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Abstract 

The boreal Northeast Atlantic is strongly affected by current climate change, and large shifts 

in abundance and distribution of many organisms have been observed, including the 

dominant copepod Calanus finmarchicus, which supports the grazing food web and thus 

many fish populations. At the same time, large-scale declines have been observed in many 

piscivorous seabirds, which depend on abundant small pelagic fish. Here, we combine 

predictions from a niche model of C. finmarchicus with long-term data on seabird breeding 

success to link trophic levels. The niche model shows that environmental suitability for C. 

finmarchicus has declined in southern areas with large breeding seabird populations (e.g. the 

North Sea), and predicts that this decline is likely to spread northwards during the 21st 

century to affect populations in Iceland and the Faroes. In a North Sea colony, breeding 

success of three common piscivorous seabird species (black-legged kittiwake (Rissa 

tridactyla), common guillemot (Uria aalge) and Atlantic puffin (Fratercula arctica)) was 

strongly positively correlated with local environmental suitability for C. finmarchicus, 

whereas this was not the case at a more northerly colony in west Norway. Large seabird 

populations seem only to occur where C. finmarchicus is abundant, and northward 

distributional shifts of common boreal seabirds are therefore expected over the coming 

decades. Whether population size can be maintained depends on the dispersal ability and 

inclination of these colonial breeders, and on the carrying capacity of more northerly areas in 

a warmer climate. 
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Introduction 

One of the most important issues currently facing ecologists is understanding, predicting and 

anticipating the population-level response of organisms to climate change (Walther et al., 

2002; Beaugrand, 2012). Important questions include whether populations will increase or 

decline, perhaps to the point of local extinction, and whether ranges will shift, expand or 

contract (Parmesan, 2005). Answering these questions requires an understanding of the 

thermal tolerance, trophic relationships and dispersal capacity of the focal organism, as well 

as the extent of phenotypic plasticity and rate of microevolutionary change in these traits 

(Visser, 2008). This task is particularly challenging for endothermic organisms at high 

trophic levels, because trophic effects may be more important than direct physiological 

effects of rising temperatures (Kirby & Beaugrand, 2009; Luczak et al., 2011). Robust 

predictions thus necessarily involve detailed knowledge of the likely climatic response of key 

organisms at lower trophic levels. 

Observed changes in ocean climate have been both fast and complex (Burrows et al., 

2011), and some of the most pronounced large-scale biological responses to climatic 

variability and global climate change have been observed in marine ecosystems (Harley et 

al., 2006). Because of the high heat capacity of the oceans, short-term temperature variability 

is low, and many marine ectotherms are therefore adapted to a specific thermal environment, 

particularly during reproduction (Hirche et al., 1997; Pörtner & Peck, 2010). Oceanic 

currents are also linked to climate and thus likely to change with increasing temperatures, 

leading to shifts e.g. in the location of upwelling zones and in dispersal patterns of marine 

organisms (Brander et al., 2003). Large distributional shifts linked to changing temperatures 

or currents are consequently common, particularly among marine plankton (Hays et al., 

2005) and fish (Perry et al., 2005), with potentially far-reaching consequences for dependent 

endothermic predators including seabirds. 
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Seabirds are land-based during reproduction, and therefore their population dynamics 

and demography are relatively well known. Many studies have shown strong correlations 

between seabird demographic parameters (fecundity and survival) and various aspects of 

ocean climate, including indices of large-scale atmospheric circulation patterns (e.g. Jones et 

al., 2002; Jenouvrier et al., 2005) as well as local sea surface temperature (e.g. Frederiksen et 

al., 2004; Harris et al., 2005a). Nevertheless, the underlying mechanisms linking demography 

and climate remain poorly understood, although most published studies have implicitly or 

explicitly assumed that trophic links were important (e.g. Durant et al., 2003). In the boreal 

Northeast Atlantic (ca. 55-70° N), many seabird populations have shown repeated breeding 

failures and pronounced declines in recent decades (JNCC, 2009; Frederiksen, 2010; Barrett 

et al., 2012). Although the reasons for these declines are only partially understood, 

circumstantial evidence points towards an important role of climate change (Heath et al., 

2009). It is therefore timely to improve our understanding of the mechanisms through which 

climate affects seabirds in this region, including the role of important organisms at lower 

trophic levels. 

The copepod Calanus finmarchicus is a key species for the trophodynamics of boreal 

ecosystems of the North Atlantic Ocean (Planque & Batten 2000). This species generally 

constitutes > 50% of the total copepod biomass, and can even reach > 90% in some regions 

(Planque & Batten, 2000). The species is a very important prey for small pelagic fish 

favoured by seabirds, as well as for larval or juvenile stages of commercially important larger 

fish (Beaugrand et al., 2003; Beaugrand & Reid, 2003). Recent studies suggest that the 

species is likely to experience a rapid northward shift in distribution over the coming decades 

(Reygondeau & Beaugrand, 2011). Large declines in abundance of C. finmarchicus have 

occurred along the southern range limit, e.g. in the North Sea (Reid et al., 2003; Heath et al., 
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2009), and low reproductive success of several forage-fish dependent seabird species has 

been linked to these declines (Frederiksen et al., 2006).  

Here, we combine estimates of historical and future environmental suitability for C. 

finmarchicus from an ecological niche model with time series of seabird reproductive success 

from two long-term studies in the Northeast Atlantic, with the aim of predicting potential 

consequences for breeding seabird populations of climate-driven changes in the abundance 

and distribution of this key-structural species. 

 

Materials and methods 

Data 

Climate data. Annual sea surface temperature (SST) data from 1953 to 2010 originated from 

the ERSST_V3 dataset, which come from a reanalysis on a 2° x 2° spatial grid that is based 

on the most recently available International Comprehensive Ocean-Atmosphere Data Set 

(ICOADS) SST data. Improved statistical methods were applied to produce a stable monthly 

reconstruction based on sparse data (Smith et al., 2008). 

We chose the climatic scenario A1B described in the Special Report on Emissions 

Scenarios (SRES) (Solomon et al., 2007) to calculate projections of environmental suitability 

of C. finmarchicus, and used the first run (Scenario A1B) of the Hadley Centre Coupled 

Model, version 3 (HadCM3; Gordon et al., 2000). HadCM3 is a coupled climate model that 

has been applied extensively for climate prediction, detection and attribution, and climate 

sensitivity. The oceanic component of this model has a horizontal resolution of 1.25 x 1.25 

degrees to represent important details in oceanic current structures (Stott et al., 2000). 

Two large-scale hydro-climatic indices were used to examine the relationship between 

long-term changes in annual SSTs and hydro-climatic variability. The North Atlantic 

Oscillation (NAO) describes the basin-scale gradient of atmospheric pressure over the North 
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Atlantic, between the high pressure centred on the subtropical Atlantic and low pressure 

around Iceland. This phenomenon, detected in all months of the year, is particularly strong in 

winter and explains about 37% of the variability in monthly Sea Level Pressure (SLP) from 

December to February (Marshall et al., 2001). Several slightly different NAO definitions 

exist (Hurrell & Deser, 2009). The winter NAO index used in this study is based on a 

Principal Component Analysis of sea level pressure over the North Atlantic sector for months 

from December to March (Hurrell et al., 2001). The Northern Hemisphere Temperature 

(NHT) anomaly (relative to 1961-1990)  provided by the Hadley Centre for Climate 

Prediction and Research (Brohan et al., 2006) was used as a proxy for the effect of global 

warming in the Northern Hemisphere, although it also integrates hydro-climatic variability 

(Beaugrand & Reid, 2003). 

Biological data. Two of the most comprehensive long-term studies of seabird ecology in the 

Northeast Atlantic take place at the Isle of May in east Scotland (56° 11’ N, 2° 33’ W), and at 

Røst in the Lofoten archipelago in northwest Norway (67° 30’ N, 12° E). We included three 

common boreal seabird species: black-legged kittiwake (Rissa tridactyla, hereafter 

kittiwake), common guillemot (Uria aalge, hereafter guillemot, Isle of May only), and 

Atlantic puffin (Fratercula arctica, hereafter puffin). All three species feed their chicks on 

small pelagic fish, mainly lesser sandeel (Ammodytes marinus) and European sprat (Sprattus 

sprattus) on the Isle of May (Daunt et al., 2008), and juvenile Atlantic herring (Clupea 

harengus) for kittiwakes and puffins at Røst (Anker-Nilssen et al., 1997; Durant et al., 2003). 

Guillemots and puffins obtain prey by diving, while kittiwakes feed at or near the surface 

(Gaston & Jones, 1998; Hatch et al., 2009). Details on distribution and population size of the 

three species are provided in Appendix S1. 

At the Isle of May, data on breeding success were available for kittiwakes, guillemots 

and puffins for respectively 1985-2010, 1982-2010 and 1977-2010. Methods were consistent 
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within each species across the study period, but varied among the species (Harris et al., 

2005b). For kittiwakes, nests in 15 plots (mean n = 801) distributed throughout the colony 

were checked when most pairs had finished laying. Nests where an incubating bird was 

present were marked on photographs of the area. Plots were checked again the day after the 

first fledged chick was seen in the colony, and the number of young present at each nest and 

their stage of development noted. Subsequent checks of nests where small or medium-sized 

chicks were present on this initial check were made over the subsequent month, and annual 

success was estimated as the number of large chicks, i.e. those assumed to fledge, out of the 

total number of well-built nests recorded. For guillemots, daily checks of breeding sites in 

five study plots (mean n = 803), where breeding density ranged from low to high, were made 

from before the first pair laid to after the last chick fledged. Annual breeding success was 

estimated as the proportion of sites where an egg was laid that a chick fledged. For puffin, up 

to 50 burrows containing eggs were marked in each of four different parts of the colony 

(mean n = 126) soon after laying was judged to be complete. Burrows were revisited ca. 8 

weeks later, and success estimated as the proportion of burrows where a chick was present. 

Details of field procedures at Røst are documented by Anker-Nilssen & Aarvak (2006). 

The breeding success of kittiwakes in the main colony (Vedøy) was measured annually 1980-

2010 (except 1986-87) in 5-6 fixed study plots (mean n = 449), and expressed as the number 

of large chicks immediately prior to fledging per apparently occupied nest (AON) counted 

within the same plots in the incubation period. The addition of one plot in 1996 increased the 

total plot coverage from 2.4% to 3.7% of colony size, which dropped gradually from about 

25,000 AON in 1979 to 7,500 AON in 2010. Mean breeding success in the new plot (0.437 ± 

SE 0.080) did not deviate significantly from (t14 = 2.049, P = 0.060) and correlated strongly 

(r = 0.789, P < 0.001) with that in the traditional five plots (0.322 ± SE 0.090) (T. Anker-

Nilssen, unpubl. data). The breeding success of puffins was measured annually 1976-2010 as 
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the mean number of chicks fledged per egg hatched in an annual selection (mean 64) of study 

burrows, inspected at 3-4 (1-6) d intervals from late incubation throughout the chick period. 

The many years with low or no fledging success included a few years when virtually no eggs 

hatched, in which fledging success was set to zero. 

We consider the potential temporal bias from measuring breeding success of puffins 

over a shorter part of the breeding season at Røst (per chick hatched) than on the Isle of May 

(per egg laid) to be of minor importance in the context of our study, as we do not control for 

any within-year differences in timing of events or between-year variation in the proportion of 

non-breeding. Although hatching success was extremely variable at Røst, where most birds 

abandoned their egg in the poorest seasons, the fledging success of the few that did hatch in 

such years was always very poor (T. Anker-Nilssen, unpubl. data). 

Statistical methods 

Long-term changes in the spatial patterns of Pearson correlations between annual SSTs 

and both the winter NAO index and NHT anomaly were investigated by splitting the time 

series into two periods (1953-1979 and 1980-2006), with the number of years in each 

period (27) kept constant to compare the strength of the correlations. Probabilities were 

adjusted for temporal autocorrelation (Beaugrand, 2009). 

The ecological niche of C. finmarchicus was calculated using the Non-Parametric 

Probabilistic Ecological Niche (NPPEN) model (Beaugrand et al., 2011). The NPPEN model 

is a technique that estimates the ecological niche of a species. Once the niche is calculated, 

the technique projects the probability of occurrence of the species in space and/or time. The 

technique is based on the Generalised Mahalanobis distance and a simplified version of the 

non-parametric test Multiple Response Permutation Procedure (MRPP). Applied at a year-to-

year scale, the method gives the probability of occurrence of C. finmarchicus for a given 

year. A high probability of occurrence corresponds to an environment highly suitable for the 
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species and vice versa. The probabilities are constrained between 0 and 1. The model NPPEN 

was applied on three physical variables: bathymetry, annual sea surface salinity (SSS; as a 

proxy for the ecological effects of salinity-induced stratification and impacts on osmotic 

tolerance) (Levitus, 1982), and annual SST. The lower and upper limits for bathymetry 

(8000-0 m), annual SSS (30-36 psu) and annual SST (0-12°C) were selected based on expert 

knowledge of C. finmarchicus (Helaouët & Beaugrand, 2007; Reygondeau & Beaugrand, 

2011). 

Based on observed annual variation in SST and constant values of bathymetry and sea 

surface salinity, we calculated the annual environmental suitability for C. finmarchicus 

(1960-2010) in four areas of relatively similar size that are important for breeding seabirds: 

(1) East Scotland (56-58°N, 2-0°W); (2) Faroes (61-63°N, 8-6°W); (3) South Iceland (62-

64°N, 22-19°W); (4) Lofoten (67-69°N, 10-14°E). Using a moderate climatic scenario 

(Scenario A1B), we forecasted the environmental suitability of C. finmarchicus in the four 

areas for each decade of the 21st century. We did not include annual variation in SSS for two 

reasons: firstly, spatial variance in salinity is much more pronounced than temporal variance, 

and secondly, temporal variance is currently poorly assessed in atmosphere-ocean general 

circulation models (M. Visbeck, pers. comm.). 

The relationship between environmental suitability for C. finmarchicus and seabird 

breeding success was assessed using correlation analysis, with probability levels adjusted to 

account for temporal autocorrelation (Beaugrand, 2009). The relationships were tested with 

and without a one-year lag, because previous studies at the Isle of May have shown such a lag 

between SST and breeding success, probably reflecting dependence on 1-year-old fish 

(Frederiksen et al., 2006). For kittiwakes at the Isle of May, the presence of a sandeel fishery 

during 1990-99 was included as an additional binary predictor, as previous studies have 

shown that breeding success was depressed during this period (Frederiksen et al., 2004; 
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Frederiksen et al., 2008). Impacts of potential changes in seabird breeding success on 

population growth rate were assessed with simple age-structured matrix population models 

(Caswell, 2001) constructed in ULM (Legendre & Clobert, 1995), using realistic values for 

other demographic parameters (Appendix S2). 

 

Results 

Figure 1 shows the results of the correlation analyses performed between annual SST and 

both NHT anomalies and the NAO index for the two periods 1953-1979 and 1980-2006. The 

statistics of the correlation analyses are summarized by Figure 1. The colour scale indicates 

the sign and the magnitude of the correlations, and the symbol + shows that these correlations 

are significant at the threshold level of 0.1. Temperatures in the Northern Hemisphere and 

specifically in the North Atlantic have increased substantially since the end of the 1970s 

(Beaugrand et al., 2002). Interestingly, since 1980 the formerly significant positive 

correlation between mean annual SST in the North Sea area and the winter NAO index has 

disappeared, and mean annual SST is now significantly positively correlated with NHT 

anomalies throughout the Northeast Atlantic (Fig. 1). In the Irminger Sea and the North-

central Atlantic, there is at the same time a significant negative correlation between annual 

SST and the winter NAO index. 

The probability of occurrence of C. finmarchicus was calculated from the model 

NPPEN. As explained above, a high probability of occurrence of the species shows that the 

values of the environmental parameters are highly suitable for the species. Within the boreal 

Northeast Atlantic, mean environmental suitability for C. finmarchicus as predicted by the 

NPPEN model increases from south to north (Fig. 2). The observed changes in temperature 

have resulted in a declining environmental suitability for C. finmarchicus off east Scotland 

and in some recent years off south Iceland, while environmental suitability has remained 
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more constant around the Faroes and Lofoten (Fig. 2). Over the 21st century, mean suitability 

is projected to gradually decrease in east Scotland, the Faroes and south Iceland, while it is 

expected to remain relatively high at Lofoten until late in the century if climate-induced 

changes in temperatures follow Scenario A1B (Fig. 3). It is important to note that these 

projections are decadal means and therefore mask potentially substantial shorter-term 

variations, which may have large ecological consequences. 

Observed breeding success of kittiwakes (when controlling for the presence of a 

sandeel fishery in 1990-1999), guillemots and puffins was positively correlated (significantly 

for kittiwakes and puffins) with predicted environmental suitability for C. finmarchicus in the 

previous year at the Isle of May, but not at Røst (Table 1, Fig. 4). The observed patterns (Fig. 

4) suggest a threshold-like relationship, where ‘optimal’ breeding success (> 1 and > 0.8 

fledged chick/pair for kittiwakes and guillemots/puffins, respectively) is possible (i.e. highest 

values observed fall in this range) as long as suitability for C. finmarchicus remains above 

0.4, and likely (i.e. predicted by the linear regression) when environmental suitability is 

above 0.6. The niche model indicates that mean suitability is expected to fall below 0.4 off 

east Scotland in the 2020s, and off the Faroes in the 2060s, whereas it is expected to remain 

above this threshold for the remainder of the 21st century at south Iceland and Lofoten (Fig. 

3). Other factors may act to reduce seabird breeding success from this optimal level (see 

Discussion), as indicated by the many poor seasons for puffins and kittiwakes at Røst despite 

high decadal suitability for C. finmarchicus (Fig. 4). 

A simple age-structured population model indicated that declines in mean breeding 

success from 1 to 0.3 fledged chick/pair for kittiwakes, and from 0.8 to 0.5 fledged chick/pair 

for guillemots and puffins (corresponding to observed differences between ‘good’ and ‘bad’ 

years, cf. Fig. 4) would cause formerly stable populations to decline by respectively 6% and 

3% annually, all else being equal. This estimate is likely to be conservative, as other 
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demographic parameters also are likely to be affected by food shortages (Frederiksen et al., 

2004; Harris & Wanless, 2011). 

 

Discussion 

Our statistical projections indicate that over the 21st century, it will become increasingly 

difficult for several boreal seabird species to maintain adequate breeding success and thus 

stable populations towards their southern range limit, and that these problems are likely to 

spread north in the later part of the century. These projections rely on the assumption that 

adequate abundance of C. finmarchicus is critically important for successful seabird 

reproduction. Previous studies show that breeding success of kittiwakes on the Isle of May 

and neighbouring colonies was negatively correlated with SST in the previous year 

(Frederiksen et al., 2004; Frederiksen et al., 2007b), and here we extend these results to two 

other species and suggest a partial mechanism: the negative association of C. finmarchicus 

with mean annual SST over this range. However, the seabirds in question do not feed their 

chicks on copepods, and the underlying assumption is that successful recruitment of the 

forage fish seabirds depend on to feed their chicks requires C. finmarchicus abundance to be 

high. There is some evidence to support this. Recruitment of lesser sandeel in the North Sea 

(the main prey of most chick-feeding seabirds in this region, Daunt et al., 2008) is strongly 

positively correlated with C. finmarchicus abundance (van Deurs et al., 2009). Similarly, C. 

finmarchicus is the most important prey of the Norwegian Sea – Barents Sea stock of herring 

throughout its life cycle (Prokopchuk, 2009). Thus, it is biologically plausible that sufficient 

abundance of C. finmarchicus is a necessary condition for successful breeding of kittiwakes, 

guillemots and puffins, at least as long as herring and sandeel remain their most important 

prey during breeding. Alternatively, C. finmarchicus could be considered as an indicator of 

the integrated influence of SST on the food web (Kirby & Beaugrand, 2009). The species is a 
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key indicator of subarctic ecosystems (Helaouët et al., 2011), and its decline might reflect the 

adverse effect of increasing temperatures on the subarctic provinces of the Atlantic Arctic 

biomes (sensu Longhurst, 1998). North Sea plankton shifted polewards as a result of the 

northward movement of a critical thermal boundary (CTB). The CTB, associated with high 

biological and ecological variance, is identified by the annual isotherm 9-10°C (Beaugrand et 

al., 2008). If the reorganisation is too substantial (i.e. the subarctic influence disappears 

totally), all higher trophic levels depending upon the ecosystem directly or indirectly, are 

likely to decline (Kirby & Beaugrand, 2009). 

Increasing sea temperatures may also affect fish directly, although less evidence is 

available for such impacts (Heath et al., 2012), and this could affect the availability of 

alternative prey for seabirds. The most obvious alternative prey in the North Sea is the 

European sprat. For example, changes in the abundance of sprat may influence the breeding 

success of guillemots, kittiwakes and puffins (Lewis et al., 2001; Wanless et al., 2005). A 

recent study indicates that an increase or sustained probability of occurrence of sprat during 

the first half of the 21st century could partly compensate any reduction in North Sea sandeels 

(Lenoir et al., unpubl.). The decline in the probability of occurrence of sprat is predicted to 

remain moderate along Scottish coasts of the North Sea until 2050, which might help sustain 

seabird colonies albeit at lower numbers than at present. However, a much more intense 

warming might accelerate the decrease in the probability of occurrence of sprat. More 

research is required to evaluate the potential role of alternative prey in supporting seabird 

populations. 

The one-year lag in the relationship between C. finmarchicus suitability (or 

equivalently, SST) and breeding success is assumed to reflect the dependence of many 

seabirds on 1-year-old fish to fledge young successfully. While kittiwakes and guillemots 

indeed feed their young extensively on 1-year-old sandeel, at least early in the season (Lewis 
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et al., 2001; Wilson et al., 2004; Daunt et al., 2008), puffins only do so to a limited extent 

(Harris & Wanless, 2011). Nevertheless, the observed relationship on the Isle of May was 

stronger with a one-year lag than without for all three species (Table 1); Frederiksen et al. 

(2006) argued that this was due to adults being dependent on 1-year-old fish to achieve 

sufficiently high body condition to enable successful breeding. 

Many other mechanisms can prevent seabirds from achieving high breeding success in 

situations where physical conditions are suitable for C. finmarchicus (Fig. 4). Firstly, nutrient 

levels may be too low to support high abundance of C. finmarchicus, despite physical 

conditions being suitable as indicated by the NPPEN model. This is unlikely to be the case in 

the shelf waters off Northwest Europe, where primary productivity is generally high, at least 

during the spring bloom (Gazeau et al., 2004). Secondly, competition from other abundant 

predators for C. finmarchicus may prevent large stocks of schooling fish suitable for seabirds 

from being maintained. The most obvious candidates are other schooling fish too large for 

most seabirds, e.g. Atlantic mackerel (Scomber scombrus) (Castonguay et al., 2008; Langøy 

et al., 2012), adult Atlantic herring (Prokopchuk, 2009). In recent years, stocks of mackerel in 

the Northeast Atlantic have increased and expanded their range northwards (ICES, 2011), and 

this has been suggested as a contributory cause of repeated breeding failures of seabirds in 

south Iceland (E.S. Hansen, pers. comm.), the Faroes and along the west coast of Norway. 

Blue whiting (Micromesistius poutassou) increased dramatically in the North Atlantic in the 

mid-2000s and has since declined again (Payne et al., 2012); this mesopelagic schooling fish 

eats some copepods, but more typically larger pelagic crustaceans (Dolgov et al., 2010; 

Langøy et al., 2012), and it is probably too big and occurs too deep to be important food for 

seabirds. Thirdly, seabirds may face competition for forage fish from other natural predators 

and/or human fisheries. Potentially important predators on sandeels include adult herring 

(Frederiksen et al., 2007a), mackerel, gadoids and marine mammals, including baleen 
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whales. Sandeels are targeted by a large-scale industrial fishery in the North Sea, and reduced 

breeding success and adult survival of kittiwakes at the Isle of May in the 1990s have been 

linked to the activity of this fishery off east Scotland (Fig. 4, see also Frederiksen et al., 

2004). In general, large-scale fisheries on forage fish have been linked with widespread 

impacts on seabirds and other dependent predators in many ecosystems worldwide (Cury et 

al., 2011; Smith et al., 2011). Finally, variation in wind and currents may affect spawning 

and/or prevent advection of fish larvae from spawning areas to feeding areas where they 

become available for large seabird populations (Sætre et al., 2002). This phenomenon has 

been implicated as the underlying cause of breeding failures of many seabirds in Shetland in 

the late 1980s due to lack of sandeels (Wright & Bailey, 1993), and to some degree of puffins 

at Røst in many years during the 1970s to 2000s due to lack of young herring (Durant et al., 

2003). In the case of Røst, seabird breeding success is probably largely determined by 

conditions in the extensive shelf area upstream of the colony rather than by the theoretical 

suitability of the local environment. Locally, non-nutritional aspects such as predation, 

parasitism and adverse weather could also be important. 

It is generally accepted that the distribution of C. finmarchicus in the North Atlantic is 

the result of its thermal niche, along with advection from deep-water overwintering areas 

onto continental shelves such as the North Sea (Speirs et al., 2006; Helaouët & Beaugrand, 

2007). Given this, it can be expected that the distribution will shift northwards as 

temperatures increase through the 21st century (Reygondeau & Beaugrand, 2011), and if this 

key species is not replaced by other zooplankton grazers suitable (in terms of distribution, 

size, quality and quantity) as prey for small fish, seabird populations are expected to suffer 

reduced breeding success, likely leading to declines in population size (this study). The most 

likely replacement for C. finmarchicus as temperatures increase is its close relative, the 

warm-temperate C. helgolandicus (Helaouët & Beaugrand, 2007; Møller et al., 2012), which 
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has increased in abundance in the North Sea over recent decades as C. finmarchicus has 

decreased (Heath et al., 2009). However, for several reasons C. helgolandicus does not 

appear to be a full replacement for C. finmarchicus in terms of ecosystem functioning, in 

particular the ability to sustain large stocks of schooling, planktivorous fish (Bonnet et al., 

2005): it is smaller, has a lower lipid content, and tends to occur at low densities early in 

spring when most fish larvae need access to abundant copepod prey (Beaugrand et al., 2003). 

Taken together, these factors are likely to lead to a less efficient grazing food web when the 

system is dominated by C. helgolandicus, and thus a lower capability to support large 

populations of fish and dependent piscivores, including seabirds. 

Widespread northward range shifts of fish species have already been documented in the 

North Sea and other parts of the Northeast Atlantic and linked to increasing temperatures 

(Perry et al., 2005), and more such shifts are expected (Cheung et al., 2011; Lenoir et al., 

2011). Sandeels are considered particularly vulnerable to climatic warming, due to their strict 

habitat requirements (Heath et al., 2012). However, few of the species observed or expected 

to increase in this area are abundant planktivores which could sustain large seabird 

populations. The European anchovy Engraulis encrasicolus has increased in abundance in the 

North Sea (Petitgas et al., 2012), but although this species is commonly eaten by seabirds in 

warm-temperate parts of the Northeast Atlantic (e.g. Navarro et al., 2009), it appears never to 

have sustained seabird populations of the sizes seen in boreal waters (Barrett et al., 2006). 

In conclusion, based on the projected northward range shift of C. finmarchicus, the 

expected resultant declines in abundance of schooling pelagic fish such as sandeel and 

herring, and the lack of obvious replacements for these as seabird prey, it is likely that 

breeding populations of piscivorous seabirds in the boreal Northeast Atlantic will also shift 

northwards (cf. Russell, 2009; Harris & Wanless, 2011). Remnant populations may well 

remain in southern areas with particularly high prey availability, but the very large 
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populations currently present in e.g. Scotland and the Faroes seem likely to disappear. The 

speed of these range shifts, and their impact on total abundance of the seabird species 

involved, will depend on how likely these normally highly philopatric birds are to disperse to 

more northerly colonies (Matthiopoulos et al., 2005), and whether habitat quality in these 

areas will improve, allowing large seabird populations to be sustained. 
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Table 1 Significance and variation explained for the relationship between predicted 

suitability for C. finmarchicus and seabird breeding success at the Isle of May with and 

without a one-year lag (see also Fig. 4). At Røst, no relationships were significant. 

Significance levels were adjusted for temporal autocorrelation (Beaugrand, 2009). For 

kittiwakes, the amount of variation explained is for the whole model, including the effect of a 

sandeel fishery during 1990-1999. 

Species Study period No lag One-year lag 

R2 PACF R2 PACF 

Kittiwake 1985-2010 60% 0.072 63% 1.4 * 10-4

Guillemot 1982-2010 28% 0.14 30% 0.098 

Puffin 1977-2010 33% 0.062 48% 0.027 
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Fig. 1. Linear correlations between mean annual sea surface temperature (SST) and hydro-

climatic indices in the North Atlantic for the time periods 1953-1979 (left) and 1980-2006 

(right). Top panels: correlations between annual SST and Northern Hemisphere Temperature 

(NHT) anomalies. Bottom panels: correlations between annual SSTs and the North Atlantic 

Oscillation (NAO) index. Positive correlations are shown in red and negative correlations in 

blue. A plus sign (+) indicates correlations significant at P < 0.1, after adjusting the degrees 

of freedom to account for temporal autocorrelation (see Materials and methods). The red 

asterisks in the top left panel indicate the location of the Isle of May and Røst (outside map 

frame). 

 

Fig. 2. Historical environmental suitability (1960-2010) for C. finmarchicus predicted from 

the NPPEN model in four areas of the boreal Northeast Atlantic with large populations of 

breeding seabirds. 

 

Fig. 3. Projected 21st century environmental suitability for C. finmarchicus predicted from the 

NPPEN model in four areas of the boreal Northeast Atlantic with large populations of 

breeding seabirds. Values shown are decadal means. 

 

Fig. 4. Breeding success of three seabird species at the Isle of May and Røst, as a function of 

the environmental suitability for C. finmarchicus as predicted by the NPPEN model (see 

Materials and methods) in the previous year. Solid lines indicate significant linear 

regressions, and dashed lines near-significant trends (P < 0.1). For kittiwakes, the presence or 

absence of an industrial fishery for sandeels around the Isle of May is included in the model 

(cf. Frederiksen et al., 2004). 
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Fig. 1 
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Fig. 2.  
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Fig. 3.  
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Fig. 4.  
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