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Abstract
We propose a new procedure to extract information from electron tomography
and use them as an input in a field dislocation mechanics. Dislocation elec-
tron tomography is an experimental technique that provides three-dimensional
(3D) information on dislocation lines and Burgers vectors within a thin foil. The
characterized 3D dislocation lines are used to construct the spatial distribution
of the equivalent Nye dislocation density tensor. The model dislocation lattice
incompatibility equation and stress balance equation are solved with a spectral
code based on fast Fourier transform algorithms. As an output of the model,
one obtains the 3D distribution of mechanical fields, such as strains, rotations,
stresses, resolved shear stresses (RSSs) and energy, inside the material. To
assess the potential of the method, we consider two regions from a previously
compressed olivine sample. Our results reveal significant local variations in
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local stress fields and RSSs in various slip systems, which can impact the
strong plastic anisotropy of olivine and the activation of different dislocation
slip systems. It also evidences the built-up of kinematic hardening down to the
nanometre scale.

Supplementary material for this article is available online

Keywords: dislocations, electron tomography, mechanics, plasticity, olivine

1. Introduction

Making the link between plastic flow and the dynamics of crystal defects (dislocations) that
causes it is a formidable challenge that requires the description of their collective behaviour
at the mesoscopic scale [1]. To this end, mesoscopic simulations such as discrete disloca-
tion dynamics (DDD) [2, 3] represent a powerful analysis tool that should be complementary
to experimental observations of dislocations. Complementary experimental/modelling ana-
lysis of dislocation microstructures can bring valuable insights about elementary deformation
mechanisms. Transmission electron microscopy (TEM) is usually the experimental tool of
choice for this kind of investigation since it allows a fine characterization of dislocations and
their interactions. However, the understanding of the three-dimensional (3D) microstructures
is difficult since we only have access to 2D projections and the tilt capabilities are physic-
ally limited in microscopes. Dislocation electron tomography (DET) has been developed to
overcome these limitations. The basic principle as originally proposed by Barnard et al [4]
is to perfectly orient the diffraction vector used to image the dislocations parallel to the tilt
axis, maintaining at best as possible the Bragg deviation parameter. This technique has been
applied in numerous studies as analyses of dislocation microstructures near cracks [5, 6], char-
acterization of helical configurations of dislocations [7–9], analyses of specific interactions of
dislocations [10], studies of interactions of dislocations with grain and sub-grain boundaries
[11–14], analyses of dislocation microstructures in a carbide [15] and minerals [16–19]. The
DET has been the subject of several recent reviews [20–23]. Recent developments include
reconstructions from few projected images using black & white contrasts of dislocations [9,
19] or ‘stereo-pair’ method [24–27], machine-learning reconstruction [28] and 4D analysis [9].
In the present contribution, we propose to use electron tomography to get access to the line
directions of the dislocation segments. The association of these line directions with their cor-
responding Burgers vectors allows the construction of the Nye dislocation density tensor at any
point in the reconstructed space. Subsequently, the Nye dislocation density tensor leads up to
the prediction of the internal mechanical fields (strain, stress, energy, etc.) through the use of a
field dislocationmechanics (FDM)model that allows to build a bridge between real dislocation
microstructures and continuum mechanics. To illustrate the potential of this DET/FDM ana-
lysis method, we consider here as a benchmark the characterization of dislocation networks
in an experimentally deformed olivine sample. We will consider in this work two different
areas from a deformed single crystal. We reveal for this complex material (limited number of
dislocation slip systems, strong plastic anisotropy) a 3D stress state characterized by signific-
ant spatial variations and long-range elastic interactions between dislocations. The resulting
distribution of dislocation driving stresses allows suggesting possible active slip systems and
the strong heterogeneity of distributions shows that the history of dislocation dynamics and
the associated build-up of kinematic hardening can be captured with the proposed method.
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2. Materials and deformation experiments

This study was carried out on an olivine sample (PoEM9) experimentally deformed by
Demouchy et al [29] which had already been the focus of TEM microstructural investigations
[10, 17]. These axial compression experiments were carried out on a cylinder (length 6.32 mm;
diameter 4.19 mm) specimen extracted from a large, gem-quality, single crystal of San Carlos
olivine ((Mg0.91Fe0.09Ni0.003)2SiO4). The sample PoEM9 [29], was deformed along [502] in
a high-resolution gas-medium high-pressure apparatus [30] at 806 ◦C, with a constant strain
rate of 5.1 × 10−5 s−1, under a gaseous (Ar) confining pressure of 300 MPa. The finite strain
reached was εTotal = 10.1% (obtained post-mortem) and the maximum differential stress was
754 MPa.

3. Methods

3.1. TEM

A complete characterization of the dislocations must include not only the Burgers vectors, but
also the geometry of the lines and their habit planes.

3.1.1. Indexation of Burgers vectors. In the early 1980s, Ishida et al [31] have shown that the
product of the Burgers vectors b of a dislocation and the diffraction vector g used to perform the
weak-beam dark-field (WBDF) image is equal to the number of thickness fringes which ends
at the extremity of this considered dislocation (the direction of the ending thickness fringes is
linked to the sign of the Burgers vector [32]).

Figure 1 gives an example of a typical WBDF micrograph of PoEM9 where the diffraction
vector g : 004 was used to image dislocations (this reflection was chosen as it has the highest
structure factor in olivine). The g · b product is equal to±4 with a± [001] Burgers vector. This
number clearly corresponds to the number of terminating thickness fringes seen in figures 1(b)
and (c).

Asymmetry of the contrast intensity of dislocation extremities is linked to the sign of the
Burgers vectors. This information can be compared to the one obtained from the directions of
terminating thickness fringes (figure 2). Taking all these indices into account, we were able to
determine most of the Burgers vector signs.

3.1.2. Dislocation geometry characterization. The electron tomography technique entails
acquiring a tilt-series and then utilizing a reconstruction algorithm to obtain a corresponding
3D model of the microstructure. As outlined in prior studies [8, 16], the principal imped-
iment to performing electron tomography of dislocations is to maintain a diffraction con-
trast (which is highly sensitive to the thin foil orientation) constant across the tilt-series. In
order to address this issue, the diffraction vector, used to image dislocations, must be pre-
cisely aligned with the principal axis of the sample-holder. Furthermore, a slight precession
of the electron beam is applied to homogenize the background contrasts (including the pres-
ence of thickness fringes) and the dislocation contrasts (oscillating contrasts of dislocations
which cross the thin foil thickness) [16, 33]. To enhance the dislocation contrasts, a numerical
filter has been employed in ImageJ to adjust the contrast. Reconstructions are then conducted
with the weighted back-projection algorithm [34], while dislocations are directly redrawn into
the reconstructed volume using markers, facilitated by the Chimera-UCSF software [8, 9, 15,
18–20, 35], to attain precisely the 3D coordinates of the dislocation core images.
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Figure 1. WBDFmicrograph obtained with the 004 diffraction vector: (a) global micro-
graph where thickness fringes are clearly seen; (b) enlargement of a dislocation dipole
pointed out by an orange rectangle on figure 1(a); (c) enlargement of the dipole where the
unterminated thickness fringes are coloured in green, the terminated thickness fringes
are coloured in red at the extremities of the dislocations represented with arrows ori-
ented on the opposite direction of the wedge, and the terminated thickness fringes are
coloured in blue at the extremities of the dislocation represented with an arrow oriented
on the direction of the wedge (the directions of the arrows are linked with the signs of
the Burgers vectors).

3.2. Nye tensor and elastic field distribution in an anisotropic elastic material

The FDMmodel employed here [36] introduces discrete dislocation lines, as characterized by
tomography, in the form of equivalent continuous dislocation density spatial distributions on a
regular 3D grid made of voxels. As an output, the model provides the equilibrated stress field in
the voxelized thin foil volume, as well as the associated elastic displacements, strains, and rota-
tions. The characteristics of dislocations, namely their line directions and their Burgers vectors,
are introduced through the Nye dislocation tensor in the model [37]. The Nye tensor α is a
second-order tensor with components αij = Bitj in the Cartesian coordinate system (e1, e2,e3)
aligned with the thin foil frame. The quantity Bi is a length of Burgers vector per unit surface
and can be written Bi = nb/∆Sei, where n is the number (not necessarily an integer) of dislo-
cations of Burgers vector magnitude b along the direction ei, and ∆S is the spatial resolution
surface. The vector t is the local dislocation line unit vector. For instance, an edge (respect-
ively screw) dislocation with line along the e3 direction and with Burgers vector along the
e1 (respectively e3) direction corresponds to an edge (respectively screw) dislocation density
α13 (respectively α33). A mixed dislocation would be made of both densities. In practice, any
3D dislocation line or segment can be transferred into an equivalent Nye dislocation density
distribution in a volume. In the case of a regular grid made of voxels to be used later for fast
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Figure 2. Association of the intensity of the dislocation extremities with the sign of
the Burgers vector: (a) Raw micrograph in WBDF conditions, obtained with the 222̄
diffraction vector (with a projection angle of −28◦), where an intensity asymmetry of
dislocation extremities is clearly seen; (b) arrows added on the raw micrograph of figure
2(a) = the arrow is oriented in the direction of the intense extremity of the dislocation;
(c) raw micrograph of the same domain with a projection angle of−42◦; (d) arrows and
thickness fringes added and redrawn on the raw micrograph of figure 2(c) where the
thickness fringes are coloured in green when they are not terminated on the extremities
of dislocations, in red at the extremities of the dislocations represented with arrows
oriented on the opposite direction of the wedge, and in blue at the extremities of the
dislocation represented with an arrow oriented on the direction of the wedge; (e) cartoon
extracted from Miyajima and Walte [32], where the method to get access to the g · b
product is described, taking into account the signs of the Burgers vectors, following
Ishida et al [31], with the same colour code and arrow direction code as figure 2(d).
A link between the intensity of the dislocation extremities and the sign of the Burgers
vector is noticeably evident. Reprinted from [32], Copyright (2009), with permission
from Elsevier.

Fourier transform (FFT) based numerical calculation of elastic fields, we use the recent method
proposed by Bertin [38] to transform discrete dislocation segments into equivalent dislocation
densities properly assigned on voxels. Note that a similar approach was also proposed very
recently [39]. The method used is briefly presented below, the reader is referred to [38] for
more details.

Figure 3 illustrates a part of a discrete dislocation line composed of three straight segments
shown in red in the figure. The figure shows a two-dimensional setup for clarity, but the calcula-
tion is performed in three dimensions. The second (middle) dislocation segment is considered
here and shown as a bold red line. It is defined by its starting point, xa, and its ending point,
xb, following the direction of the segment line vector t. The thin dashed black lines delimit the
grid voxels used in the numerical algorithm used to solve FDM equations. The voxel size is
H1,H2, andH3 in the x1, x2, and x3 directions. The position of the centre of voxel d considered
in the figure is given by its position vector xd. Its volume is denoted Ωd = H1 ×H2 ×H3 = H3

where we chose that H1 = H2 = H3 = H. For the voxel d, a surrounding box of dimension
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Figure 3. Illustration of the method used to assign a Nye dislocation density at a voxel
xd due to a dislocation segment. See text for details.

2H1 × 2H2 × 2H3 is centred at point xd and is shown with purple solid lines in the figure. If a
part of a given dislocation segment falls within this box, then a Nye dislocation density asso-
ciated with this segment will be attributed to this voxel, as follows. If start and/or end points
xa/xb are outside the box, the dislocation segment is cropped to new start and/or end points
xa’/xb’. If they are inside, they remain as they are. Now consider a point x along the disloca-
tion segment. We define the vector Rd = xd − x, which brings points x on the segment to the
centre of voxel xd. The unit vector t = (xb − xa)/||xb − xa|| is the segment tangent vector. The
distance from the segment supporting line to point xd is denoted d. It is the norm of the vector
d=Rd − (Rd·t)t= xd − x0. The vector d starts at point x0 on the segment supporting line and
ends at point xd. With this, one can parametrize the position x along the dislocation segment
as x= x0 + st, where the scalar value s∈[sa, sb]. The two bounds sa and sb shown in the figure
(sa′ and/or sb′ if the segment is cropped) are sa = (xa − x0)·t and sb = (xb − x0)·t. From these
definitions, one can finally parametrize the position vector Rd = xd − x as Rd = d − st. The
dislocation density at the voxel d due to a dislocation segment is given by the following line
integral

αij (xd) =
bitj
Ωd

xbˆ

xa

S(xd− x)dL(x) =
bitj
Ωd

I(xd) , (1)

where the weight function S is taken to be a Cloud-In-Cell function defined by

S(xd− x) =


3∏
i=1

(
1− |xdi−xi|

Hi

)
0otherwise.

if
∣∣xdi − xi

∣∣< Hi, . (2)
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The integral I(xd) can be numerically evaluated as

I(xd) =
(
sb− sa

)
−A1 −A2 −A3 +B12 +B13 +B23 −C123, (3)

with the terms 

Ai =
1
Hi

∣∣∣∣∣
[
dis−

1
2
tis

2

]b
a

∣∣∣∣∣ ,
Bij =

1
HiHj

∣∣∣∣∣
[
didjs−

1
2
(ditj + tidj)s

2 +
1
3
titjs

3

]b
a

∣∣∣∣∣ ,
Cijk =

1
HiHjHk

∣∣∣∣∣∣∣∣
didjdks−

1
2
(tidjdk + ditjdk + didjtk)s

2

+
1
3
(ditjtk + tidjtk + titjdk)s

3 − 1
4
titjtks

4


b

a

∣∣∣∣∣∣∣∣ .
(4)

The domain [sa, sb] is divided into portions [a, b] on which the sign of
∏n

i (di− sti) does not
change. For each voxel d, the dislocation density is the sum of all densities due to all dislocation
segments that cross the surrounding box shown in figure 3. The process is repeated for all
voxels forming the simulation volume. Given an initial Nye dislocation density in a volume,
we are now interested in numerically estimating the associated internal stress field within a
small strain anisotropic elasticity mechanical framework. We rely on the FDM model [36].
We denote by Ue the elastic distortion of a 3D body containing dislocations. In the absence
of dislocations, the distortion would be the gradient of the elastic displacement vector ue,
that is Ue = grad(ue). However, it is not true anymore in the presence of dislocations due to
discontinuities in the elastic displacement field, i.e. the Burgers vectors of dislocations. As
such, the elastic distortion must contain an incompatible, non-gradient, curl part (curl(χ )),
which is related to the Nye tensor. The elastic distortion is thus written as

Ue = U∥
e +U⊥

e = grad(ue)+ curl(χ ) . (5)

The elastic distortion resumes to the compatible, gradient part, in the absence of disloca-
tions, while the incompatible, curl part, is related to the Nye tensor through the incompatibility
equation

curl
(
U⊥

e

)
=α= curl(curl(χ )) , (6)

where the curl operator removes the compatible part of the elastic distortion. For a given dis-
tribution of Nye dislocation density in a volume, the elastic incompatible distortion is obtained
from the solution of equation (6). Then, the compatible elastic distortion is generally nonzero
and ensures the balance of stresses inside the volume. That writes

div(σ) = div(C : Ue) = div
(
C :

(
U∥

e +U⊥
e

))
= 0 (7)

where σ is the Cauchy stress tensor and C is the fourth-order elastic moduli tensor. The above
equation can be rearranged as

div(C : grad(ue)) =−div
(
C :

(
U⊥

e

))
, (8)

and solved for the elastic displacement field ue. Once the elastic displacement is known, the
compatible elastic distortion is obtained from its gradient and the total elastic distortion is
finally obtained by adding the incompatible part. The total, balanced, stress field σ is then
obtained by multiplication by the elastic stiffness tensor C. Solving equations (6)–(8) for a
given distribution of Nye tensor provides a unique solution for the associated internal stress
field [40]. Numerical solutions can be obtained from finite element approximations [41] and
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Figure 4. Numerical strategy to model the stress field of discrete dislocation lines
observed by tomography in a thin foil. (a) Sketch of a thin foil containing one ver-
tical threading screw dislocation line (black solid line, the line and Burgers vectors are
also indicated). (b) Corresponding Nye tensor screw component α33 on the 3D FFT
grid (clip). Bright voxels belong to the thin foil while dark voxels correspond to the gas
phase. (c) Internal shear stress field σ23. (d) Elastic strain field ε12 generated near and
at the free surfaces of the thin foil to cancel the internal stresses σ13 and σ23 at the free
surfaces. The coordinate system used for figures (b), (c), (d) is shown at the centre of
the figure.

from spectral methods [42]. The latter rely on the use of FFT algorithms [43] and allow sim-
ulations of large 3D volumes. Here, we employ an FFT spectral approximation, based on the
accelerated scheme [44] and using a special treatment for the evaluation of the modified Green
tensor in the Fourier space [45]. The reader is referred to [42] for details, whereby a very sim-
ilar spectral algorithm was developed. We now describe the FFT simulation setup to model the
dislocations observed in a thin foil by tomography and obtain their internal stress/strain fields.
Figure 4 illustrates the main steps. We consider as an illustrative example a foil of dimension
960 nm× 960 nm with a thickness of 480 nm shown in figure 4(a). A vertical screw dislo-
cation line which crosses perpendicularly the two surfaces of the foil (threading dislocation)
is inserted in the middle of the foil and shown by the solid black line. The FFT grid is here
a cube made of 64× 64× 64 voxels. The voxel size, i.e. the spatial resolution of FDM, is
set to 15 nm in all simulations. Figure 4(b) shows the associated Nye tensor component α33

distributed on the FFT grid after the ‘Nye’zation’ procedure described above. Note that all
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dislocation densities are embedded inside the FFT volume. To create the two external free sur-
faces of the thin foils, where the stress field must satisfy zero-traction boundary conditions,
we use a so-called gas phase, which is common in FFT simulations. Voxels with much lower
elastic stiffness compose the gas phase. The interfaces between material voxels (with normal
stiffness) and gas phase voxels are free surfaces, where the stress field satisfies zero-traction
boundary conditions. An example of this gas phase method can be found in [42], where the
stress field of an edge dislocation line near a pore was simulated and found to agree quantitat-
ively very well with the existing analytical solution. In figure 4(b), one can see how the external
free surfaces of the foil are created in the present FDM FFT simulation. Bright voxels com-
pose the foil material, while dark voxels compose the so-called gas phase. More precisely, the
elastic stiffness tensor C of the olivine material will be attributed to each bright voxel, while
a much lower stiffness (104 times smaller) is attributed to the dark voxels. In doing so, the
internal stresses will be affected near the two free surfaces to satisfy zero-traction boundary
conditions. Figure 4(c) shows the internal shear stress field σ23 due to the dislocation line in
the foil, obtained after convergence of the FDM-FFT numerical algorithm. One can see that it
is affected by the external surfaces and tends to zero at them. Figure 4(d) also shows the elastic
strain ε12 generated near and at the free surfaces to cancel the internal stresses σ13 and σ23.
A qualitative agreement is observed with elastic fields due to a threading screw dislocation in
GaN, simulated by FDM with a finite element approximation [41]. Note finally that because
the Nye dislocation density is numerically spread on FFT voxels, dislocation lines have an
apparent core in the FDM simulations, with a size the order of the FFT voxel length (15 nm),
but it is to be interpreted as a numerical core, rather than a physical core. Note that the FDM
can be applied to model dislocation cores [46], but it is not the scope of the present work. The
spatial resolution is here 15 nm, much too large to properly describe real dislocation cores. The
consequence of having numerical dislocation cores is that the internal stresses are smoothed
and not well captured near the physical dislocation cores, but far from the dislocation cores (a
few nm) it is correctly rendered. Short-term stress core corrections can be added [38, 39] and
are important when dealing with small scale DDD, dislocation line tension effects and dislo-
cation reactions. In the present work however, it is not critical and does not alter our findings,
as we consider mostly straight dislocation lines separated by distances much larger than the
physical core size of dislocations. Furthermore, the resolution (15 nm) is already small such
that large stresses between dislocation lines can already be predicted (see next section).

4. Results and discussion

4.1. Dislocation microstructure

In order to take an overall look at the PoEM9 microstructure of dislocations, six tilt-series
(obtained with the 222̄ diffraction vector) were acquired at a low magnification, which repres-
ents an analysed total area of approximately 30 µm2 [17], with an average angular range from
−52◦ to 48◦.

Burgers vector indexations are performed using the thickness fringes technique [31] with
the 004 and 222̄ diffraction vectors (figures 1 and 2 respectively). They showed that the micro-
structures are only composed of dislocations with [001] Burgers vectors and overwhelmingly
with straight screw dislocation characters. An example of dislocation microstructure obtained
in WBDF conditions with the 004 diffraction vector is shown in figure 1. The electron tomo-
graphy shows a majority of {110} and (100) glide planes, few cross-slip configurations [17]
and colinear interactions [17]. The reconstructed volumes also provide access to (u,b) doublets

9
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for each dislocation segment, to calculate the Nye tensor, and to simulate the continuous dis-
tribution of stress field.

Two domains of specimen PoEM9 are studied in detail: zone 1 on figures 5(a)–(d) and
zone 2 on figures 5(e)–(h). A tilt-series composed of 51 micrographs (acquired every 2◦ with
a tilt angle ranging from −48◦ to +52◦) and a second tilt-series of 54 micrographs (acquired
every 2◦ with a tilt angle ranging from −56◦ to +50◦) were obtained in WBDF conditions
with the 222̄ diffraction vector (zones 1 and 2 respectively). Micrographs from figures 5(a)
and (e) come from these two tilt-series for a projection angle of 0◦. Electron tomography
reconstructions enable the characterization of the (110),

(
11̄0

)
and (100) slip systems which

are identified by their colours: white, light grey and black respectively as in Mussi et al [17].
Neither the slip systems of the pure screw straight dislocations (coral pink-coloured), nor the
habit plane of the red sessile dislocation segment in figure 5(f), can be indexed. Then, the
reconstructed volumes are projected along the [001] direction in order to orientate the pure
screw dislocations in edge-on position (figures 5(c) and (g)) and thereafter, to provide optimal
viewing conditions to study the continuous stress distributions.

4.2. Simulation results

The dislocation internal stresses in the thin foil are rotated in the olivine crystal reference
frame. The x1, x2 and x3 directions are now aligned with the a, b and c directions of the olivine
orthorhombic unit cell, respectively. In addition to this internal stress, we add the macroscopic
stress applied experimentally during the compression test (754 MPa) and also rotated in the
crystal reference frame. This is possible since we know the angle between the normal of the
thin foil

[
175̄12

]
and the compression axis [502] (approximately 30◦). The total stress field at

every voxel in the thin foil is then σij = σintij +Σij, where σint
ij is the local internal stress field due

to dislocations and Σij is the macroscopic stress. It is then possible to project the total stress
tensor at every voxel on different slip systems using the associated Schmid tensor expressed
in the olivine orthorhombic reference frame. In the following, we consider three slip systems,
labelled 1, 2 and 3: [001] (100), [001] (110) and [001]

(
11̄0

)
respectively. The resolved shear

stress (RSS) for the three systems are denoted by RSS1, RSS2 and RSS3 in the following.
They are equal to:

RSS1= τ [001](100) = σ31,

RSS2= τ [001](110) =
b√

a2 + b2
σ31 +

a√
a2 + b2

σ32 ≈ 90.63%σ31 + 42.26%σ32,

RSS3= τ [001](11̄0) =
b√

a2 + b2
σ31 −

a√
a2 + b2

σ32 ≈ 90.63%σ31 − 42.26%σ32.

(9)

with a and b the directions of the olivine orthorhombic unit cell.
The macroscopic stress Σ31 = 10acσ/[(5a)2 +(2c)2]≈ 302.8 MPa (with a and c the dir-

ections of the olivine orthorhombic unit cell and σ the applied stress) whileΣ32 = 0. Figures 5
and 6 show the spatial distribution of the three RSSs on slices in the thin foil, for the two
thin foil series. Dislocation lines are shown in figure 5. They are removed in figure 6 for a
better comparison of RSS distributions in different slip systems. RSS1, RSS2 and RSS3 fields
look similar, local rotations of RSS patterns (lobes) near dislocations can be seen between the
three RSS maps. The distribution of the internal elastic energy density 1/2εeijCijklε

e
kl is also

shown in figure 6. It shows elastic interactions between dislocations (interacting elastic fields
between dislocations). Note that the calculation of the mean internal elastic energy within the
thin foil volume give 51.6 kJ m−3 for series 1 and 52.2 kJ m−3 for series 5. The reader is
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Figure 5. Link between TED and FDM: (a) raw micrograph in WBDF conditions,
obtained with the 222̄ diffraction vector (with a projection angle of 0◦) of zone 1; (b)
reconstructed volume of the same domain with the same projected angle (the (110),(
11̄0

)
and (100) slip systems are respectively coloured in white, light grey and black

as in [17]); (c) reconstructed volume of the same domain along the [001] direction; (d)
spatial distributions (3 slices) of RSS1 in series 1 obtained along the same orientation
as figure 5(c) located in the interaction between the two black dislocations in the middle
of the micrograph in figures 5(a) and (b) (dislocation lines are also shown and coloured
w.r.t. their sign.); (e) raw micrograph in WBDF conditions, obtained with the 222̄ dif-
fraction vector (with a projection angle of 0◦) of zone 2; (f) reconstructed volume of
the same domain with the same projected angle (the

(
11̄0

)
and (100) slip systems are

respectively coloured in light grey and black); (g) reconstructed volume of the same
domain along the [001] direction; (h) spatial distributions (3 slices) of RSS1 in series 5
obtained along the same orientation as figure 5(g) located in the red dislocation segment
(dislocation lines are also shown and coloured with reference to their sign).
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Figure 6. Spatial distributions (3 slices) of RSS1 (a), (b), RSS2 (c), (d), RSS3 (e), (f)
and elastic energy density (g), (h) for series 1 (left column) and series 5 (right column).

further referred to animations in the supplementary materials, where moving slices parallel
to slip planes allow for a better visualization of the long-range elastic interactions between
dislocation lines within the thin foils. Histograms of the RSS distributions in the thin foils are
provided in figures 7(a) and (b) showing a significant heterogeneity of the stress field within
the thin foils. One can note that the mean value of RSS1 (302.8 MPa) is slightly larger than
that of RSS2 and RSS3 (274.4 MPa). This is because the sample was oriented to activate sys-
tem 1 preferentially. Strong variations in the stress values can be seen, typically ±400 MPa
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Figure 7. Distributions of RSS1, RSS2 and RSS3 for series 1 (zone 1) and series 5 (zone
2). (a), (b): All RSS values in the thin foils are used. (c): Only RSS values at dislocation
lines are used. All cumulative distribution functions (CDF) for the three slip systems
and the two series are superimposed on the same figure.

around the mean values. Regions with local stresses reaching 1 GPa are also observed, partic-
ularly nearby dislocation dipoles. Finally, figure 7(c) shows cumulative distribution functions
(CDFs) for RSS1, RSS2, RSS3, for the two thin foil series, with RSS values extracted only at
the dislocation lines (instead of taking values at all voxels in the thin foils). In doing so, we
only consider dislocation driving stresses in the single crystal. The CDF are centred about zero.
Broad distributions, with again variations up to ±400 MPa, are clearly evidenced in the CDF
for the three slip systems and the two thin foils, and they look rather similar. One clear fea-
ture in all these maps and distributions is thus the presence of long-range elastic interactions
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between dislocations and significant local variations of the RSS values in the three systems
considered due to the complexity of the 3D stress state.

4.3. Discussion

The present coupled electron tomography/FDM analysis allows obtaining for the first time a
detailed, 3D, physical/mechanical description of dislocation networks in the studied thin foils.
A physical description of dislocations (Burgers vectors, 3D arrangement of dislocation lines,
junctions, dipoles, networks) is complemented by a mechanical description (strains, rotations,
stresses, energy). In the present study, we specifically discuss two points, (1) the possible activ-
ation of different slip systems in olivine deformed at low temperature due to the complexity of
the 3D stress state, and (2), the history of dislocation dynamics and the associated build-up of
polarized internal stresses and kinematic hardening in single crystals at the nanometre scale.

(1) Activation of slip systems: The POEM-9 specimen, fromwhich thin foils have been extrac-
ted and analysed here, was compressed along the [502] direction, to preferentially activate
the [001] (100) slip system (system 1 and RSS1). However, an uncertainty between the
possible activated slip systems was mentioned [29]. Another system, [001] (110) was also
proposed as a possible system. A third system could also be activated, [001]

(
11̄0

)
. They

correspond to system 2 and system 3 in the present study. Our distributions of RSS val-
ues in the thin foil indeed suggest that system 1 is only slightly favoured as compared to
systems 2 and 3, because the mean value of RSS1 is only slightly larger (difference of
less than 30 MPa). However, in a recent work [17], systems 2 and 3 are observed to be
easier to activate (lower CRSS) than system 1, system 1 being the second easiest system
to activate after system 2 and 3. As such it is not easy to say which one of system 1 or
systems (2, 3) was preferentially activated in our studied sample. The distributions of the
RSS values extracted only at dislocation lines are certainly more speaking. Indeed, the dis-
tributions show very similar features for all series and slip systems. More precisely, they
are all broad and show significant local variations, ±400 MPa. As such, the slight differ-
ence of the mean RSS between system 1 and systems (2, 3), less than 30 MPa, becomes
negligible as compared to possible large local values of RSS. From this, we can conclude
that, although POEM-9 was compressed in a way to favour slip system 1, the three systems
can all be activated, because of the strong heterogeneity of the internal stress field.

(2) Internal stresses and kinematic hardening: The simulated fields of RSS show a signific-
ant heterogeneity. Recently, an experimental work on deformed olivine single crystals and
polycrystals using high-resolution-EBSD (HR-EBSD) revealed a pronounced heterogen-
eity in the in-plane elastic shear strains and shear stresses at the surface [47, 48]. Variations
up to ±1 GPa around the mean value were reported in both polycrystals and single crys-
tals (at low temperatures) at the micron scale. Such polarization and patterning of internal,
intragranular and intergranular stresses, can be related to the build-up of geometrically
necessary dislocation densities. Strong heterogeneity of internal stresses is to be associated
with kinematic hardening. In the present study, we can look at the heterogeneity of internal
stresses down to the scale of typical HR-EBSDmap pixels, i.e. at the nanometre scale. Our
results also reveal a significant heterogeneity of internal stresses at the nanometre scale in
a single crystal containing dislocation networks. Distributions of RSS show broad pro-
files, with variations up to±400MPa around the mean value. Interestingly, the histograms
show a few negative RSS values. The results thus suggest that kinematic hardening has
been built-up and is a signature of the past dynamics of dislocations observed.
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Figure 8. Elastic strain ε31 at the surface of the thin foil for series 1.

The application of our electron tomography/FDM method brings valuable insights regard-
ing the complexity of plastic flow in olivine. In a simple single crystal subjected to simple com-
pression loading, it shows that plastic anisotropy and activation of dislocation slip systems can
be significantly altered by the large fluctuations of the local mechanical fields. Furthermore,
it evidences the built-up of kinematic hardening. This plastic behaviour observed at the single
crystal, nanometre scale, certainly has a strong impact on the rheology of olivine polycrys-
tals within the Earth’s mantle. More generally, our proposed analysis method can also be
employed to investigate other mechanisms and defects typically investigated in the TEM for
various crystals, such as subgrain boundaries, dislocation networks, dislocation grain bound-
ary interactions, dislocation reactions, interactions between dislocations and pores/precipitates
etc. Furthermore, as shown in figure 8, the method also provides elastic fields in the vicin-
ity of and at free surfaces, which allows making links between elastic fields measurements
using experimental techniques such as precession electron diffraction [49], HR-EBSD (high-
resolution electron backscatter diffraction), HR-TKD (high-resolution transmission Kikuchi
diffraction) [41], ACOM (automated crystal orientation mapping) ASTAR® [50] and defects
inside the material. It must be emphasized that, in addition to provide 3D anisotropic elastic
fields, our approach allows a spatial resolution of 15 nm in routine use, extendable down to
5 nm. The method can also be used to assess the accuracy of HR-TKD, or ACOM/ASTAR
methods, when measuring the elastic fields around dislocation structures.

5. Conclusion

In this contribution, we propose an original experimental and theoretical characterization
method for studying dislocation networks in crystalline materials. The method combines DET,
which provides a 3D characterization of dislocation lines and Burgers vectors, to a FDM
model, which provides the associated internal mechanical fields. To demonstrate the poten-
tial of our method, we have considered single crystal thin foils extracted from a compressed
olivine single crystal. Our results have revealed significant local fluctuations in the local mech-
anical fields, particularly the RSSs in different slip systems, which certainly play a role in the
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strong anisotropy of olivine and the activation of different dislocation slip systems. Our first
results have also evidenced the built-up of kinematic hardening at the nanometre scale in a
single crystal. Our method has a considerable potential for studying various types of disloca-
tion microstructures and plastic deformation mechanisms in different crystals.
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