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This article presents results of a novel methodology capable of simultaneously retrieving
optical and microphysical properties of multi-level ice and liquid clouds. The method
was introduced in Part I, which theoretically demonstrated its capabilities, and its results
are here analysed and evaluated against A-Train operational products. In addition to
being robust to multi-layer conditions, another advantage of the method is that rigorous
uncertainties and analysis tools are attached to its retrievals. Also, the combined use
of short-wave and thermal infrared channels provides a wide range of sensitivity from
moderately thin to thick ice cloud layers. Finally, the method is also novel in that the ice
water path (IWP) is directly retrieved. These new retrievals should therefore be useful in
providing new data for evaluating climate model predictions of IWP. In this study, our
methodology has been applied to one year of A-Train measurements, narrowed to daytime
conditions over oceanic surfaces. The retrievals and their uncertainties are statistically
analysed, after a thorough discussion of the filtering process. It appears that our method
is sensitive to IWPs ranging between about 0.5 and 1000 g m−2, with uncertainties better
than 25% between 5 and 500 g m−2. Retrievals of the optical depth and effective radius
of liquid layers have uncertainties better than 20%. Our retrievals are then compared to
five independent operational A-Train products. Very good agreements, well within a factor
of 2, are found by comparisons to products from active and passive instruments. These
results overall lead to the validation of our method. Additionally, the robustness of passive
operational products to multi-layer conditions is discussed. Preliminary comparisons show
a possible overestimation of retrievals obtained under the single-layer approximation.
A thorough assessment of this problem will be addressed in a following study.
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1. Introduction

Clouds are a major concern to the climate research community
due to their crucial role on the Earth’s radiation budget (WCRP,
1986; Stephens, 2005; Baran, 2012). The Intergovernmental
Panel on Climate Change (IPCC) has again highlighted, in its
most recent report, the importance of reducing the current

uncertainties that remain with regard to cloud properties and
processes (IPCC, 2013). Therefore it appears not only necessary
to provide more accurate retrievals of cloud properties to the
climate modeling community, but it is also critical to associate
these retrievals with rigorous uncertainties and quality indicators.

The A-Train mission has proven to be highly valuable for
providing a better understanding of the Earth’s atmosphere,
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thanks to unique possibilities of synergy between all kinds of active
and passive instruments. The recent emergence of variational
methods, such as the optimal estimation (e.g. Watts et al., 1998;
Rodgers, 2000), has also been particularly helpful for developing
new retrieval methods which are capable of using the full range of
A-Train measurements in order to retrieve a multitude of cloud
properties (e.g. Austin et al., 2009; Delanoë and Hogan, 2010;
Deng et al., 2012). Moreover, these methods have the advantage
of associating rigorous uncertainties to their retrievals, and of
providing useful tools for error and information content analysis
(Rodgers, 1996). Such tools can be of great interest, not only
for selecting retrievals in the optimal sensitivity range of a given
set of measurements, but also for understanding and quantifying
the capabilities and limitations of a retrieval methodology (e.g.
L’Ecuyer et al., 2006; Cooper et al., 2006; Sourdeval et al., 2013,
2015). This type of information analysis is therefore crucial for
properly constraining the products of a retrieval method.

There exist nowadays numerous methods based on passive
radiometric measurements which are capable of providing
accurate retrievals of ice or liquid cloud properties (e.g. King
et al., 1998; Roebeling et al., 2006; Garnier et al., 2012, 2013). Yet,
despite the non-negligible frequency of occurence of multi-layer
conditions between these two cloud types (e.g. Chang and Li,
2005a; Joiner et al., 2010; Wind et al., 2010), very few methods
attempt simultaneous retrievals. As a consequence, assuming a
single cloud layer in the atmospheric column not only implies
fewer retrievals, which could affect climatologies in regions of high
multi-layer occurence, but it can also lead to retrieved properties
and uncertainties which are substantially affected by the ignored
ice or liquid cloud layer. Sourdeval et al. (2013), for instance,
have shown, using an optimal estimation method together with
information content theory, that an under-constrained liquid
water cloud layer underneath the ice cloud can have a significant
impact on retrievals and their uncertainties. These conclusions
are in agreement with other recent studies, such as by Chang and
Li (2005b) and Watts et al. (2011), which both show the potential
impact of underlying liquid cloud layers on ice cloud retrievals
from passive measurements and the benefit of attempting these
multi-layer retrievals. Other studies, such as that by Davis et al.
(2009), have similarly reported that retrievals of liquid cloud
properties from radiometric measurements can also be strongly
impacted by the presence of an ice cloud layer.

Following these conclusions, a novel methodology for
simultaneous retrievals of ice and liquid cloud properties has
been presented in the first part of the present study (Sourdeval
et al., 2015). This methodology uses information from a set of
five passive measurement channels, ranging from the visible to
the thermal infrared, in order to retrieve integrated properties
of each cloud layer. The use of a variational method associated
with information theory also ensures that retrievals are provided
together with rigorous uncertainties and useful analysis tools,
such as the cost function or degrees of freedom. In Part I, several
information content analyses were performed and demonstrated
the theoretical capabilities of the method in multi-layer situations.
These analyses clearly showed that the methodology should
be perfectly capable of simultaneously retrieving the ice water
path of one ice cloud layer and the optical depth and droplet
effective radius of one liquid cloud layer in a wide range of
multi-layer conditions. Moreover, in agreement with results from
Cooper et al. (2007), the selected five-channel measurement
vector should be particularly efficient for retrieving the ice
water path of optically thin and thick ice cloud layers, as it
merges the advantages of the commonly used split-window
(Inoue, 1985) and NK (Nakajima and King, 1990) bi-spectral
approaches.

Sourdeval et al. (2015) have briefly verified these theoretical
expectations by using a short case-study containing in situ
observations, but global retrievals and further comparisons to
operational products remain necessary for a thorough evaluation
of the method. Therefore the present article, which constitutes the

second part of the study, presents the results of this evaluation.
The multi-layer retrieval methodology is applied to one year of
near-global A-Train measurements, i.e. over an oceanic surface,
in daytime conditions and excluding high-latitude regions. These
retrievals are first statistically analysed before being compared
to a multitude of independent active and passive operational
A-Train products for validation purposes. The impact of multi-
layer conditions on several of these operational products is also
discussed.

The article is organised as follows. Section 2 presents the
retrieval methodology through a detailed description of the state
and measurement vectors. The process of identifying cloud layers
and the impact of the vertical homogeneity assumption on cloud
retrievals are also discussed. Section 3 thoroughly details how
the dataset has been filtered in order to remove retrievals which
do not allow a sufficient coherence between the forward model
and the measurements, or which are too dependent on a priori
assumptions. This section also discusses the selection and the
spatial distribution of several types of scene which have been
selected to conduct the study. Near-global retrievals are then
presented in section 4 in the form of probability density functions
and spatial distributions. These retrievals and their associated
uncertainties are subsequently statistically analysed. Section 5
compares retrievals from our multi-layer methodology to those
of five A-Train operational products. Such comparisons aim
primarily at validating our retrievals, but can also serve to observe
the robustness of some passive A-Train products to double-layer
conditions. Finally, the main results of this study are summarized
in section 6.

2. The multi-layer (ML) methodology

The results presented in this study are based on a methodology
for multi-layer retrievals developed by Sourdeval et al. (2015)
(hereafter S15). This method uses a set of radiometric
measurements, spectrally ranging from the visible to the thermal
infrared, to simultaneously retrieve integrated properties of ice
and liquid water clouds. It is based on a variational scheme which
uses the optimal estimation method in order to associate retrievals
with rigorous uncertainties and useful analysis tools (Rodgers,
2000).

It should be noted that this retrieval method currently is
constrained to the A-Train track due to its need of active
instruments for identifying and positioning cloud layers, as later
explained in section 2.1. In order to avoid strong uncertainties
associated with the surface albedo, the ML methodology is for the
moment limited to retrievals over oceans and out of high-latitude
regions (i.e. above 60◦N and below 60◦S). The use of visible and
near-infrared channels also narrows its retrievals of liquid cloud
properties to daytime conditions.

This article aims to evaluate how the methodology presented
in S15 can be applied on a near-global scale, which implies
that minimal modifications are intended to the original method.
However the processes of cloud layer identification and error
calculation on the cloud-top altitude have been modified in
order to better fit the needs of this study. Rigorous uncertainties
associated with the vertical homogeneity assumption of the ice
cloud layer have also been implemented. These updates are
presented in this section, along with a detailed description of
the state and measurement vectors. A full description of the
retrieval methodology is not intended here, as it has already been
thoroughly provided by S15.

2.1. Identification of cloud layers

In S15, the ML methodology uses the scene classification
product provided by the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) operational algorithm in order to identify
and distinguish between three main cloud types: ice (classified by
CALIOP as cirrus or deep convective), mid liquid (classified as
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altostratus or altocumulus) or low liquid (classified as cumulus,
stratus or stratocumulus). CALIOP discriminates the cloud phase
by using the lidar linear depolarization ratio and the temperature,
while the cloud classification is obtained using the pressure,
opacity and cloud fraction of each layer (Liu et al., 2005).
However such a classification can appear limited for the purpose
of multi-layer retrievals because of the complete attenuation of
CALIOP’s laser pulse at cloud optical depths between about 3 and
5 (Sassen et al., 2008; Winker et al., 2010). It also offers no clear
discrimination of mixed-phase cloud layers (typically where a
liquid/supercooled top overlaps the ice), which can contaminate
the retrievals (Hu et al., 2009). For these reasons, the cloud
identification method has been modified.

The updated version of the ML methodology makes use of
a combined radar–lidar product, DARDAR∗-MASK (version
1.1.4) (Delanoë and Hogan, 2010; Ceccaldi et al., 2013), in order
to set up the cloud profiles which are utilised for the retrievals.
This product provides profiles of categorised atmospheric features
with a vertical resolution of 60 m. The phase of each cloud layer
is obtained using the CALIOP backscatter coefficient and the
CloudSat Cloud Profiling Radar (CPR) reflectivity. The latter is
particularly helpful for identifying liquid cloud layers in multi-
layer conditions where the lidar pulse is completely attenuated by
an ice layer. DARDAR-MASK can therefore distinguish between
three main cloud types within the same atmospheric column: ice,
mixed-phase, and liquid.

2.2. The state vector

The single-scattering properties of ice crystals are provided
by a new parametrization, developed by Baran et al. (2014),
which expresses these properties as function of the ice water
content (IWC) and the in-cloud atmospheric temperature (Tc).
This parametrization is based on a mixture of roughened ice
crystal habits (Baran and Labonnote, 2007), which is integrated
over particle size distributions (PSD) estimated as functions
of IWC and Tc using the moment estimation parametrization
developed by Field et al. (2007). Consequently, providing a
temperature profile (here from reanalyses of the Global Modeling
and Assimilation Office (GMAO)), this parametrization allows
the IWC alone to provide all necessary information for radiative
transfer simulations. This implies that the ice water path (IWP,
or vertically integrated IWC) can directly be retrieved without
referring to conventional relationships between the cloud optical
depth (OD) and the vertically averaged ice crystal effective radius
(Re). Such direct retrievals can be advantageous due to possible
ambiguities in the concept of effective radius for ice clouds
(Mitchell, 2002), but also to the current need for rigorous IWP
retrievals for parametrizing or evaluating ice schemes in climate
models, where this parameter is linked to prognostic variables
(e.g. Tiedtke, 1993; Morrison and Gettelman, 2008). Nevertheless
it should be noted that the ice cloud OD can still be inferred from
the retrieved IWP and an in-cloud temperature profile. More
details on this parametrization and on the calculation of OD for
ice clouds can be found in the Appendix. As a consequence, the
IWP alone is used for describing ice clouds in the state vector,
while liquid clouds are described by the more traditional OD and
Re couple.

In S15, the methodology distinguishes between two liquid cloud
layers, referred to as low and mid in order to distinguish between
their positions in the troposphere. The use of two separate liquid
layers, whose OD and Re have to be retrieved, was then justified
to perform a thorough analysis of the theoretical capabilities
and limitations of the retrieval method. However, these analyses
were idealized and the presence of two liquid cloud layers in the
state vector no longer seems justified in the context of actual
retrievals. Yet, this mid-level layer can still be seen as a convenient

∗raDAR/liDAR.

way to denote the presence of mixed-phase clouds (identified
by DARDAR-MASK) in the atmospheric column. Ignoring their
presence, and more particularly their supercooled liquid top,
could otherwise strongly impact retrievals of ice cloud properties
(Sourdeval et al., 2013). Hence, retrieving an optical depth for such
a layer should be attempted in order to improve IWP retrievals
in double-layer conditions. Because their supercooled liquid top
is likely to dominate the absorption in infrared channels, and in
the absence of a better microphysical description, mixed-phase
layers are here approximated as being being fully liquid. This
approximation seems reasonable for correcting IWP retrievals,
but not for providing accurate properties of mixed-phase cloud
layers or of possible liquid clouds lying underneath. Such cases
will therefore not be analysed in this study, as further discussed
in section 3.

The state vector x is therefore

x =

⎛

⎜⎜⎜⎜⎝

ln(IWP)
ln(ODliq )
ln(Reliq )
ln(ODmix )
ln(Remix )

⎞

⎟⎟⎟⎟⎠
, (1)

where the subscripts liq and mix indicate that the optical depth
and effective radius correspond to liquid and mixed-phase layers,
respectively. It should be kept in mind that mixed-phase cloud
properties are only introduced in the state vector as an attempt
to improve IWP retrievals in double-layer conditions, and that
these are separated from low liquid cloud properties for reasons
of clarity. The a priori state vector used in S15 has also been
adapted to the needs of near-global retrievals by widening the
range of probable a priori solutions. This is desired in order to
avoid strong dependencies on any a priori consideration. It can
be noted that the absence of a cloud layer in the atmospheric
profile is treated by setting the corresponding IWP or OD to zero,
associated with extremely low uncertainties in the a priori state
error covariance matrix.

2.3. The measurement vector

The necessary information for an optimal retrieval of the state
vector is provided by a set of five radiometric measurement
channels, which constitute the measurement vector y:

y =

⎛

⎜⎜⎜⎜⎝

RIIR
8.6

RIIR
10.6

RIIR
12.0

RMODIS
0.85

RMODIS
2.13

⎞

⎟⎟⎟⎟⎠
, (2)

where RIIR
8.6 , RIIR

10.6, and RIIR
12.0 are the Infrared Imaging

Radiometer (IIR) radiances measured at 8.65, 10.60, and
12.05 µm, respectively, and RMODIS

0.85 and RMODIS
2.13 are the

MODerate Resolution Imaging Spectroradiometer (MODIS)
reflectances measured at 0.85 and 2.13 µ m, respectively. MODIS
measurements have been collocated to those of IIR through
the use of the CALIOP-Track (CALTRACK) reanalysis products
provided by the ICARE data centre (Pascal and Manley, 2009).
Cooper et al. (2007) have initially shown the benefit of using
such a five-channel measurement vector for retrieving ice cloud
properties, as it combines the advantages of the two commonly
used bi-spectral techniques: the split-window (Inoue, 1985) and
NK (Nakajima and King, 1990) methods, respectively sensitive to
optically thinner and thicker ice clouds. These recommendations
were confirmed by S15, who have theoretically demonstrated that
this set of channels should allow accurate retrievals of liquid and
ice cloud properties in most single- and double-layer conditions.
The use of five channels, even in single-layer conditions, also
has the advantage of ensuring that the retrievals are spectrally
coherent and therefore better constrained.
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2.4. Discussion on the vertical homogeneity assumption

The ML methodology follows the vertical homogeneity
assumption for describing ice and liquid cloud layers (i.e. the
vertical distribution of their properties is considered to be
homogeneous). However, global observations indicate that the
size and water content of ice crystals vertically evolve due to
aggregation processes (e.g. Ham et al., 2013; Feofilov et al.,
2015), and an erroneous representation of these profiles can have
significant effects on ice cloud retrievals or radiation (e.g. Yang
et al., 2001, 2012). More particularly, Zhang et al. (2010) have
shown that vertical inhomogeneities can differently impact IWP
retrievals depending on whether they are based on bi-spectral
approaches using thermal infrared radiances (split-window) or
visible and NIR reflectances (NK). Because ML merges both
of these methods, inconsistencies during the retrieval process
are expected for thick clouds if, at minimum, uncertainties
are not rigorously associated with the shape of the vertical
IWC profile.

Indeed, a recent assessment study by Feofilov et al. (2015) has
shown that the vertical profile of IWC in thick ice clouds tends
to peak towards the cloud base in the shape of a trapezoidal or
low triangular distribution. This study also concludes that using
a constant IWC profile in retrieval methods is only reasonable
for IWP < 100 g m−2. At higher values, S15 have shown that the
information provided by thermal infrared channels on the IWP
saturates above about 130 g m−2, but that the visible channel
can still be used for retrievals. This is a direct consequence of
the low influence of absorption processes at visible wavelengths,
which also implies a lack of sensitivity of the 0.85 µm channel
to vertical inhomogeneities (Yang et al., 2001). However, at
high IWPs, the vertical homogeneity assumption causes the
entire cloud layer to nearly become a black body in the thermal
infrared spectrum, and consequently the forward model simulates
brightness temperatures (or corresponding radiances) close to
the cloud-top temperature. On the other hand, if the IWC of
the observed cloud is in fact concentrated towards the cloud-
base altitude, thermal infrared measurements will correspond
to warmer brightness temperatures resulting from absorption
deeper in the cloud. This incoherence between measurements and
forward model simulations will lead to an abnormally high value
of the cost function (cf. section 3.2) and, as a result, perturb our
iterative Levenberg–Marquardt minimization scheme or create
a failure in the retrievals. Subsequently, no accurate retrieval of
IWP for thick ice clouds can be expected from our five-channel
methodology, unless (i) a realistic vertical IWC profile is utilised
for the retrievals, or (ii) uncertainties associated with vertical
inhomogeneities are accounted for to encompass the above-
mentioned deviation between forward model simulations and
measurements in infrared channels.

For the needs of this study, additional rigorous uncertainties
have been associated with the forward model. To that end,
the deviation between simulations obtained using vertical
homogeneity and a low triangular shape profile is included
in the measurement error variance–covariance matrix. This
particular shape appears reasonable for uncertainty calculations
as it represents the most extreme and dominant shape observed
by Feofilov et al. (2015) when IWP > 100 g m−2. In our study,
it corresponds to a profile where the IWC linearly decreases
from 0 to IWCmax, whose value is calculated so that the vertical
integral of the IWC profile matches the IWP. It should be
noted that this uncertainty does not only account for the
vertical inhomogeneity of IWC but also of ice crystal habits,
which become increasingly complex as IWC and Tc increase
towards the cloud base (Baran et al., 2014). We recall that this
is made possible as ML divides each cloud layer into 100 m
sub-layers. Additionally, it appears that the cloud-top altitude
provided by lidar–radar information may be too constrainning
in the case of very thick ice clouds, where the cloud top is only
representative of extremely small IWC values. In order to make

our retrieval method less dependent on lidar–radar input in these
situations, the current uncertainty associated with the cloud-top
altitude (100 m) has been replaced by 20% of the total cloud
thickness.

It can be noted that such uncertainties may limit double-layer
retrievals to IWPs less than about 130 g m−2. Nevertheless, this
consequence is acceptable in this study since, as later shown
in section 5.4 using active operational products, multi-layer
conditions are dominated by ice clouds with IWPs less than this
threshold.

Finally, it should be kept in mind that effects due to ice
cloud horizontal (e.g. Fauchez et al., 2015) and liquid cloud
horizontal and vertical (e.g. Platnick, 2000; Zhang et al., 2012)
heterogeneities are not taken into account in this study. These
will require a substantial modification of the ML methodology,
such as for instance the use of a more realistic liquid cloud model
(e.g. Brenguier et al., 2000; Schüller et al., 2005).

3. Selection of an optimal dataset

The use of optimal estimation has the strong advantage that
retrievals are provided not only along with rigorous uncertainties
but also with a wide range of useful analysis tools, such as
the Shannon information content, total and partial degrees of
freedom (DOF), and the cost function. The last two have been
used in this study to filter out ill-retrieved parameters from the
ML dataset, i.e. to identify when retrievals are strongly impacted
by a priori considerations or do not allow the forward model to
be coherent with the measurements. The analyses presented in
this article have also been narrowed down to a few relevant types
of scene. This section thoroughly describes this data selection
process.

3.1. Types of scene

Three cloud layers can be included in the ML methodology
(i.e. ice, mixed-phase and liquid), which means that a total
number of seven types of scene can potentially occur (from
single- to triple-layer). However, as discussed in section 2.2,
mixed-phase cloud layers are only included as a correction
for IWP retrievals, and so their properties are not taken into
account in this study. Additionally, because of the inaccurate
microphysical representation of mixed-phase clouds, retrievals of
liquid cloud properties could be erroneous underneath a mixed-
phase layer and are therefore not considered. Consequently, types
of scene corresponding to single mixed-phase, double mixed-
phase + liquid, and triple-layer have been removed from the
analyses presented here.

An analysis of the cloud information extracted from DARDAR-
MASK shows that single-layer cloud cases represent about
80% of the total cloud fraction, with about 32% of single ice
cloud layers, and 28% and 20% of single liquid and mixed-
phase cloud layers, respectively. Therefore, nearly 20% of the
analysed cloud cover corresponds to multi-layer types of scene,
dominated by ice + liquid (10%) and ice + mixed-phase (6%)
double-layer scenes. Moreover, about 33% of the total ice cloud
cover corresponds to a double ice + liquid/mixed-phase type of
scene, while about 26% of liquid clouds are overlapped by an
ice layer. These numbers are in global agreement with existing
climatologies on multi-layer cloud conditions, which nevertheless
remain highly variable depending on the instrumentation being
used (e.g. Wang et al., 2000; Heidinger and Pavolonis, 2005;
Joiner et al., 2010).

However, the occurence of multi-layer types of scene strongly
depends upon location. Figure 1(a) shows the spatial distribution
of the total cloud fraction used for ML retrievals, averaged
over a 2◦ × 2◦ latitude–longitude box grid. Figure 1(b)–(d)
represent the cloud fraction corresponding to each type of
scene treated in this study, i.e. single ice, single liquid, double
ice + liquid/mixed-phase types of scene, respectively. Figure 1(e)
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Figure 1. (a) Spatial distribution of the cloud fraction identified by DARDAR-
MASK and corresponding to ML retrievals for the year 2008, and fraction
of (b) single ice cloud layers, (c) single liquid cloud layers and (d) double
ice + liquid/mixed-phase cloud layers. Panel (e) shows the fraction of cloud layers
excluded from the ML dataset.

shows the distribution of the excluded types of scene. It can be
observed that double-layer cases between ice and liquid/mixed-
phase clouds are homogeneously distributed in areas of high
cloud fraction, where they cover between 20 and 30% of the
globe. Also, nearly 50% of cloud cases near high latitudes will
not be treated in this study due to the high occurence of single
mixed-phase cloud layers. Figure 1 shows that ice cloud layers
are, in absolute terms, homogeneously impacted by the presence
of liquid clouds all over the globe. Consequently, a higher relative
occurence of multi-layer conditions is found in midlatitude
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Figure 2. Stacked histogram of the cost function for different cloud
configurations: single layer of ice (red) or liquid (blue), double layer ice + liquid
(green) or ice + mixed-phase (grey) and all others types of scene (black). The
occurrence of each type of scene is indicated in the legend. Values of the
cumulative distribution function at ! = 5 and ! = 10 are provided above the
vertical dashed lines.

regions, where the occurence of single ice cloud layers is lower.
On the contrary, many liquid cloud layers in intertropical regions
(except for marine stratocumulus) are affected by the presence
of an ice cloud layer, especially in the tropical warm pool
(TWP) and along the intertropical convergence zone (ITCZ),
where very few single-layer cases occur. These observations
recall the importance of properly treating multi-layer conditions
and show that simply filtering out retrievals from these types
of scene could lead to biases in global climatologies of cloud
properties from passive instruments. It can be noted that these
distributions are also in good agreement with recent observations
(e.g. Wind et al., 2010; King et al., 2013, from MODIS).

3.2. Cost function

The cost function ! is a powerful tool for eliminating ill-retrieved
pixels, as it represents (when a priori assumptions are not over-
constraining) the coherence between the measurement vector and
the value of the forward model at the retrieved state (with respect
to their associated uncertainties). Marks and Rodgers (1993)
suggest that the forward model can be considered coherent with
the measurements if the value of the cost function is less than the
size of the measurement vector (m = 5 in this study).

Figure 2 represents a histogram of cost function values at
the end of retrievals, where the contributions from different
types of scene are stacked. It can be seen that most single-
layer cases of ice clouds (red) are associated with ! < 5 and
can therefore be considered well retrieved with regards to their
radiative coherence with the observations. Single-layer cases of
liquid clouds (blue) show higher cost function values, with
a high occurrence until about ! = 10. A high cost function
can indicate inadequate approximations in the forward model,
an underestimation of measurement uncertainties or over-
constrained a priori assumptions. It appears in our case that
more than 50% of single-layer liquid cloud retrievals with ! > 5
correspond to thin clouds of OD less than 2 (not shown here),
which could mean a small inconsistency in the oceanic properties
used by the forward model for simulating the visible channel.
However this has little impact on the analyses presented in
this study since the ML methodology is not very sensitive to
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Figure 3. Stacked histogram of the partial DOFs corresponding to retrievals of (a) IWP, (b) ODliq and (c) Reliq obtained in different cloud configurations. The colour

code follows that of Figure 2. Values of the complementary cumulative distribution function at 0.5 and 0.90 are provided above vertical dashed lines.

such thin liquid clouds, as shown by S15 and discussed in
section 3.3. Retrievals obtained in double-layer conditions (green
and grey) are globally associated with a small value of the cost
function, which shows that the properties of both layers are
consistent with each other and radiatively coherent with all
the measurements. This is also reassuring in the fact that the
approximation of treating mixed-phase layers as being fully
liquid seems to provide coherent results for the needs of this
methodology. Finally, Figure 2 indicates that about 54% of the
retrievals satisfy the ! < m condition, while 81% have a cost
function < 2m. An upper threshold of !max = 2m could be
useful to account for possible under-constrained uncertainties
on forward model parameters while still requesting a reasonable
convergence between simulations and observations.

3.3. Degrees of freedom

Total degrees of freedom represent the amount of independent
pieces of information available in the measurement vector in
order to retrieve the entire state vector. Its value ranges between
0 and the size of the state vector (n), where 0 means an absence
of information and n indicates that full information is obtained
on each component of x. Furthermore, the total DOF can be split
into partial DOFs in the state or measurement spaces (Rodgers,
1996). Partial DOFs in the state space would for instance provide
the amount of information contained by the whole measurement
vector on each individual component of x. Further details on
this process and how it is applied to the ML methodology can
be found in S15. A parameter that is retrieved with a partial
DOF of 1 suggests that the measurements have carried enough
information for its optimal retrieval, whereas a partial DOF of 0
would indicate that the information has fully been provided by
a priori assumptions. A partial DOF of 0.5 corresponds to the
signal-to-noise level.

Stacked histograms of partial DOFs associated with retrievals of
IWP, ODliq and Reliq are presented in Figure 3(a)–(c), respectively,
where the colour legend follows that of Figure 2. Figure 3(a) shows
that high values of partial DOFs are attributed to IWP retrievals,
which indicates that very strong information is available on this
parameter. More than 95% of IWP retrievals are indeed associated
with a partial DOF greater than the signal-to-noise level and 85%
with partial DOFs greater than 0.90. A lower limit of 0.90 is
interesting, as it ensures that at least 90% of the information has
been provided by the measurements and therefore that retrievals
are not significantly affected by a priori assumptions. Figure 3(b)
shows that high values of partial DOFs are also associated with
retrievals of ODliq. Nearly all of them have partial DOFs > 0.5
and 66% are above 0.90. On the contrary, partial DOFs attributed
to Reliq retrievals are much lower, as indicated in Figure 3(c).

It appears that 48% of them are above the signal-to-noise level
and only 28% are greater than 0.90, which shows a strong lack
of information on this parameter in most cases. Finally, it is also
observed in Figure 3 that the value of partial DOFs does not
strongly depend on the type of scene.

In order to understand these distributions better, the partial
DOFs on IWP, ODliq and Reliq in multi-layer conditions are
represented as functions of ODliq and IWP in Figure 4(a)–(c),
respectively. As expected, Figure 4(a) shows very high information
associated with IWP retrievals, almost independently of ODliq,
with partial DOFs generally higher than 0.90 and between IWP
values of about 1 and 130 g m−2. Figure 4(b) shows that the
information content is also high on the liquid cloud OD, provided
that the OD is greater than about 2 and that the ice layer is not
too thick. The apparent decrease in partial DOF values around
OD ≃8.5 at high IWPs corresponds to an artefact caused by
situations where ODliq lacks information to be retrieved and
therefore returns or stays close to its a priori value. The same
observation logically appears on the partial DOF associated with
Reliq retrievals, presented in Figure 4(c), since a lack of information
on ODliq usually implies a lack of information on Reliq . Figure 4(c)
also shows that Reliq starts lacking information when the ODliq

is less than about 8 or when the IWP is greater than about
60 g m−2. The signal-to-noise level is reached at ODliq ≃ 4.
Considering that most liquid clouds have an OD less than this
value, as later shown in section 4.1, this explains why very few
Reliq retrievals are associated with a high partial DOF. It should be
noted that Figure 4 perfectly reflects the theoretical expectations
from S15.

3.4. Summary on the filtering process

Three different types of filtering have been applied to the ML
dataset: a type of scene filter that removes the presence or bad
impact of mixed-phase cloud layers, a cost function filter that
ensures that the retrievals allow forward model simulations to be
consistent with the measurements, and a degree of freedom filter
that avoids the influence of a priori assumptions on the retrievals.

Figure 5 summarises how the overall filtering process impacts
the ML dataset by providing the amount of rejected retrievals of
IWP (left block of histograms), ODliq (middle) and Reliq (right).
Several threshold combinations have been considered for filtering
the data and are distinguished by a colour code. The filtering can
be considered loose (!max = 10 and DOFmin = 0.5, in green),
strong (!max = 5 and DOFmin = 0.90, in blue), or a mixture of
both (in red and orange). The stacked histograms also indicate
what type of filtering causes the rejection of the dataset, through
the use of different hatching patterns. A vertical hatching means
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that the rejection is caused by a wrong type of scene, a right
hatching that the cost function is higher than its threshold, a left
hatching that the partial DOF is lower than its threshold. A crossed
hatching therefore means that the last two occur simultaneously.
The total number of retrievals before filtering is indicated under
each histogram and corresponds to about 13.3 and 10.8 million
pixels for ice and liquid cloud properties, respectively. It can first
be observed in Figure 5 that, depending on the choice of threshold,
the rejection rate is about 20–45% for IWP retrievals, 20–60% for
ODliq retrievals, and 60–80% for Reliq retrievals. These numbers
prove again the importance of using the cost function and degrees
of freedom, which dominate the filtering process. For instance,
without these tools, at least 55% of Reliq retrievals otherwise
included in the analysed dataset would have been contaminated
by strong a priori assumptions (partial DOF less than 0.5) and/or
would cause the forward model to be largely incoherent with the
observations (! greater than 10). Out of the loose filtering case,
it appears that other threshold combinations lead to percentages
of total rejected pixels within about 10–20% of each other. The
threshold combination therefore does not appear critical so long
as either the DOF or the ! filtering is strong enough. Since the
filtering on the cost function concerns the full set of retrievals at
once and can be impacted by inaccuracies in the forward model,

the looser threshold of!max = 10 is taken for this study. However,
in order to remove any significant a priori assumptions from the
retrievals, the stronger threshold DOFmin = 0.90 is selected. The
average amount of rejected retrievals therefore is about 30% for
the IWP, 45% for ODliq and 75% for Reliq . Despite these strong
rejection rates, the high number of retrievals should allow the
results presented in this study to be statistically significant.

Complementing the above, Figure 6 shows the spatial
distribution of the rejection rate (i.e. the normalized amount
of rejected retrievals in a 2◦×2◦ box grid) due to the selected
threshold. The total rejection rate is presented in Figure 6(j)–(l)
and the contributions of the scene type, cost function, and DOF
filterings are indicated in Figure 6(a)–(c), (d)–(f) and (g)–(i),
respectively. It is worth noting that the sum of all contributions
does not necessarily equal the total rate since cost function and
partial DOF filterings can happen simultaneously. The rejection
rate of IWP, ODliq, and Reliq retrievals is shown in the first,
second, and third rows, respectively. As expected from Figure 1,
the type of scene filter mainly is significant towards high latitudes,
where double-layer conditions between liquid and mixed-phase
clouds occur more frequently, but also along the ITCZ. The
rejection of IWP due to cost function filtering is on the contrary
more evenly distributed, with about 25%, except for subsidence
regions where ice clouds occur less. Regarding liquid clouds, high
rejection rates due to the cost function filtering are found in
intertropical open oceanic regions, and particularly in the TWP
where it can reach 50%. These observations are very consistent
with those of Cho et al. (2015), who have precisely analysed the
failure rate in MODIS marine liquid cloud retrievals. In that
study, failure is decided when no ODliq and Reliq combination
within the MODIS look-up table can explain the measurements,
which is comparable to our cost function test. A failure rate up
to 40% is also observed in these regions and is mainly attributed
to sub-pixel inhomogeneities and viewing geometries. Finally,
the DOF filtering is substantial in regions where clouds are
too thin for measurements to bring sufficient information (cf.
Figure 8). These correspond to southern subsidence regions for
the IWP and open oceanic trade wind cumuli regions for ODliq
and Reliq . Overall, it is noticed that the spatial distribution of
IWP rejected retrievals is relatively homogeneous (around 30%),
except for southern subsidence regions where it can reach 60%.
The rejection of ODliq retrievals can reach 75% in trade-wind
regions, but is less than 30% in stratocumulus and midlatitude
regions. Reliq retrievals have a rejection rate higher than 80% in
regions where the ODliq is also highly rejected, and of about 50%
for stratocumulus and midlatitude clouds.

This type of analysis not only helps at filtering data but is
also extremely useful for better understanding the limitations
of retrieval methods. For instance, a high cost function due to
cloud sub-pixel inhomogeneities could be lowered if the latter are
better represented in the forward model or its uncertainties (e.g.
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Figure 6. Spatial distribution of the rejection rate due to a (a–c) type of scene, (d–f) cost function, and (g–i) partial DOF filtering, using with the selected !max = 10
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through additional information on the horizontal 250 m sub-pixel
variability of the MODIS visible reflectance; Zhang et al., 2012).
Similarly, DOF filtering on ODliq and Reliq could be lowered by
improving our methodology’s sensitivity to thin liquid clouds
through a better knowledge of the oceanic surface emissivity (e.g.
by accounting for wind speed). These modifications are intended
for future versions of the ML methodology.

Finally, it is worth noting that such information content
analyses can be combined with thorough error analyses in order
to gain a more complete understanding of the capabilities of a
retrieval method (e.g. Cooper et al., 2007; Sourdeval et al., 2013;
Wang et al., 2016a, 2016b).

4. Global retrievals

This section presents global retrievals of the ML methodology for
the year 2008. The reader should keep in mind that, as discussed
in section 3, the following retrievals correspond to the optimal
sensitivity range of our set of measurements (i.e. associated with
high partial DOFs and low cost functions), which means that they
are only radiatively representative of this range.

4.1. Probability density functions

Figure 7(a)–(c) present the probability density functions (pdfs)
associated with retrievals of IWP, ODliq and Reliq , respectively
(black lines). The average relative uncertainties attached to each
pdf are represented by red lines. The geometric mean and
standard deviations of each pdf are indicated in blue above
each figure, and the corresponding log-normal distributions
are represented by dashed blue lines. Figure 7(a) shows that
the IWP retrievals range between about 0.5 and 1000 g m−2,
with a geometric mean around 15.25 g m−2. This range clearly
emphasises the advantage of combining short-wave and thermal
infrared information for retrieving ice cloud properties. The
apparent bi-modal distribution seems to be a consequence of
different cloud regimes and is in agreement with the pdfs of IWP
retrievals obtained from lidar/radar operational products (as will
later be shown in section 5.4). The uncertainties attached to ML
retrievals vary between more than 100%, for very small and very
large IWPs, to about 15–20% between about 15 and 250 g m−2.
The small increase in uncertainties around 128 g m−2corresponds
to the transition area between retrievals obtained either from
the information provided by thermal infrared or from visible
channels. Overall, uncertainties better than 25% can be expected
between 5 and 500 g m−2. Figure 7(b) shows the pdf of the optical

thickness of the liquid cloud layer. This pdf follows a log-normal-
like distribution with a geometric mean around 5.6 and a mode at
around 2.5. The associated uncertainties range between 30% for
very thin clouds and 10% from an optical thickness of 5. The pdfs
associated with the retrievals of the droplet effective radius and
their uncertainties are presented in Figure 7(c). Retrievals range
between 5 and 30 µm, with a mode around 12 µm. Uncertainties
on Reliq are of the order of 10%. It can finally be noticed
that the fitted log-normal pdfs agree well with the liquid cloud
properties.

4.2. Spatial distributions

Global spatial distributions of ML retrievals are presented in
Figure 8(a)–(c). Each cloud property is averaged over a 2◦×2◦

latitude–longitude grid box, using a geometric mean in order
to avoid an overestimation of the average due to the log-normal
behaviour of their distributions.

The spatial distribution of retrieved IWPs is presented in
Figure 8(a). Averaged values between 2 and about 150 g m−2 are
observed, with a strong dependency upon location. High values
of IWP are found in midlatitude storm track regions, in the TWP,
and along the ITCZ. Low IWPs, on the contrary, are observed in
intertropical subsidence regions, especially over the eastern South
Pacific and the South Atlantic Oceans. These results are consistent
with recent climatologies of IWP retrievals from passive or active
measurements (e.g. Waliser et al., 2009; Eliasson et al., 2011; Li
et al., 2012), which nevertheless globally show higher IWP values
in the TWP. However, comparisons are difficult because of the
use of arithmetic means in most climatologies, which tend to
overestimate the averaged grid values. More statistics, covering
a longer time period, would also be necessary to validate the
distributions observed in Figure 8(a).

Figure 8(b) and (c) show the spatial distribution of ODliq
and Reliq , respectively. Averaged values of ODliq around 5 are
generally found in open-oceanic intertropical areas, outside of
marine stratocumulus regions where they tend to increase. Higher
averaged values of ODliq, between 10 and 15, are observed
in midlatitude and stratocumulus regions and on the eastern
Pacific coasts. Conversly, Figure 8(c) shows low Reliq averaged
values (around 10 µm) in coastal stratocumulus regions and
much higher values (above 20 µm) in open-oceanic intertropical
regions. Such high values could nevertheless be the consequence
of an overestimation of Reliq for broken clouds with a high sub-
pixel horizontal inhomogeneity, as shown by Zhang et al. (2012).
Figure 6(k) and (l) also show that very low information on ODliq
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Figure 8. Spatial distribution of ML retrievals of (a) the IWP, (b) the optical
thickness of the liquid layer and (c) the droplet effective radius of the liquid layer.

and more particularly Reliq is available in these regions, where
the cost function and partial DOFs are both high. Overall, these
observations are in agreement with those of King et al. (2013)
from MODIS retrievals, but more statistics are again necessary to
confirm these results.

Moreover these spatial dependencies are interesting when
coupled to the spatial distribution of types of scene. For instance,
it can be observed, when comparing Figures 8(a) and 1(d), that
large IWP values are often found in midlatitude regions, where
the occurence of double-layer conditions is relatively high with
respect to the total ice cloud fraction. Similarly, Figure 1(c) and
(d) show that very few single-layer cases of liquid clouds occur in
the TWP and along the ITCZ, where the IWP is also high. Such

observations reaffirm the fact that retrievals and climatologies of
liquid cloud properties can strongly be affected by multi-layer
conditions if both layers are not properly taken into account.

5. Comparisons to A-Train operational products

This section compares ML retrievals with various operational
products from A-Train instruments. Such comparisons aim
primarily to validate the results of our method, but can also
serve to observe the behaviour of several passive operational
products in multi-layer conditions. One-to-one comparisons
(i.e. pixel-by-pixel) are presented first, followed by indirect pdf
comparisons. These two complementary analyses are required
to observe how our retrievals correlate with each operational
product and to analyse the overall relevance of ML’s pdfs of cloud
properties, irrespective of a common sensitivity range. Indeed, the
different sensitivity to IWP of each operational algorithm should
particularly be kept in mind, as explained in section 5.1.

5.1. Treatment of operational products

Each operational product presented in this section has been
colocalized to ML retrievals by finding the smallest coincident
distance between them. A minimal distance of 1 km is required
in order to include the operational products into the analyses.

Ill-retrieved pixels have been carefully filtered out of each
operational product using their respective analysis tools, such
as cost function or iteration number in case of retrievals
from variational methods or QA flags otherwise. However, no
information on the actual sensitivity of operational retrievals to
the measurements (e.g. from DOFs) is available.

It should also be kept in mind that the intrinsic range of IWP
is much wider than the sensitivity of a single instrument, which
means that distributions of IWP retrievals strongly depend on the
type(s) of instrument being used. Therefore, only IWPs within
the overlapping sensitivity range of both instruments should
be utilised when analysing direct comparisons. Considering the
log-normal behaviour of the pdfs associated with the products
studied here, the range of statistical significance (set as 2σ ) for
each product xi is defined as

xi ∈
[

exp {ln(µi)−2ln(σi)}, exp {ln(µi)+2ln(σi)}
]
, (3)

where µi and σi are the geometric mean and standard deviation
associated with the distribution of xi, respectively. The subscript
‘2σ ’ is later used to indicate that correlation coefficients have been
calculated within this range.

Nevertheless it is suspected that, when the two instruments
are sensitive to very different IWP ranges, the progressive loss
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of information by one instrument and not by the other will
produce scatterplots that are not linear at their extremities,
but rather curve towards the threshold of complete lack of
sensitivity of one instrument. Such areas are particularly difficult
to identify a priori and risk impacting on the Pearson correlation
coefficient r2σ . However, if the progressive loss of information
keeps the scatterplots monotonic, the Spearman correlation
coefficient, ρ2σ , should be able to remain partly unbiased by
this phenomenon. This coefficient is indeed very useful to
describe how well the relationship between two parameters can be
represented by a monotonic function. Its value therefore appears
as complementary to r2σ in the following analyses.

5.2. Direct comparisons of IWP retrievals

Retrievals of ice cloud properties substantially depend on a priori
assumptions made on macro- (e.g. geometrical thickness or
position of the cloud layer) and micro- (e.g. ice crystal habits,
particle size distribution, mass-dimensional relationship) physical
properties, which can strongly vary from one retrieval method
to another. These assumptions can lead to strong differences
between the retrievals if, for instance, ice crystal habits are not
consistent with each other (e.g. Dubuisson et al., 2008; Holz et al.,
2016). Because their impact is difficult to account for, an expected
general agreement within a factor of 2 between ML and each
operational product seems reasonable for validation purposes.

5.2.1. Products from active instruments

ML retrievals of IWP are first compared to operational products
from active instruments. Since these products provide profiles
of cloud properties, the IWP has been calculated by integrating
the IWC profile over the whole ice cloud column. Figure 9
shows pixel-by-pixel comparisons between ML (abscissa) and
three operational products (ordinate). Comparisons to CALIOP,
DARDAR, and 2C-ICE are presented in the first, second, and
third rows, respectively. In order to show the capabilities of ML
in double-layer situations, the dataset has also been subdivided
into three categories. The first column includes IWPs for all the
types of scene considered in this study, while the second and third
columns isolate retrievals corresponding to single layers of ice
clouds and to ice clouds over liquid or mixed-phase cloud layers
(hereinafter referred to as double-layer cases), respectively. In
each figure, the one-to-one line is shown in black, surrounded by
two dashed lines indicating a factor of 2 agreement. The Pearson
and Spearman correlation coefficients are also provided.

CALIOP (v3.01) provides lidar-only retrievals of IWP based
on an empirical relationship between the IWC and the visible
extinction of a cloud layer (Heymsfield et al., 2005). CALIOP is
sensitive to optically very thin to moderate ice clouds and its IWC
sensitivity range is considered to be between 0.4 and 100 mg m−3

(Avery et al., 2012). It is thus expected that CALIOP is more
sensitive to small IWPs than our method is, but less sensitive to
large IWPs. Figure 9(a) clearly shows the threshold of CALIOP’s
IWP retrieval from about 30 g m−2and highlights the progressive
lack of sensitivity of our method below 1 g m−2. However the
latter is not as clear since partial DOFs have been used to filter out
such retrievals. Nevertheless comparisons for intermediate IWP
values show a good agreement between the two products, well
within the factor of 2 area delimited by dashed lines. It can still
be observed that CALIOP IWP retrievals are slightly smaller than
those of ML. A possible explanation for this behaviour could be
that CALIOP is currently known to underestimate IWC retrievals
above 12 km due to the facts that its empirical parametrization
does not include in situ observations from intertropical regions
and it is not temperature dependent (Avery et al., 2012). This
will be corrected in the upcoming version of CALIOP products
(4.0), and therefore subsequent comparisons should help to
test this hypothesis. Nevertheless, the observed agreement is
already satisfactory for the needs of this study. Finally, it can

be noticed that the Pearson correlation coefficient is low due to
the above-mentioned nonlinearities created by the saturation of
the lidar signal and the lack of information in our radiometric
measurements at the high and low ends of the scatterplots,
respectively. However, the Spearman coefficient is less sensitive to
these phenomena and shows a correlation of 0.82 between ML and
CALIOP. Comparing Figure 9(b) and (c) clearly demonstrates
that, despite a lower correlation, ML agrees similarly well with
CALIOP in single- and double-layer conditions. It can be noticed
in Figure 9(c) that not many retrievals of IWP > 130 g m−2

appear in double-layer conditions. This is partly due to the
current correction that accounts for the vertical inhomogeneity
of ice cloud layers, but also to the fact that fewer clouds with
high IWP are encountered in such conditions, as later shown in
section 5.4.

Comparisons with DARDAR IWP retrievals (v2.1.1 of the
CLOUD product) are presented in Figure 9(d). As explained in
section 2.1, DARDAR uses the synergy between lidar, radar and
radiometric measurements in order to retrieve profiles of ice
cloud properties. Its retrievals are based on an optimal estimation
scheme, where the IWC corresponds to the integration of an
assumed particle mass across a retrieved particle size distribution
(PSD; Delanoë et al., 2005; Delanoë and Hogan, 2008, 2010).
Thanks to the use of lidar and radar measurements, DARDAR
is sensitive to both small and large IWPs. Figure 9(d) shows
an agreement within a factor of 2 between ML and DARDAR
from about 10 to 250 g m−2, which includes the area of high
frequency of occurence between about 10 and 60 g m−2. However
the ML methodology seems to progressively underestimate the
IWP over 250 g m−2. This behaviour is explained by progressive
saturation of the information provided by the visible channel
at such high IWPs. Disagreements are also strong below
10 g m−2, where ML retrievals are 2–4 times lower than those
of DARDAR. However this area is dominated by retrievals
obtained in lidar-only conditions (i.e. where the radar is not
sensitive), in which DARDAR IWC retrievals are known to be
overestimated (Deng et al., 2012). This issue, which impacts
IWP retrievals up to about 30 g m−2, should be improved in the
next version of the operational product (Delanoë et al., 2014),
but currently makes comparisons between DARDAR and ML
difficult for small IWPs. Nevertheless, the Spearman coefficient
still indicates a high correlation between the two products. Once
again, comparisons between Figure 9(e) and (f) show a similar
consistency between ML and DARDAR retrievals in single- and
double-layer conditions.

Comparisons to the CloudSat/CALIPSO level-2C ice product
(2C-ICE, release 04; Deng et al., 2010) are presented in Figure 9(g).
CloudSat 2C-ICE also uses the synergy between lidar and radar
information for retrieving profiles of ice cloud properties through
an optimal estimation scheme. However the IWC profiles are
directly included in the state vector. Figure 9(g) shows that 2C-
ICE and ML retrievals agree well within a factor of 2 between
0.5 and 250 g m−2 and do not display the strong disagreement
that was found with DARDAR at small IWPs. This makes 2C-ICE
the best reference in the context of our evaluation study. 2C-ICE
IWPs are larger than those of ML above about 8 g m−2 and
smaller below. This sharp step seems to correspond to the
transition area from lidar-only to lidar-radar retrievals, which
could indicate an inconsistency between the parametrizations
used to describe ice cloud optical properties for these two
instruments. The underestimation of ML retrievals can again
be noticed from 250 g m−2. Nonetheless, ML shows a strong
correlation with 2C-ICE retrievals over their common sensitivity
ranges, with a Spearman correlation coefficient of 0.93. It can
also be noticed that Figure 9(g) shows a higher occurence of
thick clouds with IWP > 130 g m−2 if compared to Figure 9(d)
due to relative differences between IWP distributions of 2C-
ICE and DARDAR (as later observed in Figure 13(a)). Finally,
comparisons between Figure 9(h) and (i) show that, despite a
lesser correlation, retrievals obtained in single- and double-layer
conditions are perfectly consistent.

c⃝ 2016 The Authors and Crown copyright, Met Office. Quarterly Journal of the Royal
Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2016)



Multi-layer Retrievals of Ice and Liquid Cloud Properties

0.
1

0.
5

2
8

32
12

8
51

2
20

48

IW
P

 C
A

LI
O

P
 (

g 
m

−2
)

r2# = 0.48
$2# = 0.85

r2# = 0.75
$2# = 0.89

r2# = 0.48
$2# = 0.79

r2# = 0.50
$2# = 0.86

All types of scene

(a)
Single layers

(b)
Double layers

(c)
0.

1
0.

5
2

8
32

12
8

51
2

20
48

IW
P

 D
A

R
D

A
R

 (
g 

m
−2

)

(d) (e) (f)

0.1 0.5 2 8 32 128 512 2048

0.
1

0.
5

2
8

32
12

8
51

2
20

48

IWP ML (g m−2) IWP ML (g m−2) IWP ML (g m−2)

IW
P

 2
C

−I
C

E
 (

g 
m

−2
)

(g)

0.1 0.5 2 8 32 128 512 2048

(h)

0.1 0.5 2 8 32 128 512 2048

(i)

r2# = 0.75
$2# = 0.92

r2# = 0.85
$2# = 0.79

r2# = 0.82
$2# = 0.82

r2# = 0.76
$2# = 0.95

r2# = 0.81
$2# = 0.93

Figure 9. Density scatterplots presenting (a–c) CALIOP, (d–f) DARDAR and (g-i) 2C-ICE IWP retrievals as a function of ML IWP for selected types of scene: (a, d, g)
all types of scene, (b, e, h) single ice layers only, and (c, f, i) double ice + As in caption to Figure 1 liquid water/mixed-phase cloud layers only. The plain and dashed
black lines indicate the identity line and a factor of 2 around it, respectively. The values of the Pearson r2σ and Spearman ρ2σ correlation coefficients are obtained from
the overlapping area of statistical significance for both products (defined as two standard deviations around the mean).

Figure 9 generally shows that ML retrievals compare well
against operational products from active instruments, especially
considering that these products also have known above-
mentioned issues and that their retrievals do not perfectly agree
with each other. Additionally, no particular bias can be observed
in ML retrievals obtained in double-layer conditions. It can
reasonably be concluded that the observed global agreement
between ML and each operational product is a convincing step
towards the validation of our IWP retrievals, while keeping in
mind that they can be underestimated (but still correlated with
radar retrievals) above 250 g m−2.

5.2.2. Products from passive instruments

Our retrievals are now compared to operational products from
passive instruments. Similar to Figures 9, Figure 10(a)–(i)
show density scatterplots of ML retrievals against those of
IIR (first row), MODIS Collection 5.1 (C5) (second row) and

MODIS Collection 6 (C6) (third row) for several types of
scene.

Comparisons to IIR (v3.01) for all types of scene, single-
layer only and double-layer only conditions are presented in
Figure 10(a)–(c), respectively. IIR calculates the IWP as a
direct function of OD and Re, which are retrieved from the
cloud emissivity at 8.5, 10.5, and 12.0 µm (Garnier et al.,
2012, 2013). Despite the fact that IIR only performs single-
layer retrievals of ice cloud properties, a second underlying layer
can be identified and used as a background reference, which
makes the method more robust to the presence of liquid water
clouds. Figure 10(a) shows very good agreements between ML
and IIR below 130 g m−2, and a threshold in IIR retrievals above
this value due to the saturation of sensitivity in thermal-infrared
measurements. Comparing Figure 10(b) and (c) also shows that
IIR retrievals do not seem to be significantly impacted by the
presence of multi-layer conditions. Despite a better correlation in
single-layer case, IIR retrievals remain coherent with those of ML

c⃝ 2016 The Authors and Crown copyright, Met Office. Quarterly Journal of the Royal
Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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Figure 10. As Figure 9, but presenting (a–c) IIR, (d–f) MODIS C5.1 and (g–i) MODIS C6 retrievals as a function of ML IWP for selected types of scene.

due to their use of an additional opaque liquid cloud layer in the
atmospheric column.

Comparisons to MODIS C5 and C6 retrievals are presented in
Figure 10(d)–(i). In both versions, MODIS makes use of a couple
of visible and near-infrared measurement channels to retrieve the
OD and Re of a cloud layer, which are then directly used for
calculating the corresponding IWP (King et al., 1998; Platnick
et al., 2014). For consistency, the MODIS IWPs presented in
Figure 10(d)–(i) correspond to Re retrievals obtained from the
2.13 µm channel. Both versions assume a single and vertically
homogeneous cloud layer, whose cloud-top altitude and phase
(ice or liquid) are provided prior to the retrievals by other MODIS
operational products. Several major improvements have been
implemented between C5 and C6, among which are an important
upgrade of the ice cloud optical properties (e.g. C6 now uses
roughened ice crystal habits, similarly to ML) and a re-evaluation
of the cloud mask and thermodynamic phase (Marchant et al.,
2016). Figure 10(d) shows good general agreement between ML
and MODIS C5, but with a strong underestimation of the amount
of thin ice clouds in the latter, which does not retrieve IWPs

below 30 g m−2and very few below 130 g m−2. The agreement is
average within this range, with an overestimation of the IWP by
MODIS C5, but becomes excellent over 130 g m−2, where both
methods use the same visible and near-infrared information.
Similar observations can be made concerning single-layer cases
presented in Figure 10(e), but with a better correlation between 30
and 130 g m−2. It can be noticed that both correlation coefficients
are higher than 0.95. Nevertheless Figure 10(f) shows that, in
double-layer conditions, MODIS C5 retrievals are significantly
overestimated and less correlated by comparison to those of ML.
An explanation for this phenomenon is that, under the single-
layer approximation, the reflectance from an underlying liquid
cloud layer is mistakenly attributed to the ice cloud, which leads
to an overestimation of the integrated ice cloud properties. Such
impact of multi-layer conditions on MODIS ice cloud retrievals
has for instance already been demonstrated by Chang and Li
(2005b) and observed by Davis et al. (2009). Further analysis
of this phenomenon would require thorough comparisons of
MODIS retrievals to products from active instruments, which
are however not within the scope of this article as it focuses

c⃝ 2016 The Authors and Crown copyright, Met Office. Quarterly Journal of the Royal
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Figure 11. As Figure 9, but presenting (a–c) MODIS C5.1 and (d–f) MODIS C6 retrievals as a function of ML optical depth for selected types of scene: (a, d) all types
of scene, (b, e) single liquid water layers only and (c, f) double ice + liquid water cloud only.

on the evaluation of ML products. Comparisons to MODIS C6
show slightly better global agreements with our IWP retrievals,
as observed in Figure 10(g) for all types of scene. It can also
be noted that MODIS C6 is more sensitive to thinner ice cloud
layers than C5, with IWP retrievals down to 10 g m−2. The above-
mentioned improvements of the ice cloud microphysics and of
the cloud phase discrimination scheme should be responsible
for these differences, since no new information is used for the
retrievals. Figure 10(h) shows that agreements are again excellent
for single ice cloud layer cases, well within a factor of 2 and with
correlation coefficients around 0.95. Nonetheless, Figure 10(i)
still indicates large differences between ML and MODIS retrievals
in double-layer conditions, with comparisons mostly outside the
factor 2 area.

Figure 10 therefore shows that ML retrievals are in very good
global agreements with each of the operational products, well
within a factor of 2 over their respective sensitivity areas. These
comparisons also show that ML is capable of IWP retrievals
in a much wider range than each operational method taken
separately. Finally, a possible impact of multi-layer conditions on
MODIS retrievals is observed, but should be confirmed by a more
thorough assessment of this phenomenon.

5.3. Direct comparisons of liquid water cloud properties

This section compares ML liquid water cloud retrievals to those of
MODIS. MODIS retrieves liquid cloud properties using a similar
method to that described in section 5.2.2 for ice clouds. Both
ML and MODIS make use of Mie–Lorenz theory for describing
the single-scattering properties of cloud droplets and retrieve OD
and Re using the 0.85 and 2.13 µm channels, which means that
very good agreement is expected.

Figure 11(a)–(f) compare ML OD retrievals with those of
MODIS C5 (first row) and C6 (second row). Similar to IWP

comparisons, retrievals from all types of scenes are shown in
the first column, while the second and third columns isolate
liquid single-layer cases and double-layer cases, respectively.
Figure 11(a) shows that excellent agreement is found between
ML and MODIS C5, with both correlation coefficients above
0.95. It can be noted that no disagreement between the Pearson
and Spearman correlation coefficients is now expected since both
methods use the same information. Figure 11(b) and (c) both
show extremely good agreements with ML retrievals, which could
mean that MODIS C5 OD retrievals should not be strongly biased
by the presence of an overlying ice cloud layer. Nevertheless it
appears that MODIS OD retrievals are slightly lower than those
of ML in the single-layer configuration, while they are in near-
perfect agreement in multi-layer conditions. This difference could
indicate a small impact of multi-layer conditions on MODIS OD
retrievals, as would be expected if the visible reflectance from
a cirrus layer were to be mistakenly attributed to the retrieved
liquid cloud layer. Moreover it should be kept in mind that
MODIS only retrieves the properties of a single cloud layer,
whose phase has been identified beforehand. It is thus unlikely
that liquid cloud retrievals are provided by MODIS in the presence
of an ice cloud which is thick enough to significantly impact the
visible measurement channel and subsequently OD retrievals. As
a consequence, MODIS liquid cloud retrievals logically appear less
impacted by double-layer configurations than ice cloud retrievals
are, and it can generally be concluded that MODIS liquid OD
retrievals are not statistically too impacted by the presence of
an overlying ice cloud layer. Very similar observations can be
made regarding comparisons to MODIS C6 retrievals presented
in Figure 11(d)–(f), since no major modification on liquid cloud
retrievals has been between both versions. However it can be
noticed that MODIS C6 and ML OD retrievals are slightly less
correlated with each other than previously, particularly in double-
layer conditions. Yet, the correlation coefficients remain very high,

c⃝ 2016 The Authors and Crown copyright, Met Office. Quarterly Journal of the Royal
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Figure 12. As Figure 11, but for effective radius retrievals.

and it can be concluded that ML OD retrievals compare very well
against those of MODIS.

Comparisons of droplet Re retrievals are similarly presented
in Figure 12(a)–(f). Figure 12(a) shows that, for all types of
scene, ML and MODIS C5 are in relatively good agreement, with
nevertheless slightly larger droplets retrieved by the operational
product. Figures 12(b) and (c) indicate that a better agreement
is found in single-layer conditions than in the presence of an ice
cloud layer, where a bias of about 2 µm appears. This result
is consistent with the fact that near-infrared measurements
should be more sensitive to the presence of an ice layer than
are visible channels, and therefore that Re retrievals should more
likely be impacted by an ice cloud than the cloud OD. Indeed,
in the double-layer configuration, an overestimation of near-
infrared reflectances attributed to liquid cloud layers will need
to be compensated by the retrieval of larger Re. Comparisons
between ML and MODIS C6, presented in Figure 12(d)–(f),
also show good overall agreements, especially in single-layer
conditions. However, Figure 12(f) indicates that, for double-
layer cases, the overestimation of Re is much less than for
MODIS C5. This behaviour can appear surprising since no direct
modification of the way liquid cloud properties are retrieved
has been implemented between these versions. However, it
can be observed, when comparing Figure 10(d) and (g), that
improvements in the ice single-scattering properties and in
the phase discrimination process lead C6 to be more sensitive
to thinner ice clouds than C5. Hence, it can be understood
that MODIS C6 liquid cloud retrievals obtained in multi-layer
conditions as associated with the presence of thinner ice cloud
layers than in C5. Consequently, optically thick overlying ice
clouds are less likely to pollute liquid cloud retrievals in double-
layer conditions in C6 than in C5, which explains why the overall
overestimation of Re appears lesser in the latest version of the
operational method.

The good general agreement between ML liquid cloud retrievals
and MODIS C5 and C6 products observed in Figures 11 and 12
is again a good step towards the validation of our method.
However, despite a slight overestimation of Re in C5, the impact
of multi-layer conditions on MODIS products is not obvious
from these comparisons and its understanding would therefore
require further dedicated analyses.

5.4. Indirect comparisons

The one-to-one comparisons presented in sections 5.2 and 5.3
have the advantage of clearly showing how retrievals directly
agree with each other, but do not reflect the coherence of
their distribution since they only correspond to the overlapping
area of two pdfs. Therefore, in order to complete the previous
comparisons, the pdfs of ML retrievals presented in Figure 7
are now compared to those of each aforementioned operational
product. Figure 13 shows pdfs of IWP (first column), ODliq
(second column), and Reliq (third column) for all the types of
scene considered in this study (first row), single-layer conditions
only (second row) and double-layer conditions only (third row).
It should be kept in mind that the shapes of these pdfs strongly
depend on the type of instrumentation and filtering being
used. Perfect agreements are therefore not expected, but these
comparisons should serve for observing the overall coherence
between ML retrievals and all operational products.
Figure 13(a) presents pdf comparisons of IWP retrievals for
ML (back line), IIR (purple), CALIOP (yellow), 2C-ICE (red),
DARDAR (green), and MODIS C5 (dashed blue) and C6 (plain
blue) for all types of scene. This figure very well illustrates
how operational products have a very distinct sensitivity range
depending on the type of instrumentation being used. For
instance, CALIOP is sensitive to very small IWPs, down to
0.01 g m−2, and its IWP distribution displays a saturation peak
around 30 g m−2. IIR is also sensitive to relatively small IWPs,

c⃝ 2016 The Authors and Crown copyright, Met Office. Quarterly Journal of the Royal
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Figure 13. Probability density functions of the (a, d, g) IWP, (b, e, h) optical depth and (c, f, i) droplet effective radius retrieved by several A-Train products in (a–c) all
types of scene, (d–f) single-layers only, and (g–i) double-layers only. ML, 2C-ICE, DARDAR, CALIOP and IIR are represented by plain black, red, green, orange and
purple lines, respectively. MODIS C5.1 and C6 retrievals are represented by plain and dashed blue lines, respectively. The geometric mean µ and standard deviation σ
associated with each retrieval are provided in the legend.

but its infrared measurements tend to lose sensitivity between 60
and 130 g m−2, where a peak also appears. DARDAR and 2C-ICE
are both highly sensitive to thin and thick ice clouds, with IWP
retrievals ranging from 0.01 to about 8 kg m−2, thanks to the
combined use of lidar and radar measurements. Notably, it can
be observed that the geometric mean of ML retrievals is coherent
with that of these two products, with 15.2 g m−2 for ML against
16.7 and 22.7 g m−2 for 2C-ICE and DARDAR, respectively. As
expected, their geometric standard deviations are nevertheless
larger, with 7.3 g m−2 for ML against 16.7 and 9.4 g m−2 for 2C-
ICE and DARDAR, respectively. The pdfs associated with MODIS
retrievals logically display a shifted sensitivity towards thick ice
clouds due to the use of visible and near-infrared measurements
alone, with geometric means of 93.1 and 146.8 g m−2 for C6 and
C5, respectively. However it is clear that the upgrades performed
in C6 allow a better sensitivity to thin ice clouds, with IWPs
down to 4 g m−2. These limits should nevertheless be treated
carefully since no operational products have been filtered to

narrow their pdfs to the optimal sensitivity of the retrieval method.
Nonetheless, Figure 13(a) again demonstrates the advantage of
merging visible and thermal infrared measurements in order to
widen the sensitivity of IWP retrieval methods. Figure 13(d) shows
that larger values of IWP are generally found in single-layer cases,
with a clear shift of each distribution in that direction. Higher
saturation peaks also appear for methods that are less sensitive to
thick ice clouds, such as IIR and CALIOP. Besides, a clear peak
appears in ML retrievals and shows the limitation of the retrieval
method from IWPs between about 250 and 500 g m−2. These
values logically correspond to the maximum sensitivity area of
MODIS C5 and C6, which use the same information in this IWP
range. One can note that the geometric mean from ML retrievals
is again very similar to that of 2C-ICE and DARDAR, around
25 g m−2. In double-layer conditions, Figure 13(g) shows that
the pdfs are on the contrary shifted towards small IWP values,
with geometric means of 6.0 and 11.4 g m−2 for 2C-ICE and
DARDAR, respectively. ML and IIR are perfectly able to follow
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this tendency, with means around 7.7 and 6.8 g m−2, respectively,
while MODIS retrievals remain very high. This also shows that
MODIS is only sensitive to a small portion of ice clouds in double-
layer conditions. Moreover, these comparisons to DARDAR and
2C-ICE show that very high IWP values are not very occurrent in
multi-layer conditions and therefore that the lack of information
in the current version of ML to retrieve high IWPs in multi-layer
conditions should not be too critical.

Figure 13(b) presents pdfs of liquid cloud OD retrievals for
ML and MODIS C6 and C5. As expected, these pdfs are very
similar to each other but one can still notice a higher frequency
of small ODs in our method. The geometric mean corresponding
to ML retrievals is 5.6 against 6.8 for both MODIS versions.
Nevertheless the spread is similar between the retrieval methods.
The same observation can also be made in single-layer conditions,
as shown in Figure 13(e), and is therefore difficult to explain due
to the use of identical measurements and similar single-scattering
properties for describing the cloud droplet in both methods.
Possible explanations could be related to a different treatment of
gaseous absorption, scattering phenomena in radiative transfer
calculations, or the use of look-up tables for MODIS retrievals,
and will require further investigations. Nevertheless the observed
agreement is satisfactory for our current evaluation purposes. In
double-layer conditions, Figure 13(h) shows a strong decrease of
OD retrievals in ML below values of about 2. This is explained
by the lack of information on small ODs in the presence of
an ice cloud layer, which generally leads to a stronger filtering
due to lower partial DOF values, in agreement with Figure 4(b).
The MODIS pdfs do not seem affected by the presence of an
ice cloud layer, as their geometric mean and standard deviation
remain identical to those obtained in single-layer conditions, but
it should be kept in mind that these retrievals of liquid cloud OD
are only obtained in the presence of thin ice clouds, which should
therefore not strongly impact the visible measurements.

Figure 13(c) shows good agreement between the pdfs of Reliq

for ML and MODIS. The geometric means corresponding to
these distributions are 13.8, 13.2, and 14 µm for ML, MODIS
C5 and C6, respectively, with a geometric standard deviation of
1.4 µm for each distribution. Nevertheless it can be observed
that ML has a lower occurrence of small droplets, which can also
be a consequence of the partial DOF filtering. It has indeed been
seen in Figure 5 that Reliq is very sensitive to this type of filtering
due to a strong lack of sensitivity on this parameter in the case of
optically thin liquid clouds or the presence of optically thick ice
clouds, as displayed in Figure 4(c). Small values of Reliq should be
particularly affected by this filtering and such values consequently
occur less in the pdf. Identical observations can be made in single
and multi-layer conditions, as shown in Figure 13(f) and (i),
respectively. One can notice in the latter case that each retrieval
method obtains high values of Reliq , with a mean around 15 µm,
which leads to better overall agreements of the pdfs.

6. Summary and conclusions

This article has presented one year of near-global multi-layer
retrievals of ice and liquid cloud properties obtained from the ML
methodology in daytime conditions, over an oceanic surface, and
excluding high-latitude regions. The methodology has the strong
advantage that it can simultaneously retrieve integrated properties
of ice and liquid water clouds, thanks to the use of radiometric
measurements ranging from the visible to the thermal infrared.
This particular set of channels additionally allows sensitivity
to optically thick and thin ice clouds. The capabilities and
limitations of this method have been demonstrated theoretically
and illustrated briefly in the first part of this study; here they
have been globally analysed and thoroughly evaluated against five
A-Train operational products.

However a few elements from the original methodology have
been updated to better fit the needs of an application to global
measurements. These include the use of a lidar/radar product,

for positioning and discriminating the phase of cloud layers,
and an additional uncertainty on the vertical inhomogeneity and
top altitude of ice cloud layers. The last two were necessary to
properly retrieve the IWP of thick ice cloud layers, where the
vertical homogeneity assumption is no longer realistic.

This study has first illustrated how analysis tools provided
by the ML methodology can be utilised for a thorough filtering
of the dataset: the cost function removes retrievals that do not
allow the forward model to converge towards the measurements,
and partial DOFs eliminate any strong dependency on a priori
assumptions. A few types of scene containing mixed-phase
clouds have also been removed from the analyses. Consequently,
about 30% of IWP retrievals and 45 and 75% of liquid cloud
OD and Re retrievals, respectively, have been rejected by this
filtering process. These numbers clearly illustrate the importance
of using such analysis tools for properly analysing retrievals
and therefore constraining the existing uncertainties on cloud
properties.

An analysis of pdfs associated with the selected retrievals has
shown that our methodology is capable of retrieving a wide
range of IWPs, from about 0.5 to 1000 g m−2, with uncertainties
better than 25% between 5 and 500 g m−2. This observation clearly
demonstrates the strong advantage of merging visible and thermal
infrared measurements for ice cloud retrievals. Uncertainties on
the liquid cloud OD vary from 30% for very thin clouds to
about 10% from an OD of 4. The retrievals of droplet Re
are usually associated with uncertainties of 10%. Moreover,
joint analyses of the spatial distribution of these retrievals
with the occurence of multi-layer conditions remind us of the
importance of properly treating multi-layer conditions in order
not to bias global climatologies, as both strongly depend upon
location.

ML IWP retrievals have directly been compared to five active
and passive operational products from the A-Train: IIR, MODIS
(C5 and C6), CALIOP, DARDAR, and 2C-ICE. We observed that
ML IWP retrievals agree well within a factor of 2 with every active
product over their respective sensitivity range. Nevertheless it
appeared that ML can progressively underestimate the IWP from
250 g m−2 due to a saturation of the information provided by
the visible channel. We have found very good agreements with
products from passive measurements in single-layer conditions.
It was also noted that retrieval methods under the single-layer
approximation can be significantly affected by the presence of
a liquid cloud layer, which leads to a strong overestimation of
the IWP. We found extremely good agreement when comparing
OD and droplet Re retrievals to those of MODIS C5 and C6 in
single-layer conditions. Despite a slight overestimation of Re by
MODIS C5 in multi-layer conditions, no strong impact from the
presence of ice cloud layers was noticed in MODIS liquid cloud
retrievals. However, it should be kept in mind that these retrievals
are mainly obtained in the presence of very thin ice cloud layers
which are unlikely to significantly impact liquid cloud properties.
Further analyses and comparisons are therefore necessary for a
thorough assessment of the impact of multi-layer conditions on
existing A-Train products.

This study also found good agreements when indirectly
comparing each operational product to the pdfs of ML retrievals.
It was observed that the pdfs of ML liquid cloud OD and droplet
Re retrievals are very similar to those of MODIS, despite a higher
occurrence of small ODs in our method, which should further
be investigated. The pdfs of ML IWP retrievals are also perfectly
coherent with most operational products, in particular DARDAR
and 2C-ICE. In spite of a narrower spread, our retrievals have been
found to globally follow the distribution of these two lidar/radar
methods and provide very similar geometric means in single and
double-layer conditions.

We therefore conclude that these agreements between ML and
A-Train operational products lead to a very strong step towards
the validation of the results of our retrieval method. Future work
will include a deeper analysis of the results of the dataset for
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several years of retrievals and a more thorough assessment of the
impact of the single-layer assumption on existing retrievals and
climatologies.

Future improvements of the methodology will focus on the
inclusion of additional measurements in the state vector for
retrieving a cloud-top altitude in order to stray from the lidar
track. Lidar and radar measurements will nevertheless remain
to serve as a priori information for these retrievals. A proper
treatment of the vertical inhomogeneity of the ice cloud layer is
also necessary in order to improve the quality of retrievals in the
presence of thick ice clouds.

Finally, it should be noted that the ML methodology is perfectly
adequate in the frame of the future EarthCare mission, which
will include a Multi-Spectral Imager (MSI) with channels adapted
to our measurement vector (0.67, 0.86, 1.67, 2.21, 8.8, 10.8 and
12.0 µm) (Illingworth et al., 2015). The ATmospheric LIDar
(ATLID) and a Cloud Profiling Radar (CPR), included on the
same platform, are also adapted to provide a priori information
on the position of cloud layers.
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Appendix

Inferring the ice cloud optical depth in ML

A detailed description of the ice cloud properties used in ML
can be found in section 3.2.5 of S15, but some aspects are partly
repeated here due to the novelty of such parametrization in
passive remote sensing retrievals.

The single-scattering properties (i.e. mass extinction coefficient
σext, single-scattering albedo ω0, and asymmetry parameter
g) used in ML are provided by a parametrization by Baran
et al. (2014), which expresses these properties as function of
IWC and temperature Tc in an ice cloud layer. This is a

direct consequence of the integration of the ensemble model
by Baran and Labonnote (2007), which provides the single-
scattering properties of roughened ice crystal habits as a function
of their size, over particle size distributions (PSD) provided
by a single-moment bulk snow parametrization (Field et al.,
2007). The latter is based on a PSD rescaling method (e.g.
Lee et al., 2004; Testud et al., 2001) which was applied to a
large number of midlatitude and tropical in situ measurements,
and provides an estimation of any moment of an ice crystal
PSD based on the second moment (related to the IWC) and
the temperature. The necessity for a temperature dependency
reflects a relationship between Tc and the ice crystal size and
number concentration due to aggregation processes. Therefore,
for a given IWC and Tc, a realistic ice crystal PSD can be
estimated and used to integrate the mixture of ice crystals
from the ensemble model, which in turn provides the single-
scattering properties. As a consequence, only the IWC (or
the IWP, assuming vertical homogeneity) together with a
temperature profile (here provided by reanalyses) are necessary to
perform forward model simulations and retrievals. Nevertheless,
the optical depth ODice can still be inferred from our IWP
retrievals, as explained below. It can also be noted that similar
parametrizations are already used in operational active remote
sensing products (e.g. Delanoë et al., 2005, 2014; Hogan et al.,
2006, for DARDAR).

In ML, each ice cloud layer is vertically described by 100 m
sub-layers that are characterised by an IWC (inferred from the
IWP) and a temperature. Subsequently, the Baran et al. (2014)
parametrization is used to associate single-scattering properties
to each sub-layer, and the obtained σext profile can be vertically
integrated over the cloud depth in order to infer ODice. Figure A1
shows an example of visible ODice retrievals from ML, compared
to those of 2C-ICE and MODIS C6. More details on these datasets
can be found in section 5. These two products are chosen here
as they represent in this study the best references for active
and passive remote sensing retrievals, respectively. For reasons
of clarity, only retrievals obtained in single-layer conditions are
shown in this Appendix. It can be observed that, similar to
comparisons presented in section 5, very good agreements are
found between ML and both products. Comparisons to 2C-
ICE show that ML agrees well within a factor of 2 with this
active product, from very small to very large optical depths. The
correlation is also very high with MODIS C6 from moderate
to high ODice values, despite a small bias that could be due
to differences of ice crystal habits used in the retrievals (e.g.
Holz et al., 2016). This clearly demonstrates the ability of ML
to infer an ice cloud optical depth from its IWP retrievals and a
corresponding Tc profile.
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Figure A1. As Figure 10, but showing scatterplot of (a) 2C-ICE and (b) MODIS C6 visible ice cloud optical depth (ODice) as a function of ML ODice, for single-layer
ice cloud layers.
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