
S1 
 

A modality agnostic model for spatial resolution in mass spectrometry imaging: 

application to MALDI MSI data 

Authors: Martin D. Metodieva,b, Rory T. Stevena, Xavier Loizeaua, Zoltan Takatsa,c, 

Josephine Buncha,b,c  

 

a. National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National 

Physical Laboratory (NPL), Teddington, UK,  TW11 0LW 

b. Imperial College London, Faculty of Medicine, Department of Metabolism, Digestion 

and Reproduction, London, UK, SW7 2AZ 

c. Biological Mass Spectrometry, The Rosalind Franklin Institute, Harwell Campus, 

Didcot, UK, OX11 OFA 

 

Supporting Information Contents: 

• Section S1, page 2: provides information on deriving PSF/MTF/ESF equation; it 

shows results for MTF of an image with a low desorption rate. 

• Section S2, page 5: provides information on how to calculate the resolution 

frequency and resolution number from data; the NPS and spectral cut-off are defined. 

Error analysis is discussed. 

• Section S3, page 11: provides evidence of how resolution measurements vary with 

decreasing pixel size. The two main parameters affecting the resolution frequency are 

the MTF cut off and the blurring parameter. 

• Section S4, page 12: encapsulates the resolution change across intensities. It contains 

graphs showing how the 86-14% criterion performs across intensities and a plot of 

SNR versus measured resolution.  

• Section S5, page 13: contains further information on the analysis of resolution for 

tissue imaging 
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Section S1: Derivation of image formation from first principles 

A standard approach to describe image formation in MSI is a convolution based 

model 1 2 3: 

𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑦) = 𝑃𝑆𝐹(𝑥, 𝑦) ∗ 𝜌(𝑥, 𝑦)     (S1) 

Where 𝑃𝑆𝐹(𝑥, 𝑦) is the point spread function – it is the image of a perfect point source and 

𝜌(𝑥, 𝑦) is the molecular distribution over space- density; it is the object of the image. This 

model has long been used in SIMS imaging as a basis for a resolution measurement. The 

Fourier transform of equation S1 is no longer a convolution but a product: 

ℱ(𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑦)) = 𝑀𝑇𝐹(𝑥, 𝑦)ℱ(𝑜𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦))   (S2) 

Where the MTF is the modulus of the Fourier Transform of the PSF. In one 

dimension it can be shown that a PSF is equivalent to a LSF 2. Thus, the MTF can be 

obtained by Fourier transforming an LSF as well as a PSF in 1D. However, manufacturing a 

chemical point/line source is rather difficult an edge source is usually employed. Once a step 

edge is imaged, the LSF can be calculated as follows: 

𝐿𝑆𝐹(𝑥) =
𝜕

𝜕𝑥
𝐸𝑆𝐹(𝑥)      (S3) 

𝑀𝑇𝐹(𝑥) = ℱ(𝐿𝑆𝐹(𝑥))     (S4) 

Where equations (S3) and (S4) show that an MTF can be computed from the image of an 

edge instead of using a grating-like device. The PSF (and hence the MTF) has so far been 

approximated by the shape of the analytical beam used to probe over the surface. In all 

reports thus far a stationary beam 𝐼(𝑥) is used to describe image formation. This implies that 

the analytical beam never moves and just dwells over the same spot. With this in mind, we 

now set up an imaging model which takes into account material consumption and 

discretization effects.  

Consider the flux of ions 𝜙𝑖 of the ith molecular density emanating from the sample surface. 

The total amount of ions that a mass spectrometer would collect in a pixel between the 𝑛𝑡ℎ 

and the (𝑛 + 1)𝑡ℎ scan will be: 

𝑀𝑖,𝑛 = ∫ 𝜙𝑖(𝑥, 𝑡)𝑑𝑡
(𝑛+1)Δ𝑡𝑠𝑐𝑎𝑛

𝑛Δ𝑡𝑠𝑐𝑎𝑛
    (S5) 

Where Δ𝑡𝑠𝑐𝑎𝑛 is the scan time used to create the spectrum in each pixel. The flux of particles 

from the surface is linked to the molecular density by the Law of Conservation of mass: 

𝜙𝑖 =
𝜕

𝜕𝑡
𝛾𝑖 ∫ 𝜌(𝑥, 𝑡)𝑑𝑥 = ∫ 𝛾𝑖

𝜕

𝜕𝑡
𝜌𝑖(𝑥, 𝑡) + 𝜌𝑖(𝑥, 𝑦)

𝜕

𝜕𝑡
𝛾𝑖𝑑𝑥 

∞

−∞
 

∞

−∞
 (S6) 

 

Where 𝛾𝑖 is the ionisation probability of the ith molecule. The term 𝜌𝑖(𝑥, 𝑦)
𝜕

𝜕𝑡
𝛾𝑖 corresponds 

to changes in the ionisation probability with respect to time. Such changes may be induced in 

a post-ionisation scheme. Another source of change for ionisation probability is moving to a 

different spatial location where the local chemical concertation of different molecules 

changes. Because molecules compete for charge in a set of chemical reactions, changing the 

analyte densities at a different spatial location will induce a change in the ionisation 
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probability. This is referred to as the matrix effect. To simplify the problem at hand we 

neglect post ionisation and matrix effects by setting the change of the ionisation probability 

over time to be zero 
𝜕

𝜕𝑡
𝛾𝑖 = 0. Thus, we assume that a given molecule will have the same 

ionisation probability at all points of the sample of interest. It will always also be constant 

during which the image is recorded. This assumption should hold true for a homogeneous 

step edge, however that may not be the case in tissue imaging. Since 𝛾𝑖 is now a constant, 

equation (S. 6) becomes: 

𝜙𝑖 = 𝛾𝑖 ∫
𝜕

𝜕𝑡
𝜌𝑖(𝑥, 𝑡)𝑑𝑥  

∞

−∞
    (S7) 

Now, an expression for the evolution of the molecular density of the ith molecule is needed. 

An assumption is now made – all the desorbed particles leave the surface due to the presence 

of the analytical probe 𝐼(𝑥 − 𝑣𝑡) 4 and the probe moves over the surface with a given 

uniform velocity 𝑣𝑠𝑡𝑎𝑔𝑒  ; acceleration effects are neglected. 

𝜕

𝜕𝑡
𝜌𝑖(𝑥, 𝑡) =  −𝑘𝑖𝐼(𝑥 − 𝑣𝑡)𝜌(𝑥, 𝑡)     (S8) 

Where 𝑘𝑖 is a desorption coefficient; it describes the probability of the ith molecule to be 

desorbed under the influence of the moving analytical beam 𝐼(𝑥 − 𝑣𝑡). Such a desorption 

coefficient appears in the thermodynamic model of MALDI ion formation where the signal 

intensity is assumed to be proportional to a desorption coefficient, albeit 𝑘𝑖 is different here 5. 

Yet a different desorption coefficient appears in the thermal proton transfer model of MALDI 
6. Of course, the approach taken here is qualitative whereas 5 and 6 are quantitative models of 

ion formation in MALDI.  

Combining equations S7 and S8 and calculating the signal obtained in a pixel from equation 

S5 it can be seen that: 

𝑀𝑖,𝑛 = 𝛾𝑖𝑘𝑖 𝐼 ∗𝑥 𝜌𝑖(𝑣𝑡, 𝑡) ∗𝑡 𝑟𝑒𝑐𝑡(
𝑡

Δ𝑡
−

2𝑛+1

2
)   (S9) 

Note that the convolution over space assumes that 𝐼(𝑥 − 𝑣𝑡) = 𝐼(𝑣𝑡 − 𝑥). In other words, the 

beam is symmetric. In this study we have picked a Gaussian beam profile which obeys that 

assumption. We can obtain a spot mode version of equation (S9). This is done by setting the 

stage velocity to approach zero over the scan time of a pixel. Substituting a point-mass 

density described by a Dirac delta function 𝜌𝑖 = 𝛿𝑖 allows us to obtain a PSF. The results 

from a high desorption rate can be seen in the main article. The results from a low desorption 

rate are presented in Figure S1. These two scenarios can correspond to MALDI, where the 

matrix material is fully consumed and DESI or SIMS where the analyte distribution is not 

fully consumed as the analytical beam swipes over the tissue surface.  
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Figure S1. (a) and (b) show the PSF and ESF estimate for a point / edge source that is non-

vanishing – material is not fully consumed as the beam sweeps over to new pixels and thus 

signal from previous pixels is detected. (c) shows the MTF calculation for a non-decaying 

point source – it vanishes at a normalised frequency twice the Nyquist frequency of 90 𝜇𝑚 

grid, which corresponds to 90 𝜇𝑚. Thus, resolution is lost at the beam width due to a blur.  

 

In Figure S1 it is demonstrated that when oversampling occurs in the case of weak sample 

consumption rates (SIMS/DESI), resolution is saturated at the beam width. 

 

 

Figure S2. (a) a microscopy image of a silver step edge coated with matrix sampled at 75-

micron pixel size. (b) an MSI single ion image representing the matrix and silver ion adduct 

at 75 microns.  

 

 

 

 

   

(a) 

(b) 
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Figure S2 shows a brightfield transmission microscopy image of the silver and matrix system. 

The silver and matrix region (right hand side) is not visible as light is blocked by the silver 

layer. The matrix region (left hand side) is covered with laser ablation craters. The laser spot 

size was measured to be around 85 microns. The MSI image on the bottom represents the 

most intense peak in a 75 microns data set. There is a slight amount of oversampling (crater 

overlapping) in the x direction. The two-dimensional edge image is then averaged over in the 

y direction to produce an average ESF. 

 

Section S2: Noise modelling and error analysis 

This section is dedicated to establishing an appropriate noise model for MSI and also 

providing an uncertainty band for the resolution point. 

Section 2.1: Calculating the MTF and the SNR 

The MTF is straightforward to calculate. This can be done from the signal using: 

𝑀𝑇𝐹 = |ℱ(𝐿𝑆𝐹)| = |ℱ (
𝜕

𝜕𝑥
< 𝐸𝑆𝐹 >)|    (S10) 

Therefore, the resolution point 𝑓𝑐 is defined as the point of intersection between MTF and 

NPS. The resolution distance 𝑅 can be calculated using: 

𝑑 = 𝑝
2

𝑓𝑐
      (S11) 

Where 𝑝 is the pixel size. The MTF cut-off is defined as: 

 𝑀𝑇𝐹 𝑐𝑢𝑡 𝑜𝑓𝑓(%) =  
<𝑁𝑃𝑆>

𝑀𝑇𝐹(0)
100   (S12) 

Where < 𝑁𝑃𝑆 > is the average of the noise power spectrum and 𝑀𝑇𝐹(0) is the value of the 

MTF at the zeroth frequency. 𝑀𝑇𝐹(0) should correspond to the average intensity of the edge 

surface. 

We can compare NPS against an SNR metric. 

𝑆𝑁𝑅 =
<𝑠𝑖𝑔𝑛𝑎𝑙>

1

√𝑛
∑ √(𝑠𝑖𝑔𝑛𝑎𝑙𝑖−<𝑠𝑖𝑔𝑛𝑎𝑙>)2

𝑖

=
<𝑠𝑖𝑔𝑛𝑎𝑙>

𝜎(𝑛𝑜𝑖𝑠𝑒)
    (S13) 

Where < 𝑠𝑖𝑔𝑛𝑎𝑙 > is the signal average, 𝑛 is the number of linescans used to average over 

the signal,  𝑠𝑖𝑔𝑛𝑎𝑙𝑖 is the signal of the 𝑖𝑡ℎ linescan and 𝜎(𝑛𝑜𝑖𝑠𝑒) is the standard deviation of 

the estimated noise. 

 

Section S2.2: Noise modelling and scaling - potential issues noted  

When the noise function is computed empirically, the estimate will depend on the number of 

rows and columns in the image. We are interested in normalising the NPS in such a way that 

the final output represents the noise levels of a single linescan and not the average over all 

linescans, which would be a lower value. Thus, this is a scaling problem in the y direction. 
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Furthermore, when an edge is used to obtain an LSF, the observed noise levels will increase. 

This is because the derivative of the signal is used to compute the LSF and the original noise 

in edge surface is carried over to the LSF. This is a scaling problem in the x direction. 

In order to define resolution as a function of noise we need to quantify the amount of noise 

present in the signal. Previously, we had: 

𝑀𝑖,𝑛 = 𝛾𝑖𝑘𝑖 𝐼 ∗𝑥 𝜌𝑖(𝑣𝑡, 𝑡) ∗𝑡 𝑟𝑒𝑐𝑡 (
𝑡

Δ𝑡
−

2𝑛+1

2
) + 𝜂𝑖   (S14) 

However, now we have introduced an additive noise parameter 𝜂. In the one-dimensional 

case of an image of a step edge we replace the left-hand side term of equation (S14) with a 

simple Gaussian CDF model, which we refer to as an edge spread function (ESF). Once we 

average over linescans 𝑀𝑛 the average signal becomes:  

< 𝑠𝑖𝑔𝑛𝑎𝑙 > = < 𝐸𝑆𝐹 > +
1

𝑛
∑ 𝜂𝑖

𝑛
𝑖      (S15) 

The noise level 𝜂𝑖 for an individual linescan 𝑖 may be computed as:  

𝜂𝑖 = < 𝑠𝑖𝑔𝑛𝑎𝑙 > − 𝑠𝑖𝑔𝑛𝑎𝑙𝑖    (S16) 

We assume that the expectation value of the noise is centred at zero. Thus, all negative and 

positive noise contributions will tend to cancel each other out. Therefore, the expected value 

of the noise is: 

𝔼[𝜂𝑖] =  0     (S17) 

And the variance can be expressed as: 

𝕍[𝜂𝑖] = 𝔼[𝜂𝑖
2] =

𝑛−1

𝑛
𝜎2      (S18) 

The expected value of the Fourier Transform of the average of the noise will also be zero. 

𝔼[ℱ(𝜂𝑖)] =  0     (S19) 

However, the expected value of the modulus of the Fourier Transform of the noise average 

will be: 

𝔼[|ℱ(𝜂𝑖)|2] = 𝕍[ℱ(𝜂𝑖)] + 𝔼[ℱ(𝜂𝑖)] =
𝑛−1

𝑛
𝜎2  (S20) 

Thus, we can define the NPS as: 

𝑁𝑃𝑆 =
1

√𝑛𝑥(𝑛𝑦−1)
∑ √|ℱ(𝜂𝑖)|2

𝑖     (S21) 

Thus, we can evaluate the Fourier Transform of the average amount of noise in a single 

linescan. The √𝑛𝑥 is included in order to tackle the x scaling issue (see Figure S3) and will 

be discussed shortly. In order to show the scaling effect on the NPS estimate with number of 

linescans (𝑛𝑦) we plot the MTF cut-off (which is the ratio of the average of the NPS and the 

MTF at the zeroth frequency) against an increasing number of linescans in Figure S3: 
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Figure S3 The number of linescans it takes to obtain a good average estimate of the NPS. 

Above 7-8 linescans the average begins to converge to a constant value. Thus, for this 

method to work an image with at least 5 linescans should be used. 

 

Another approach to solving this problem is to assume that there is no correlation between 

the noise and the intensity. Then the NPS can be obtained simply from: 

𝑁𝑃𝑆 =
√𝑛𝑦

√𝑛𝑥
ℱ(< 𝐸𝑆𝐹 > −𝜂′ )    (S22) 

Where 𝜂′ is the noise of the average signal and 𝑛𝑦 is the number of linescans in the image 

and the √𝑛𝑥  is related to x scaling. It should be noted that this method assumes that there is 

no correlation between intensity and noise and MSI data certainly has a noise-intensity 

correlation. In regions of the image where there is no signal the noise levels are quite small. 

Thus, if we select a part of an edge image which contains a lot more pixels without a signal 

equation S18 will tend to overestimate the average value of the NPS. On the other hand, if we 

select fewer empty pixels and more pixels containing a signal equation S22 acts like a good 

approximation. This problem is depicted in Figure S4.  
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Figure S4. Top row – square root scaling when less pixels exhibit an intensity-noise 

correlation. Bottom row – square root scaling when more pixels exhibit an intensity-noise 

correlation. 

 

Figure S4 depicts the same image when a different number of pixels is added. The graphs on 

the right-hand side show the scaling properties as the number of linescans are increased. In 

this case the number of linescans is increased from 1 to 23. Because averaging over more 

linescans reduces the noise observed in the average of the signal the NPS value should be 

scaled to that of a single linescan. It can be argued that for a noise distribution which is 

independent of the intensity this scaling is proportional to the square root of the number of 

linescans. The graph on the top right-hand side shows that this holds well when less lower 

intensity pixels are included. However, the graph on the bottom right-hand side depicts what 

happens when more pixels that do not contain a signal from the edge are included. Using a 

square root as a scaling factor does not always work. This is because the assumption that the 

noise and the signal are not correlated is not true.  

With all of this in mind we have chosen equation S21 as the definition of the NPS as it 

provides a more accurate estimate of the noise behaviour in a single line scan and it doesn’t 

suffer from the intensity-noise independence assumption. The stability of this can be seen in 

Figure S3. 

The issue of NPS scaling in the x-direction is now discussed. Figure S3 showed that adding 

more pixels in the x direction that do not contain a signal from the edge made the square root 

approximation when trying to scale in the y direction less accurate. This did not increase the 

noise level but instead the noise level deviated from the square root dependence. On the other 

hand, adding more pixels that contain a signal from the edge will increase the estimated noise 

level. This is because the approach described here uses an edge instead of a line source. The 

right-hand side of the LSF will contain more noise compared to the left-hand side (see 

Figures 2 (a) and (c) in the main article). One obvious way of avoiding it is to image a sharp 
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line instead of an edge.  Another way is to consider the relationship between number of pixels 

in the x direction and the MTF cut-off as depicted in Figure S5 

 

 

 

Figure S5. Top - noise increase with adding more columns (pixels in the x direction). Bottom 

- Noise normalised by √𝑛𝑥 

 

Here we have shown the increase of the estimated noise function from two pixels containing 

a signal from the edge to 38 pixels. The increase is approximately proportional to the square f 

𝑛𝑥 – the number of pixels in the x direction that contain a signal from the edge surface. The 

square root term here is only an approximation, hence we can see that adding to many pixels 

may lead to underestimating the noise levels and therefore calculating a higher resolution 

number. The stability seen here is not as good as the one in Figure S3. The actual noise 

distribution function needs to be estimated in order to find an appropriate normalization 

factor. However, this is a topic for future work. 

 

 

Section S2.3: Error analysis 

The MTF is modelled with a Gaussian function centred at zero: 

𝑀𝑇𝐹 = 𝐴𝑒𝑥𝑝 (−
𝑓2

2𝜎2
)     (S23) 
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The parameters 𝐴 and 𝜎 can be estimated using bootstrapping. Let 𝛿𝐴 and 𝛿𝜎 represent the 

uncertainties derived from the bootstrap fit. We are interested in finding the point of 

intersection between the MTF and the average value of the NPS. Let the average value of the 

NPS be denoted by 𝑘 and let the standard error of 𝑘 be 𝛿𝑘. 

𝛿𝑘 =
𝜎(𝑘)

√𝑛
      (S24)  

𝜎(𝑘) is the standard deviation of of 𝑘 and 𝑛 is the number of linescans. 

We are interested in computing the error in the cut-off frequency 𝑓𝑐, which is the intersection 

between Equation S23 and 𝑘. 

𝐴𝑒𝑥𝑝 (−
𝑓2

2𝜎2
)  = 𝑘      (S25) 

 Equation S25 is solved by: 

𝑓𝑐 =  ±√2𝜎2 ln (
𝐴

𝑘
)      (S26) 

 

Where the negative solution can be neglected as it is non-physical. The uncertainty in 𝑓𝑐  , 𝛿𝑓𝑐 

is given by: 

𝛿𝑓𝑐 = √(
𝜕𝑓𝑐

𝜕𝜎
)

2

𝛿𝜎2 + (
𝛿𝑓𝑐

𝛿𝐴
)

2

𝛿𝐴2 + (
𝜕𝑓𝑐

𝜕𝑘
)

2

𝛿𝑘2   (S27) 

 

After calculating the partial derivatives, we obtain: 

𝛿𝑓𝑐 = √
𝛿𝑘2𝜎2

2𝑘2ln (
𝐴

𝑘
)

+
𝛿𝐴2𝜎2

2𝐴2ln (
𝐴

𝑘
)

+ 2𝛿𝜎2 ln(
𝐴

𝑘
)    (S28) 

 

Which is the error in the cut-off frequency. This can be propagated back to distance using: 

𝛿𝑑 =  𝑑√(
𝛿𝑓𝑐

𝑓𝑐
)

2

     (S29) 

 

 

 

Section S3: Experimental results from different pixel sizes 
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Figure S6. (a) blurring parameter estimate for the four different single ion images across 

different pixel sizes. From here a standard 86-14% is computed when multiplying blur values 

by a factor of 2. On their own, most of these values violate the Sampling theorem if they were 

to be used as a resolution metric. (b) spectral cut-off values representing the percentage of 

total signal intensity at which NPS intersects MTF. 

 

 

Figure S7. (a), (b), (c) and (d) The mean spectra of the [𝑀 + 𝐴𝑔]+ and its isotopes, 

[2𝑀 + 𝐴𝑔]+ion image and its isotopes, 𝐴𝑔+ and its isotopes and the [𝑀 + 𝐴𝑔2]+ image at 

90𝜇𝑚. (e), (f), (g) and (h) The mean spectra of the same species at 15 𝜇𝑚 

 

Signal intensity decreases with pixel size and noise becomes more significant. This 

behaviour can be seen across the columns of the figure. The resolution of lower intensity 

images at a given pixel size deteriorates with signal intensity. The above figure represents the 

spectra of the two end data points (90𝜇𝑚 and 15 𝜇𝑚) in Figure 3 (a). 

 

S4: Resolution change across intensity 



S12 
 

Figure S8. (a) The blurring parameter derived from the edge. (b) Resolution distance vs SNR 

 

The values in Figure S8 (a) would yield the 86-14% criterion if multiplied by two. Most of 

these values are below two pixels. It is interesting to point that there are two distinct clusters 

of image blur in the images. 

Figure S8 (b) depicts the relationship between SNR and resolution distance. Images with 

lower SNR have a worse resolution whereas images with high SNR have a better resolution. 

 

S5: Resolution in tissue imaging 

Figure S9. (a) and (b) – the region of interest used as a step edge for for the high intensity 

signal m/z = 798.551 and the lower intensity signal m/z = 791.495 is marked with a red box. 

The edge ROI consisted of 7 linescans each of which was 33 pixels in the x direction. 

(c) and (d) – an ESF fit to the edge ROI of the high and low intensity ion images respectively. 

(e) and (f) the MTF and NPS derived from the edge ROI of the high and low intensity ion 

images respectively. 
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Figure S10. (a) and (b) A zoomed in version of an anatomical feature marked by an yellow 

box seen in Figure 5 of the main article for the high intensity signal m/z = 798.551 and the 

lower intensity signal m/z = 791.495. The mean intensity of the feature in both images is 

very close to the mean intensity of the edge ROIs in Figure S9, thus the resolution estimate is 

applicable. The continuous red line marks an example linescan. (c) and (d) An example 

linescan taken from an anatomical feature. The valleys in the high intensity image are 

resolved and the valleys in the lower intensity image can no longer be resolved. 
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