SMA
(Novus, NB-600-531), collagen I (Novus, NB600-408), GAPDH (Santa Cruz Bio-
technology, FL-335), malic enzyme (Novus, 68578), MTTP (Novus, 62489), NQO1
(Novus, A180), RNA PolII (Santa Cruz, sc899), HSP90 (Cell Signaling, 4874),
Cidec (Abcam, ab77115), Plin2 (Progen, ap125), G0S2 (Santa Cruz Biotechnology,
N13), and FLAG (Sigma, F1804).

Plasmids and cloning procedures. Full-length (WT) or truncated form
(Phf2ΔPHD) of Phf2 was PCR-amplified from cDNA samples from 293T cells by
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using KOD Hot Start Master mix (Novagen) and cloned into p3XFLAG-CMV-10
plasmid (Sigma). Phf2 enzymatic (H248A) mutant was generated by using Quik-
Change Lightning Site-Directed Mutagenesis Kit (Stratagene). Phf2 and
Phf2 shRNA (Phf2i) adenovirus were produced by Genecust INC using the adEasy
adenoviral vector system. Adenovirus expressing the GFP (Ad-GFP) and ChREBP
shRNA (Ad-ChREBPi) were described previously31. Adenovirus expressing a
shRNA against Nrf2 and associated adenovirus (AAV/DJ) expressing, under the
control of the albumin promoter, either GFP, Phf2, an unspecific shRNA (USi), or
a shRNA again Phf2 (Phf2i) were purchased from Vector Violabs inc.

Reporter assay. The ChoRE-luc (Carbohydrate response element of the L-pyr-
uvate kinase promoter (ChoRE) luciferase, gift from M. Vasseur), the SCD1-luc
(1.5 kb of the mouse SCD1 promoter luciferase, gift from J. M Ntambi) and the
ARE-Luc (Nrf2-response element luciferase, from promega) were used to measure
Phf2 and ChREBP transcriptional activity both in vitro and in vivo. The RSV β
galactosidase (RSV β-gal) plasmid was used as constitutive control reporter.

Cell culture and transfection. Mouse hepatocytes were harvested, cultured, and
infected with adenoviruses as previously described57. Hepatocytes were transiently
transfected with the appropriate combination of reporters, expression vectors, and
control vectors with Lipofectamine 2000® according to the manufacturer’s
instructions. Twenty-four hours post-transfection, luciferase assays were performed
at room temperature. Experimental data are mean of at least three independent
experiments with luciferase activity normalized to β-galactosidase activity, con-
ducted in triplicate. Hepatocytes were also infected with Ad-Phf2, Ad-GFP, Ad-
Phf2i, Ad-ChREBPi, or Ad-Nrf2i adenovirus (1pfu/cell). Twenty-four hours post-
infection, hepatocytes were incubated with either 5 or 25 mM glucose and 100 nM
insulin for 18 h.

Mouse strains and virus injections. A total of 5 × 108 plaque forming units (pfu)
of Phf2 or GFP adenovirus (Genecust INC) were delivered to 8 weeks old male
C57BL/6J (Janvier, France) or Nrf2 knockout mice (RIKEN BRC) by tail vein
injection as previously described15. Associated adenoviruses encoding GFP, FLAG-
tagged Phf2 (FLAG-Phf2), USi or Phf2i under the control of the albumin promoter
were generated by Vector Biolabs inc using the AAVDJ/8 serotype. A total of 5 ×
1011 vg of either AAVDJ/8-GFP, AAVDJ/8-F-Phf2, AAVDJ/8-USi, or AAVDJ/8-
Phf2i were delivered to 8 weeks old male C57BL/6J by tail vein injection. The
numbers of mice used in each experiment were selected based on the expected
variations between animals and variability in adenovirus or AAV injections. One
week after treatment, mice were fed with a normal chow diet (NCD) or with a high
fat and high sucrose diet (HFHSD) for 16 weeks. All mice were adapted to their
environment for 1 week before study and were housed in colony cages with 12 h

light/dark cycle in a temperature-controlled environment. All procedures were
carried out according to the French guidelines for the care and use of experimental
animals. All animal studies were approved by the “comité d’éthique pour l’ex-
périmentation animale” of the University of Paris Descartes and by the mouse core
facility of the Cochin institute (CEEA34.AFB/CP.082.12). Mice had free access to
water and regular diet (NCD) (65% carbohydrate, 11% fat, 24% protein) or high fat
and high sucrose diet (HFHSD) (47.6% carbohydrate, 23.2% fat, 17.3% protein)
unless otherwise specified. No method of randomization or blinding was used in
any of the experiments. Mice that do not overexpressed GFP or Phf2 or in which
Phf2 expression was not inhibited after either adenovirus or AAV treatment were
removed from the experimental cohort.

Metabolic tests. Glucose tolerance tests were performed by oral administration of
glucose (1 g D-glucose/kg body weight) after overnight fasting. Insulin tolerance
tests were performed by intraperitoneal (ip) injection of human insulin (0.75 unit
insulin/kg body wt, Actrapid Penfill, NovoNordisk) 5 h after food removal. Pyr-
uvate tolerance tests were performed by ip injection of sodium salt pyruvate (2 g/kg
body weight) after an overnight fast. Blood was collected from the tail vein in a
heparinized capillary tube and glucose concentration was determined using the
One-Touch AccuChek Glucometer (Roche).

Analytical procedures. Blood glucose values were determined using an AccuChek
Glucometer (Roche Diagnostic Inc.). Serum triglycerides (TG), free fatty acids
(NEFA), alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT)
concentrations were determined using an automated Monarch device (Laboratoire
de Biochimie, Faculté de Médecine Bichat, France). Plasma insulin concentrations
were determined using a rat insulin ELISA assay kit (Crystal Chem) using a mouse
insulin standard. Glycogen concentrations were determined in liver extracts as
previously described15. Liver TG, diacyglyceride (DAG), and cholesterol ester
contents were extracted using the Folch’s method with chloroform/methanol (2:1,
v/v) and their subsequent separation by thin-layer chromatography (TLC) on
silica-gels plates (Merck Chemicals) using petroleum ether/diethyl ether/acetic acid
(85:15:0.5, v/v/v) as the mobile phase. Lipids were visualized with iodine vapor.
Bands were scraped and TG, DAG, and cholesterol esters were extracted from silica
by chloroform/methanol and measured with a colorimetric diagnostic kit (Tri-
glycerides FS; Diasys). Oxidative stress was assessed by measuring levels of protein
carbonylation using the OxyBlot Protein Oxidation kit (Millipore). Gpxs activities
were determined both in vivo and in vitro using the Glutathione Peroxidase
Activity kit according to the manufacturer’s instructions (BioVision). The NADP/
NADPH ratio was determined using the NADP/NADPH assay kit (Abcam).
Reduced (GSH) and oxidized (GSSR) glutathione contents were assessed in liver
extracts using the GSH/GSSG-Glo assay kit (Promega). Cytotoxicity, viability, and
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caspase activation were measured using the ApoTox-Glo assay kit (Promega). In
vitro ROS production was measured using the amplex® red Hydrogen Peroxide/
Peroxidase Assay Kit according to the manufacturer’s instructions (Life-
technologies). Proteasome peptidase activity was determined as previously
described58.

Metabolite analysis. GC-MS metabolomic analysis was performed by Matabolon
INC from our in vivo study, in which Phf2 or GFP were overexpressed in the liver
of C57BL/6J mice for 3 weeks (15 mice per group). Metabolites were extracted by
80% methanol at −20 °C and dried by vacuum centrifugation. GC-MS analysis was
performed with a Waters GCT Premier mass spectrometer fitted with an Agilent
6890 gas chromatograph and a Gerstel MPS2 autosampler. Data were collected
using MassLynx 4.1 software (Waters). Metabolites were identified and their peak
area was recorded using QuanLynx. Data were normalized for extraction efficiency
and analytical variation by mean centering the area of D4-succinate.

Measurement of glucose and oleate metabolic fluxes on liver explants. Liver
explants from fed GFP or Phf2 mice (200 mg) were incubated in duplicate in 25 mL
conical glass vial sealed with rubber caps containing plastic center wells in 3 mL of
Krebs-Henseleit bicarbonate buffer (pH 7.4) at 37 °C for 2 h. For oleate metabo-
lism, oxidation, and esterification rates were determined after incubation in pre-
sence of 0.3 mM [1–14C] oleate (0.5 Ci/mol) bound to 1% (w/v) free fatty acid
bovine serum albumin. For glucose metabolism, oxidation, and esterification rates
were assayed after incubation with 25 mM [U-14C] D-glucose (μCi/mmol).

14CO2 production measurement. At the end of the incubation time, the media is
transferred to a new conical glass vial for CO2 production measurement and the
liver explants are washed three times in ice cold PBS before processing them for
lipid extraction and analysis. Perchloric acid is injected into the incubation media
through the rubber cap to a final concentration of 4% (v/v). Benzethonium
hydroxide is injected through the rubber cap into a plastic well suspended above
the incubation media. During 1 h of vigorous shaking at 25 °C, the released [14C]
CO2 is trapped by the benzethonium hydroxide. [14C] CO2 release is then assessed
by scintillation counting.

14C incorporation into intracellular lipids and TAG quantification. Fatty acid
esterification rates were measured in the remaining liver piece or from primary
cultured hepatocytes by tracing newly synthesized triglycerides from 14C-oleate or
14C-glucose. 14C-TGs were extracted using chloroform/methanol (2:1, v/v) and
separated by TLC as previously described and counted in scintillation liquid.

Hepatic triglyceride secretion rate. Mice were fasted for 4 h and ip injected with
400 μl of 7.5% tyloxapol solution (Sigma) in PBS. Blood was collected over a time
course and plasma triglyceride content was quantified using a triglyceride assay kit
(Triglycerides FS; Diasys).

Lipidomic analysis. Fatty acid profiling was performed at the lipidomic core
facility of Toulouse (INSERM, Metatoul). Briefly, after homogenization of tissue
samples in methanol/5 mM EGTA (2:1 v/v), lipids corresponding to an equivalent
of 1 mg of tissue were extracted in chloroform/methanol/water (2.5:2.5:2.1, v/v/v),
in the presence of internal standards: 1,3-dimyristine (for DAG) and glyceryl tri-
nonadecanoate (for TG). Chloroform phases were evaporated to dryness. Neutral
lipids were purified over an SPE column (Macherey Nagel glass Chromabond pure
silice, 200 mg): after washing cartridge with 2 mL chloroform, lipid extract was
applied on the cartridge in 20 μL chloroform, and neutral lipid were eluted with
chloroform/methanol (9:1, v/v; 2 mL). The organic phase was evaporated to dry-
ness and dissolved in 20 μL ethyl acetate. A sample (1 μL) of the lipid extract was
analyzed by gas-liquid chromatography on a FOCUS Thermo Electron system,
using Zebron-1 (Phenomenex) fused silica capillary columns (5 m × 0.32 mm
inside diameter [i.d.], 0.50 μm film thickness). Oven temperature was programmed
from 200 to 350 °C at a rate of 5 °C/min, and the carrier gas was hydrogen (7.25
psi). The injector and the detector were at 315 and 345 °C, respectively. To assess
SCD1 activity, the Δ9 desaturation index was calculated as the abundance of SCD1
products (palmitoleic and oleic acids) relative to both SCD1 products and sub-
strates (palmitic and stearic acids). Ceramide profiling was performed by meta-
bolon, Inc. (Durham, North Carolina, USA) from 30 mg of frozen liver tissue.

Isolation of liver mitochondria. All steps were carried out at 4 °C. Fresh tissues
were minced in a sucrose buffer containing 0.3 M sucrose, 5 mMTris/HCl, and 1
mM EGTA (pH 7.4). Minced tissue was carefully disrupted in a Thomas’ potter at
low speed rotation. Unbroken cells and nuclei were removed by two successive
centrifugations of the homogenate at 750 g for 10 min. Mitochondria were collected
after centrifugation of the supernatant at 10,000g for 20 min, and protein content
was assayed using a bicinchoninic acid kit (Sigma).

Cellular respiration of liver homogenate. One hundred µL of homogenate
(supernatant after centrifugation at 750 g) were added into 2 mL of sucrose buffer

(100 mM KCl, 40 mM sucrose, 5 mM MgCl2, 1 mM EGTA, BSA 4 mg/mL and 5
mM KPi, pH 7.4) and were introduced in the respiratory chamber of an oxygraph
O2 k (Oroboros) at 25 °C. Cellular respiration was determined under glutamate/
malate condition (GM 5mM), with the addition of ADP (50 µM to 2.65 mM), in
condition oligomycin (2 µM), and finally with cyanide (1 mM KCN). Cellular
respiration was also determined under succinate condition (Succ 7 mM), with the
addition of rotenone (1 µM) to inhibit OXPHOS complex I, ADP (50 µM–2.65
mM), in condition oligomycin (2 µM), and/or increasing amounts (2.5–12 µM) of
carbonyl cyanide m-chlorophenylhydrazone (CCCP) and finally with cyanide (1
mM KCN). For both experiments using either glutamate/malate or succinate,
mitochondrial respiration was determined with substrate and ADP. Leak was
calculated in the presence of oligomycin that inhibits ATP synthase.

Measurement of PKCε activity. PKCε was immunoprecipitated from liver sam-
ples of GFP or Phf2 overexpressing mice using 0.5 μg of polyclonal rabbit anti
PKCε antibody (Santa Cruz, CA). After overnight incubation at 4 °C, Gamma Bind
Sepharose was added and rotated for 2 h, and the immunocomplex containing
PKCε was pelleted by brief centrifugation. After three washes, the pellets were
resuspended in kinase buffer (50 mM HEPES, 100 mM NaCl, 10 mM MgCl2, 50
mM NaF, 1 mM NaVO4, 1 mM dithiothreitol, and 0.1% Tween 20). The in vitro
kinase reaction was initiated by addition of 40 μg/ml phosphatidylserine/reaction,
10 mM MgCl2, 0.25 mM ATP (cold) and 1 μCi [γ-32P]ATP (10 mCi/mmol), and
10 μg of recombinant histone IIIS as a substrate. After 20 min of incubation at 37 °
C, the kinase reactions were terminated by adding SDS-PAGE sample buffer and
heating at 95 °C for 5 min. Phosphorylated histone IIIS protein was then separated
on 12% SDS-PAGE and transferred to Hybond nitrocellulose membranes. The
bands corresponding to phosphorylated histone IIIS were detected by auto-
radiography. As positive control of our PKCε activity measurement, PKCε was also
immunoprecipitated from liver samples of C57Bl6/J mice fed with either standard
(NCD) or HFHS diet for 18 weeks. HFHS diet has been previously shown to induce
PKCε activity in the liver59.

DAG measurement at the plasma membrane and in the cytosol. Hepatic DAG
content was separated into membrane and cytoplasmic fractions as previously
described60. Briefly, liver samples (250 mg) were homogenized on ice using a
dounce homogenizer in lysis buffer containing 10 mM Tris base, 0.5 mM EDTA,
250 mM sucrose, and protease inhibitors. Then 3% sucrose was layered on top of
the homogenate, and samples were centrifuged at 100,000g for 1 h at 4 °C. The
supernatant and lipid layers were removed and designated as the cytoplasmic
fraction. The pellet, designated as the membrane fraction, was resuspended in
homogenization buffer for DAG analysis. Concentrations of DAG in each fraction
were determined by using mass spectrometry analysis as previously described.

Staining techniques. For histology studies, tissues were fixed in 10% neutral
buffered formalin and embedded in paraffin. Then, 5 μm sections were cut, rehy-
drated through descending grades of ethanol, and stained with hematoxylin eosin
(HES) or were subjected to immunohistochemical analysis using antibodies against
F4/80, type 1 collagen, and α-SMA. To evaluate liver fibrosis, sections were stained
with Masson’s trichrome (Sigma Aldrich) according to the manufacturer’s
instructions. The degree of hepatic fibrosis was quantified by morphometric ana-
lysis. In addition, apoptotic bodies (councilman bodies) were counted in ten
consecutive fields from HES slides. For the detection of neutral lipids, liver cryo-
sections were stained with the Oil Red O technique, using 0.23% of Oil Red O dye
dissolved in 65% isopropyl alcohol for 10 min as previously described15.

In vivo bioluminescence imaging. For measurement of Phf2 and ChREBP tran-
scriptional activity in vivo, the ChoRE-luc, SCD1-luc, and ARE-luc plasmids were
overexpressed with the RSV β galactosidase construct through hydrodymanic gene
transfer in the liver of C57BL/6J mice (10 μg each) as previously descried61. Mice
were studied in fed state 48 h after injection. For imaging, mice were ip injected
with 100 mg/kg of sterile firefly D-luciferin (Caliper). After 10 min, mice were ip
injected with a mix of ketamine/xylazine, imaged on the PhotonImager system
(Biospace Lab) and analyzed with the M3Vision software (Biospace Lab). For
in vivo measurement of ROS (H2O2 levels), using the PCL-2 probe, mice were
infected with both adenovirus overexpressing the luciferase and the RSV β-gal (5 ×
108 pfu each). Mice were studied 1 week later in fed state. The PCL-2 probe was
used as previously descried62. Briefly, mice, overexpressing the luciferase in the
liver, were anesthetized with isoflurane and ip injected with a mixture of the PCL-2
and D-cysteine (0.05 μmol each, in 150 μL of 1:1 DMSO:PBS). Following injections,
mice were imaged with the PhotonImager system (Biospace Lab). The following
setting was used, 1 min exposure, 60 images (60 min total). Imaging is started
immediately following injection of the probe. For all in vivo imaging experiments,
the RSV β-gal plasmid was used as a constitutive control reporter to normalize the
bioluminescence signal.

β-galactosidase determination. β-gal assays for normalization of the ChoRE,
SCD1, ARE-luc activity, and PCL2 probe were performed using 10 µL of hepato-
cyte lysates, 50 µL 2× buffer (1.33 mg/ml 2-Nitrophenyl β-D-galactopyranoside,
100 mM 2-mercaptoethanol, 2 mM Magnesium Chloride, 200 mM sodium
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phosphate pH 7.5, all purchased from Sigma, St. Louis MO), and 40 µL water in
each well of a clear 96-well plate. The plate was covered and incubated 30 min at
37 °C, and absorbance at 405 nm was determined with a xenius plate reader (Safas).
Lysate samples were assayed in triplicate. Lysates from unstransfected cells were
used as controls for background activity. β-Gal activity was expressed as A405
units/mg protein.

Liver lysates. Livers were frozen in liquid nitrogen and kept at –80 °C until use.
Mouse tissues were sonicated three times for 10 s each at 4 °C in lysis buffer [150
mM NaCl, 50 mM Tris-HCl pH 7.5, 5 mM EDTA, 30 mM Sodium pyrophosphate,
30 mM Sodium Fluoride, 1% Triton × 100, and protease inhibitor cocktail (Sigma,
St. Louis, MO)]. Lysates were centrifuged 16,000g at 4 °C for 20 min and super-
natants were reserved for protein determination, and SDS PAGE analysis.

Preparation of nuclear fractions. Hepatocytes were wash two times with ice cold
PBS. Cells were collected in PBS and pelleted at 3000 rpm at 4 °C. Cell pellets were
resuspended in hypotonic lysis buffer (50 mM Hepes ph 7.4, 10 mM NaF, 1 mM
EDTA, 0.5 mM DTT with protease inhibitors). Cells were lysed using a dounce
homogenizer and centrifuged at 4200 rpm for 10 min at 4 °C. Cytosolic super-
natants were collected. Nuclear pellets were washed three times in 1 mL of hypo-
tonic lysis buffer and resuspended in 200 µL of nuclear extraction buffer (50 mM
Hepes pH 7.4, 420 mM NaCl, 10 mM NaF, 1 mM EDTA, 0.5 mM DTT). Samples
were sonicated and centrifuged at 13,000 rpm for 30 min. Nuclear supernatants
were collected.

ChIP-sequencing. All the ChIP-Seq experiments were performed using samples
collected from primary hepatocytes. ChIP-Sequencing (ChIP-seq) sample pre-
paration and computational analysis of Illumina GA I/II data were performed by
Actif Motif INC as follows. Primary cultured hepatocytes were incubated 24 h in
the presence of 25 mM glucose and 100 nM insulin and were subjected to standard
ChIP, using indicated antibodies, as described above. ChIP DNA-samples were
then subjected to preparation for ChIP-Seq library construction: the libraries were
constructed following Illumina’s Chip-Seq Sample prep kit. Briefly, Chip DNA was
end-blunted and added with an “A” base so the adapters from Illumina with a “T”
can ligate on the ends. Then 200–400 bp fragments are gel-isolated and purified.
The library was amplified by 18 cycles of PCR. Primary analysis of ChIP-Seq data
sets: the image analysis and base calling were performed by using Illumina’s
Genome Analysis pipeline. The sequencing reads were aligned to the mouse gen-
ome UCSC build by using BOWTIE32 alignment programs in two ways: only
uniquely aligned reads were kept or both uniquely aligned reads and the sequen-
cing reads that align to repetitive regions were kept for downstream analysis (if a
read aligns to multiple genome locations, only one location is arbitrarily chosen).
The multiple reads were collapsed in order to reduce the PCR biases. The aligned
reads were used for peak/island finding with MACS33. MACS peak/island pre-
dictions were adjusted for genome instabilities (amplifications, deletions) either by
considering a local background area (MACS) that was used as a reference for the
subsequent calculation of the enrichment scores. Annotating and comparing the
ChIP-Seq peaks: the ChIP-Seq peaks were mapped on the UCSC genome browser.
A peak was considered to be associated with a particular genome feature (for
example, promoter, intron, and exon) if the peak summit (MACS peaks) was
located within 3 Kb distance of TSS, or within an exon or intron. If a peak
intersected with multiple genome features, all the corresponding genome features
were considered when computing the genome distributions. Phf2 peaks were
considered common if the predicted peaks intersected over at least 1 bp. The gene
ontology analysis was carried out by using DAVID/EASE35 and the sequence motif
enrichment analysis was performed by using HOMER. For motif finding, we used
MEME Suite with the default settings except that the expected motif site is any
repetitions and the find uncentered regions option is selected. Logos of different
motifs were generated from MEME-ChIP analysis. We used Regulatory Sequence
Analysis Tools to generate the final consensus sequence logo.

Chromatin immunoprecipitation. For ChIP-seq validation, chromatin immuno-
precipitation (ChIP) was performed as described63. Briefly, primary cultured
hepatocytes or liver samples were cross-linked with 1% formaldehyde (Sigma) and
chromatin DNA was sheared to 300–500 bp average in size through sonication.
Resultant was immunoprecipitated with control IgG or specific antibodies over-
night at 4 °C and followed by incubation with protein A/G magnetic beads
(Ademtech) for an additional 2 h. After washing and elution, the protein–DNA
complex was reversed by heating at 65 °C overnight. Immunoprecipitated DNA
was purified by using QIAquick spin columns (Qiagen) and analyzed by qPCR
using a Roche Light Cycler. Primers used are specific for regions tested and their
sequences are available on request. All ChIP were repeated at least three times and
representative results were shown. All signals were normalized to input chromatin
signals. Chromatin accessibility was assessed using the EpiQ chromatin analysis kit
according to the manufacturer’s instructions (Bio Rad).

RNA profiling. Phf2 or GFP were overexpressed through adenoviral gene delivery
in the liver of C57BL/6 J mice. After 3 weeks, total RNA was isolated from liver
using RNeasy Mini Kit (Qiagen) following the manufacturer’s protocol. The

microarray experiments and data normalization were performed by the Cochin
Institute transcriptomic core facility. Briefly, RNA profiling was performed using
Affymetrix GeneChip Human Gene 2.0 ST array, which interrogates 25,000 gene
sequences. Raw data were normalized using the Robust Multichip Algorithm
(RMA) in Bioconductor R software. Then, all quality controls and statistics were
performed using Partek GS software. First, hierarchical clustering (Pearson’s dis-
similarity and average linkage) and principal composant analysis (PCA) were
performed as unsupervised exploratory data analysis. Then, a classical analysis of
variance (ANOVA) for each gene and pair wise Tukey’s post-hoc tests between
groups were conducted to find differentially expressed genes. Finally, p-values and
fold changes were used to filter and select differentially expressed genes. Interac-
tions, pathways and functional enrichment analysis were carried out through the
use of IPA (Ingenuity Systems, USA www.ingenuity.com) and DAVID/EASE tools
(http://david.abcc.ncifcrf.gov/).

Isolation of total RNA and analysis of mRNA expression by quantitative PCR.
Total cellular RNAs from whole liver or from primary cultured hepatocytes were
extracted using the RNeasy kit (Qiagen). mRNA levels were then measured as
previously described using a Roche Light Cycler64. Primer sequences are available
on request.

Western blotting and lysine demethylation assays. Western blot were carried
out as previously described65. Revelation and quantification were performed using
the Chemidoc MP system instrument (Bio-Rad). For preparation of Phf2 IP from
mammalian cells, 293T cells were transfected with Flag-tagged Phf2 plasmid using
Lipofectamine 2000® (Invitrogen). After 24 h, the cells were lysed with TNE lysis
buffer (20 mM Tris at pH 7.8, 450 mM NaCl, 0.5 mM EDTA, 1 % NP40). For
demethylase reaction, purified Flag-Phf2 protein was mixed with different sub-
strates (recombinant histone H3 (2 μg) (Upstate), synthetic biotinylated histone H3
peptides either mono, di, or trimethylated at the K9 position (ARTKQ-
TARKSTGGKAPRKQLATKAARKSAPATGGVKKPHR-YC-Ttds-K-Biotin, JPT,
Germany), purified mononucleosome (10 μg) or core histone) in the reaction
buffer (final volume 20 μL) (20 mM Tris-HCl at pH7.5, 150 mM KCl, 50 μM Fe
(NH4)2(SO4)2–6H2O, 1 mM α-ketoglutarate, 1 mM ascorbate, 20 μM ZnCl2). The
mixtures were incubated at 37 °C for 12 h, terminated by boiling for 5 min in SDS
sample buffer at pH 7. Histone modifications were detected by specific antibodies,
as described above.

Histone peptide pull-down assay. Biotinylated histone peptides (Millipore and
Abgent), either modified or unmodified, were pre-incubated with Dynabeads M-
280 streptavidin blocked with BSA (Invitrogen) at room temperature for 1 h and
then washed with washing buffer (0.01% Tween-20 in PBS) twice before mixing
with cell exacts expressed proteins (FLAG-tagged WT Phf2 or Phf2ΔPHD). After
overnight incubation at 4 °C in 20 mM HEPES pH8.0, 1.5 mM MgCl2, 0.15 M
NaCl, 25% glycerol, 1 mM DTT, 0.2 mM EDTA, 0.01% Tween-20, pull-downs were
washed with washing buffer (same as incubation buffer) five times before resolving
by 4–12% Bis-Tris gel (Invitrogen) and analysis by immunoblotting.

Immunofluorescence. Primary hepatocytes, transfected with expression vectors as
indicated, were directly fixed for 5 min with 4% formaldehyde (v/v) in Phem buffer
(60 mM PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM MgCl2, pH6.9) and then
permeabilized for 2 min with 0.1% Triton X-100 in Phem buffer. After three
washes with Phem buffer, blocking solution (1% BSA in PBS, pH 7.4) was applied
for 30 min and primary antibodies against Flag and H3K9me2 were added in
blocking buffer for 1 h at room temperature. After three washes with PBS/0.1%
Triton X-100, cells were incubated with DAPI and with secondary antibodies
conjugated with fluorescent dyes for 1 h, washed again with PBS/0.1% Triton X-
100, and mounted in 20 mM Tris, pH 9/0.1% p-phenylenediamine. Image inten-
sities for each antibody were scaled identically.

Human liver biopsies. We analyzed liver samples from white morbidly obese
French patients who underwent abdominal surgery and were included in the
Biological Atlas of Severe Obesity (ABOS) cohort realized at the “Centre Hospi-
talier Régional Universitaire de Lille”, France (ClinicalGov NCT01129297)66.
Informed consent was obtained from all individuals and the experimental design
was approved by the Hospital’s Ethics Committee. All patients underwent pre-
operative evaluation (medical history and physical examination) and were devoid
of any condition that could have increased abdominal surgery risks. For this study,
to minimize potential confounding factors, only men individuals of similar age
range were selected for this study. Three groups were defined and staged as lean
controls (no steatosis), obese subjects with liver steatosis but limited inflammation
(NAS ≤ 3) and obese subjects with NASH (NAS ≥ 5). The degree of steatosis was
defined as the percentage of hepatocytes containing fat droplets. For this study,
diagnosis was made for samples exhibiting >50% of fatty acid infiltration within the
hepatocytes in both steatotic and NASH liver groups (macrovesicular steatosis).
Histological features was further blindly evaluated by two pathologists (P.M and F.
P) using the NAFLD activity score (NAS), as recommended by the NASH clinical
network67 (see Table S4 and S5 for scoring interpretation). The NAS is defined as
the unweighted summary of scores for percentage of steatosis (0: 0–5%; 1: 5–30%;

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04361-y

16 NATURE COMMUNICATIONS |  (2018) 9:2092 | DOI: 10.1038/s41467-018-04361-y | www.nature.com/naturecommunications

http://www.ingenuity.com
http://david.abcc.ncifcrf.gov/
www.nature.com/naturecommunications


2: 30–66%; 3: 66–90%), hepatocyte ballooning (0: none; 1: few balloon cells; 2:
many cells/prominent ballooning) and lobular inflammation (0: no foci; 1: <2 foci/
200×; 2: 2–4 foci/200×; 3: >4 foci/200×) thus ranging from 0 to 8. A NAS score of 5
or more was correlated with NASH and a NAS score of less than 3 was considered
as the absence of NASH67. Fibrosis stages were also determined separately from
NAS score (F0: none; F1: perisinusoidal or periportal; F1a: mild, zone 3, perisi-
nusoidal; F1b: moderate, zone 3, perisinusoidal; F1c: portal/periportal; F2: perisi-
nusoidal and portal/periportal; F3: bridging fibrosis; F4: cirrhosis) (supplementary
Table 4). Type 2 diabetic patients were defined by fasting plasma glucose levels
≥07.0 mmol/L; normoglycemic individuals were defined by fasting glucose levels of
<5.6 mmol/L. HOmeostasis Model Assessment of Insulin Resistance (HOMA-IR)
was assessed with the homeostasis model assessment and calculated according to
Wallace et al68. Needle liver biopsies were performed in the left hepatic lobe
through laparoscopy, within 15 min from the beginning of the procedure. Samples
were immediately frozen in liquid nitrogen and stored at −80 °C.

Statistical analyses. Results are expressed as mean ± SEM, and were analyzed
with analysis of variance using GraphPad Prism software. Sample sizes (n) were
reported in the corresponding figure legend. All experiments were performed on at
least three independent occasions. No statistical method was used to predetermine
sample size. After the normal distribution was confirmed with the
Kolmogorov–Smirnov test, statistical comparisons between two groups were per-
formed using a student’s t test followed by Mann-Whitney post hoc test. Com-
parisons among multiple parameters were performed by two-way ANOVA
followed by Bonferroni’s post hoc comparisons. We did not estimate variations in
the data. The variances are similar between the groups that are being statistically
compared. In all cases, P values less than 0.05 were considered significant.

Data availability. The authors declare that all data supporting the findings of this
study are available within the paper and its supplementary information files, or are
available from the corresponding author upon reasonable request. Microarray
analysis can be found at the Gene Expression Omnibus database under accession
number GSE61575 and GSE61576.
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