Efficient and clean nickel catalyzed a-allylation reaction of nitriles

Journal:	Advanced Synthesis \& Catalysis
Manuscript ID	adsc.202001338.R1
Diley - Manuscript type:	Update
Author:	20-Jan-2021
Complete List of Authors:	Mouhsine, Bouchaib; Université de Lille, UCCS Karim, Abdallah; Université Cadi Ayyad Faculté des Sciences Semlalia Dumont, Clément; Catholic Institute of Engineering Art Lille Suisse, Isabelle; Université de Lille, UCCS Sauthier, Mathieu; University of Lille, Chemistry
Keywords:	Allylation, Nickel, Green chemistry, Atom economy

SCHOLARONE ${ }^{\text {m }}$
 Manuscripts

Introduction

Allylic alkylation reactions remain one of the most powerful tools for the formation of homo ($\mathrm{C}-\mathrm{C}$) and hetero (C-O, C-N, C-S) bonds. ${ }^{[1]}$ The introduction of the allylic moiety is particularly attractive as it allows subsequent chemical transformations based on the $\mathrm{C}=\mathrm{C}$ bond reactivity. ${ }^{[2]}$ Commonly used allylation reagents bear good leaving groups like acetate, carbonate or halide. Such reagents are however limited to the low atom economy related with their use that often results in the production of large amounts of side products such as salts. In comparison to other reagents, allylic alcohols could be advantageously used. At a first stand, it is noteworthy that most of the commonly used allylation reagents are synthesized from allylic alcohols. The direct use of allylic alcohols in allylation reactions is more straightforward and consistent with a step economy. It is also noteworthy that their use generates only water as byproduct. In such case, this is related to the fact that the hydroxyl group acts as a base toward the nucleophile. On the point of view the accessibility, allyl alcohol is industrially produced from propene oxydation ${ }^{[3]}$ and potentially accessible form vegetal feedstock like glycerol. ${ }^{[4]}$ The main limitation with the use of allylic alcohols is related to the low reactivity of this reagent as the hydroxyl group is recognised as a weak leaving group. To activate allylic alcohols, catalytic amounts of transition metals are generally

Efficient and clean nickel catalyzed α-allylation reaction of nitriles

Bouchaib Mouhsine ${ }^{\text {a,b }}$, Abdallah Karim ${ }^{\text {b }}$, Clément Dumont ${ }^{\text {c }}$, Isabelle Suisse ${ }^{\text {a }}$, Mathieu Sauthier ${ }^{\text {a }}$ *
${ }^{\text {a }}$ Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS Unité de Catalyse et Chimie du Solide, F59000 Lille, France. E-mail: mathieu.sauthier@univ-lille.fr.
${ }^{\text {b }}$ Équipe de Chimie de Coordination et de Catalyse Département de Chimie Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390, Marrakech (Morocco)
${ }^{\text {c }}$ ICAM, Site de Lille, 6 rue Auber, 59016 Lille Cedex (France).
Received: ((will be filled in by the editorial staff))
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201\#\#\#\#\#\#.((Please delete if not appropriate))

Abstract

A clean method has been developed for the α allylation of phenyl and alpha alkyl phenyl acetonitrile with allylic alcohols. The reaction is catalyzed by nickel complexes in situ generated from a combination of $\mathrm{Ni}(\mathrm{cod})_{2}$ and the dppf ligand and performed at $80^{\circ} \mathrm{C}$ in methanol as reaction solvent.

Accordingly to this simple and base-free protocol that only yields water as a side-product, many allylic nitriles were synthetized with good yields.

Keywords: allylation; nickel; nitrile; allylic alcohol
nitriles with allyl benzoate ${ }^{[21]}$ or iridium during allylation of cyanoacetates with allyl carbonate. ${ }^{[22]}$
Herein, we wish to report the first nickel catalyzed $\alpha-$ allylation of nitriles with allyl alcohol performed under neutral conditions (Scheme 1).

Scheme 1. The nickel-catalyzed α-allylation of nitriles with allyl alcohol.

Results and discussion

The optimization of the reaction parameters was carried out with phenylacetonitrile 1a and allyl alcohol 2a (Table 1). The reaction led to the mono 3a and the bisallylated 4a compounds (Scheme 2). $\mathrm{Ni}(\text { cod })_{2}$ associated with phosphorus ligands was used as catalyst precursor. The first experiments were performed in MeOH as solvent at $80^{\circ} \mathrm{C}$ for 17 h . The triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$ ligand $\mathbf{L} 1$ gave only 16% yield into the monoallylnitrile 3a although 2 equivalents of allyl alcohol were used (Entry 1). The use of diphosphines gave better results such bis(diphenylphosphino)-1,1'-binaphtyle (BINAP L2) with a global yield of 74% (34% monoallylated product 3a and 40% of bisallylated product 4a) (Entry 2). The use of 1,2bis[(diphenylphosphino)methyl]benzene L3 (dppmb) gave similar results with a mixture of mono (36%) and bis-allylated (35%) products. It is noteworthy that 3a was partially hydrolyzed in the corresponding amide (11%) that has been isolated and fully characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR whereas no product of hydrolysis of 4a was never observed (Entry 3). Significantly better yields were obtained with the ferrocenyl ligand $\mathbf{L 4}$ (dppf) that led to 25% of $\mathbf{3 a}$ and 60% yield of $\mathbf{4 a}$ (Entry 4). In order to improve the conversion of the nitrile, the reaction temperature was increased to $100^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$ (Entries 5 and 6). However, a higher temperature did not lead to better results but favored the hydrolysis of 3a. Moreover the increase of the temperature up to $120^{\circ} \mathrm{C}$ resulted to a lower catalytic efficiency probably due to a catalyst decomposition at that temperature (Entry 6). As observed in previous studies that involved ketones and aldehydes as nucleophile, 14,15 the use of aprotic solvents such as toluene (Entry 7) or solvent-free conditions (Entry 8) led to reduced yields along with a larger part of hydrolysis. A remarkable yield of 80% in 4a was expectedly observed with sodium hydroxide as additive (Entry 9). The addition of a base probably favorably increased the concentration of the deprotonated nucleophile. On the other hand, it is thus not surprising that poor results were obtained in the presence of a strong acid such as PTSA (Entry 10). Finally, we varied the amount of the allyl alcohol 2a. Reducing the number of allyl alcohol equivalents to 1
did not promote the monosubstitution in respect to the disubstitution but only contributed to reduce the overall conversion of 1a (Entry 11). By increasing the number of equivalents up to 3 , a comparable conversion of $\mathbf{1 a}$ was observed (90%) with yields in $\mathbf{3 a}$ and $\mathbf{4 a}$ of 20% and 70% respectively (Entry 12). Nevertheless, the yield in $\mathbf{4 a}$ remained limited to 70% with 2 equivalents of allylic alcohol (entry 14). In order to achieve a full conversion of the starting material and a very high selectivity in 4a, a combination of higher catalyst loading up to $1.5 \mathrm{~mol} \%$ and 3 equivalents of allyl alcohol proved to be necessary (Entry 15).

Scheme 2. Allylation of phenylacetonitrile 1a and ligands used in the initial study.

Table 1. Optimization of the nickel catalyzed allylation of phenylacetonitrile with allyl alcohol. ${ }^{\text {[a] }}$

Entry	L	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Solvent	$\begin{aligned} & \mathrm{Nb} \\ & \mathrm{eq} \\ & \mathbf{2 a} \\ & \hline \end{aligned}$	Yield (\%) ${ }^{[b]}$	
					3 a	4a
1	L1	80	MeOH	2	16	0
2	L2	80	MeOH	2	34	40
3	L3	80	MeOH	2	$25+11^{\text {[d] }}$	35
4	L4	80	MeOH	2	25	60
5	L4	100	MeOH	2	$25+5^{[d]}$	60
6	14	120	MeOH	2	$26+10^{\text {[d] }}$	5
7	L4	80	Toluene	2	$24+34^{[d]}$	28
8	L4	80	neat	2	$24+33^{[d]}$	28
9	L4	80	$\begin{gathered} \mathrm{MeOH}+ \\ 10 \% \mathrm{NaOH} \end{gathered}$	2	5	80
10	L4	80	$\begin{aligned} & \mathrm{MeOH}+ \\ & 2 \% \text { PTSA } \end{aligned}$	2	2	0
11	L4	80	MeOH	1	30	14
12	L4	80	MeOH	3	20	70
$13^{\text {[c] }}$	L4	80	MeOH	1	36	40
$14^{[c]}$	L4	80	MeOH	2	30	70
$15^{[c]}$	L4	80	MeOH	3	0	>99

[a] Conditions: 1a $(1.8 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}: 1 \mathrm{~mol} \%,_{\text {diphosphine }} / \mathrm{Ni}=2$, $\mathrm{L}_{\text {(monophosphine) }} / \mathrm{Ni}=4,17 \mathrm{~h}$, in a sealed Schlenk tube.
[b] Determined by GC
[c] $1.5 \mathrm{~mol} \%$ of catalyst
[d] Hydrolysis to the corresponding amide

Table 2. Reaction scope of the nickel catalyzed direct allylation of the alpha-aromatic acetonitriles with allyl alcohol. ${ }^{\text {[a] }}$
(2)
${ }^{[a]}$ Reaction conditions: 1a-k $(1.8 \mathrm{mmol})$, 2a $(5.4 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}$ $(0.027 \mathrm{mmol})$, dppf $(0.054 \mathrm{mmol}), \mathrm{MeOH}(0.5 \mathrm{~mL}), 17 \mathrm{~h}, \mathrm{~T}=80^{\circ} \mathrm{C}$ in a sealed Schlenk tube.
${ }^{[b]}$ Isolated yield after silica gel chromatography.
Using the optimized conditions, we then examined the possibility to perform this reaction with alphamonosubstituted acetonitriles bearing aromatic rings (Table 2). After isolation of the product, phenylacetonitrile 1a led to 87% of 3a yield (Entry 1,

Table 2). The presence of a methoxy group on the ortho position oriented the synthesis toward the sole formation of the monoallylated derivative $\mathbf{3 b}$ with a yield of 51% (Entry 2). Good yields into the bisallylated product were observed with 3,4dimethoxyphenylacetonitrile 1c and 3,4,5trimethoxyphenylacetonitrile 1d, 70 and 62% respectively (Entries 3 and 4). These results showed that the presence of methoxy groups on the meta and para positions of the aromatic ring did not bring significant steric hindrance. 2-cyanophenylacetonitrile $\mathbf{1 e}$ and 2fluorophenyl acetonitrile $\mathbf{1 f}$ were efficiently diallylated and the compounds $\mathbf{3 e}$ and $\mathbf{3 f}$ were thus isolated with 70 $\%$ and 60% yields respectively (Entries 5-6).

Table 3: Reaction scope of the nickel catalyzed direct allylation of the α, α disubstituted acetonitriles with allyl alcohol. ${ }^{[a]}$

${ }^{[a]}$ Reaction conditions: 5a-f (1.8 mmol), 2a (5.4 mmol$), \mathrm{Ni}(\text { cod })_{2}$ $(0.027 \mathrm{mmol}), \mathrm{dppf}(0.054 \mathrm{mmol}), \mathrm{MeOH}(0.5 \mathrm{~mL}), 17 \mathrm{~h}, \mathrm{~T}=80^{\circ} \mathrm{C}$ in a sealed Schlenk tube. [b] Isolated yield after silica gel chromatography.

Very similar results were obtained with the fluorinated phenylacetonitrile 1g (Entry 7). The 3methylphenylacetonitrile $\mathbf{1 h}$ and 4-biphenyl acetonitrile $\mathbf{1 i}$ were converted in derivatives $\mathbf{3 h}$ and $\mathbf{3 i}$ with yields of 60% and 65% respectively (Entries 8-9). A very good yield was observed with naphthylacetonitrile $\mathbf{1 j}$ of 89 \% (Entry 10) while 7-methoxy-2-
naphthylacetonitrile $\mathbf{1 k}$ gave only the monoallylated product $\mathbf{3 k}$ with an isolated yield of 57% (Entry 11). The higher steric hindrance due to the presence of the methoxy group likely impeded further substitution on the carbon atom.
Using the same conditions, the scope of the nitriles was extended to α, α-disubstituted acetonitriles. In that case, only monoallylation could be performed. It is noteworthy that in all cases reported in Table 3, complete conversions of the starting materials were observed. High isolated yields were obtained with diphenylacetonitrile $\mathbf{5 a}$ and methyl-2naphthylacetonitrile 5b of 94% and 85% respectively (Entries 1 and 2). A slight decrease of yield with substrates bearing an electrodonor group was observed after isolation: α-methylphenylacetonitrile $\mathbf{5 c}, \alpha$ ethylphenyl acetonitrile $\mathbf{5 d}$ and 1,2,3,4-tetrahydronaphthalene-1-carbonitrile 5e were converted with yields of $73 \%, 65 \%$ and 61% respectively (Entries 3, 4 and 5). The 4-benzoyl- α methylbenzeneacetonitrile $\mathbf{5 f}$ was isolated with an excellent yield of 91% (entry 6).

Table 4: Scope of the Ni-catalyzed allylation of diphenyl acetonitrile 5 a with various allylic alcohols. [a]

${ }^{[a]}$ Reaction conditions: 5a $(1.8 \mathrm{mmol}), 7 \mathbf{a - d}(5.4 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}$ $(0.027 \mathrm{mmol})$, dppf $(0.054 \mathrm{mmol}), \mathrm{MeOH}(0.5 \mathrm{~mL}), 17 \mathrm{~h}, \mathrm{~T}=80^{\circ} \mathrm{C}$ in a sealed Schlenk tube. ${ }^{[b]}$ Isolated yield after silica gel chromatography. ${ }^{[\mathrm{c}]} 2 \mathrm{~mol} \%$ of $\mathrm{Ni}(\mathrm{dppf})_{2}$.

We further investigated different allylic alcohols with diphenylacetonitrile 5a as substrate (Table 4). High yields were obtained with the allylic linear alcohols such as crotyl alcohol 7a and octa-2,7-dien-1-ol 7b, 85% and 80% respectively (Entries 1 and 2). A very similar result was obtained with 2-methyl-2-propen-1-ol 7c as a branched alcohol (Entry 3). Cinnamyl alcohol (entry 4) could also be converted in the allylated derivative $8 \mathbf{d}$ with 62% isolated yield. The linear allylic structure was selectively obtained and the branched isomer was not observed. However, the reaction with a more substituted alcohol such as 3-methyl-2-buten-1-ol 7d did not give the allylated nitrile. The fact that this alcohol is more substituted disfavors the oxidative addition to a low valent $\mathrm{Ni}(0)$ intermediate.
As we previously reported for the allylation of ketones, ${ }^{15}$ diallylether 9a could also been involved in that reaction. As example with 2,2-diphenylacetonitrile 5a, a good isolated yield of 80% was then obtained by using 1 equivalent of diallylether 9a (Scheme 3).

Scheme 3. The nickel-catalyzed α-allylation of α, α diphenylacetonitrile with diallyether.

The diallylated nitriles can be further used in other transformations that involve either the allylic or the nitrile moieties. The reduction of the nitrile in the corresponding primary amine was accomplished with lithium aluminum hydride in ether leading to the diallylamine 11a. The ruthenium catalyzed ring closing metathesis was also performed in high yield in refluxing toluene to form the cyclopentene ring along with the release of ethylene (Scheme 4).

Scheme 4: Transformations of diallylnitrile 4a.
Conclusion

In conclusion, we have developed an efficient and very clean nickel-catalyzed process for the direct allylic alkylation of α-substituted nitriles with allyl alcohol. The reaction was carried out under neutral conditions giving only water as side product. A large variety of allylic nitriles were synthesized and different allylic alcohols were also investigated. Similar results were observed with diallylether in place of allyl alcohol. The thus obtained allylated derivatives can be further chemically modified through nitrile reduction or olefin metathesis reactions to generate a primary amine or a cyclopentene ring respectively. We believed that this methodology is relevant to straightforwardly produce new allyl compounds and derivatives.

Experimental Section

α-Allylation of phenylacetonitrile 1a with allyl alcohol 2a: In a Schlenk tube were placed first the catalytic precursor $\mathrm{Ni}(\operatorname{cod})_{2}(1.5 \mathrm{~mol} \%)$, then the ligand (3 mol

References

[1] a) B. M. Trost and D. L. Van Vranken, Chem. Rev., 1996, 96, 395-422; b) G. Consiglio and R. M. Waymouth, Chem. Rev., 1989 ,89, 257-276; c) B. M. Trost, Acc. Chem. Res., 1996, 29, 355-364; d) B. M. Trost, Chem. Pharm. Bull., 2002, 50, 1-14; e) T. Graening and H. G. Schmalz, Angew. Chem Int.Ed., 2003, 42, 2580-2584; f) B. M. Trost and M. L. Crawley, Chem. Rev., 2003, 103, 2921-2944; g) B. M. Trost, J. Org. Chem., 2004, 69, 5813-5837; h) B. M. Trost, M. R. Machacek and A. Aponick, Acc. Chem. Res., 2006, 39, 747-760.
[2] M. L. Randall and M. L. Snapper, J. Mol. Catal Chem., 1998, 133, 29-40; N. W. Cant and W. Keith Hall, J. Catal., 1972, 27, 70-78.
[3] G. I. Panov, E. V. Starokon, M. V. Parfenov, B.Wei, V. I. Sobolev, and L.V. Pirutko, ACS Catal., 2018, 8, 1173-1177.
[4] a) E. Arceo, J. A. Ellman and R. G. Bergman, J. Am. Chem.Soc., 2010, 132, 11408-11409; b) M.Shiramizu and F. D. Toste, Angew. Chem, Int. Ed., 2012, 51, 80828086; c) I. Ahmad, G. Chapman and K. M. Nicholas, Organometallics, 2011, 30, 2810-2818; d) S. Raju, M. E. Moret and R. J. M. Klein Gebbink, ACS Catal., 2015, 5, 281-300.
[5] For reviews of palladium-catalyzed allylation of nucleophiles by directly using allylic alcohols, see a) Y. Tamaru, Eur. J. Org. Chem., 2005, 2647-2656. b) M. Kimura, J. Synth. Org. Chem, Jpn., 2012, 70, 216-226. c) B, Sundararaju, M. Achard, C. Bruneau, Chem. Soc. Rev. 2012, 41, 4467-4483.
[6] M. S. Azizi, Y. Edder, A. Karim and M. Sauthier, Eur. J. Org. Chem. 2016, 22, 3796-3803.
\%), the nitrile ($1.8 \mathrm{mmol}, 1$ equiv.). Under nitrogen, freshly distilled and degassed allyl alcohol (3 eq.) or diallyl ether (1 eq.) were then added. Degassed MeOH $(0.5 \mathrm{~mL})$ was added under nitrogen and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was then concentrated under reduced pressure and the product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (90/10) as eluent.

Acknowledgements

We acknowledge the Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation, the Institut Universitaire de France and the CNRS for their financial support. We also would like to thank Céline Delabre for her technical support (GC analysis of the crudes).
[7] R. Blieck, M. S. Azizi, A. Mifleur, M. Roger, C. Persyn, M. Sauthier and H. Bonin, Eur. J. Org. Chem., 2016, 6, 1194-1198.
[8] H. Bricout, J. F. Carpentier, A. Mortreux, J. Mol. Catal. A: Chem. 1998, 136, 243-251.
[9] Y. Bernhard, B. Thomson, V. Freely and M. Sauthier, Angew. Chem. Int. Ed, 2017, 56, 7460-7464.
[10] B. Mouhsine, A. Karim, C. Dumont and M. Sauthier, Green Chem., 2020, 22, 950-955.
[11] a) J. Muzart, Tetrahedron, 2005, 61, 4179-4212; b) F. Ozawa, H. Okamoto, S. Kawagishi, S. Yamamoto, T. Minami and M. Yoshifuji, J. Am. Chem. Soc., 2002, 124, 10968-11096.
[12] a) S. Krautwald, M. A. Schafroth, D. Sarlah and E. M. Carreira, J. Am. Chem. Soc., 2014, 136, 3020-3023; b) S. Krautwald, D. Sarlah, M. A. Schafroth and E. M. Carreira, Science, 2013, 340, 1065-1068.
[13] D. Wang, C. J. Chen. J. X. Haberman, C. J. Li, Tetrahedron, 1998, 54, 5129-5142.
[14] a) H. Bricout, J. F. Carpentier and A. Mortreux, Tetrahedron Lett., 1996, 37, 6105-6108; b) E. Alvarez, T. Cuvigny and M. Julia, J. Organomet. Chem., 1988, 339, 199-212; c) Y. Kita, H. Sakaguchi, Y. Hoshimoto, D. Nakauchi, Y. Nakahara, J. F. Carpentier, S. Ogoshi and K. Mashima, Chem. Eur. J., 2015, 21, 14571-14578.
[15] T. B. Wright, P. A. Evans, J. Am. Chem. Soc., 2016, 137, 6156-6159.
[16] a) M. Kimura, Y. Horino, R. Mukai, S. Tanaka, Y. Tamaru, J. Am. Chem. Soc., 2001, 123, 10401-10402; b) M. Kimura, M. Shimizu, K. Shibata, M. Tazoe, Y. Tamaru, Angew. Chem. Int. Ed. 2003, 42, 3392-3395; c) G. Jiang, B. List, Adv. Synth. Catal., 2011, 353, 16671670; d) I. Usui, S. Schmidt, B. Breit, Org. Lett., 2009, 11, 1453-1456; e) X. Huo, G. Yang, D. Liu, Y. Liu, I. D.

Gridnev, W. Zhang, Angew. Chem. Int. Ed, 2014, 53, 6776-6780.
[17] R. C. Larock, Comprehensive Organic Transformations, 3rd ed; Wiley \& Sons: Hoboken, NJ, 2018, 3821-3830.
[18] a) F. F. Fleming Nat. Prod. Rep., 1999, 16, 597-60; b) F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk, B. C. Shook, J. Med. Chem., 2010, 53, 7902-7917.
[19] S. B. Lang, T. M. Locascio, and J. A. Tunge, Org. Lett. 2014, 16, 4308-4311.
[20] A. J. Grenning and J. A. Tunge, J. Am. Chem. Soc. 2011, 133, 14785-14794.
[21] B. W. H. Turnbull and P. A. Evans, J. Am. Chem. Soc., 2015, 137, 6156-6159.
[22] A. Matsunami, K. Takizawa, S. Sugano, Y. Yano, H. Sato, and R. Takeuchi, J. Org. Chem. 2018, 83, 12239-12246.

Nickel-based catalysts allow the alpha-allylation of nitriles under neutral conditions (no added base or coreagent)

