

Adelaide, January 2021

Experimental and modeling study of the high-temperature combustion chemistry of tetrahydrofurfuryl alcohol

L-S TRAN (PC2A-CNRS-Uni Lille, France)

H-H Carstensen (ARAID, Saragossa, Spain)

KK Foo (PC2A)

N Lamoureux (PC2A)

S Gosselin (PC2A)

L Gasnot (PC2A)

A El Bakali (PC2A)

P Desgroux (PC2A)

Energy demand of the transport sector

~ 25%-50%

increase in energy demand by transport sector by 2040

[ExxonMobil 2019]

~ 90%

of today's liquid fuels are made from petroleum

- □ Problem of pollutant emissions
- Greenhouse gas emissions
- Depletion of reserves
- Increase of costs

Interest of biofuels

Advanced biofuels

(second and third generations)

- ☐ Renewable energy source
- ☐ Decrease of dependance on petroleum
- ☐ Energy security
- ☐ Already mature production methods
- Many applications already developed

Cellulosic biomass

Micro-algae

THFA: promising biofuel

OH (C₅H₁₀O₂)

Boiling Point:

178 °C (gasoline: 30-200)

Lower Heating Value:

27.5 MJ/L (ethanol: 21.3)

Suitable as a fuel additives for gasoline engines

(TetraHydroFurfuryl Alcohol)

THFA

- Studies on production, spray propagation, ignition are known.
- Combustion chemistry and species profiles have not yet been reported

THFA: flame chemistry in the present study

 N_2

GC: gas chromatography

FID: flame ionization detector

TCD: thermal conductivity detector

MS: mass spectrometry

Experimental results

43 quantified species: fuels + final products + 35 intermediate species

Highly complex compositions, e.g. m/z=58 (6 species), m/z=70 (5 species)

Crucial for knowing the nature of pollutants,

analyzing the reaction mechanism.

Model development

THFA reaction subset: rely upon theoretical calculations (CBS-QB3)

- Potential Energy Surface was examined for important fuel radicals
 - +CIS is more stable than TRANS
 - +Low energy barrier of C-O beta scission
 - +Importance of ring enlargement chemistry established

Model development

First detailed kinetic model for HT combustion of THFA

Excellent agreement between model predictions and experiments for fuel consumption and final products. Experimental T-profile used as input.

Reaction path analysis on THFA consumption and intermediate formation

- Significant THFA consumption paths: 1, 4, 5
- Most of important species were detected in experiments

Quite good agreement between model predictions and experiments for intermediate profiles

Symbols: experiment

Lines: present model

CIS or TRANS of species in THFA sub-model: only insignificant changes in the predictions

Solid lines: present model with CIS configuration (thermo + rate coefficients)

Dashed lines: present model with TRANS configuration

Ongoing study

Thank you for attention

The authors gratefully acknowledge support from:

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE ET DE L'INNOVATION

