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Atomic simulations using machine learning interatomic potential (MLIP) have gained a lot of
popularity owing to their accuracy in comparison to conventional empirical potentials. However,
the transferability of MLIP to systems outside the training-set poses a significant challenge. Here,
we compare the transferability of three MLIP approaches: i) Neural Network Potentials (NNP), ii)
Physical LassoLars Interactions Potential (PLIP) and iii) Linear Potentials with Belher-Parrinello
descriptors, trained over a small but diverse configuration of zinc oxide polymorphs. We compared
the obtained models with density functional theory reference results for physical properties including
bulk lattice parameters, surface energies, and vibrational density of states and showed the superiority
of both NNP and PLIP models. However, the NNP model performed poorly when compared to
the other two linear models for the structural optimization of nanoparticles and molecular dynamics
simulation of liquid phases, which are systems outside the training-set. While providing less accurate
prediction for solid Zinc Oxides phases, both linear models appear more transferable than NNP when
testing for nanoscale systems and liquid phases. Our results are finally rationalized by a combination
of different statistical analysis including spread in force evaluation, information imbalance, convex
hull calculation and density in descriptor space.

I. INTRODUCTION

Atomistic simulations have played a crucial role in the
discovery of novel materials and the understanding of
their specific properties. In this context, quantum cal-
culations, including ab initio and density functional the-
ory (DFT), are the most accurate for calculating equi-
librium properties and provide quantitative results com-
parable to experiments. However, even with the current
technical progress, computational time prevents us from
performing quantum accurate simulations that involve
more than a thousand atoms at nanosecond timescales.
In the meantime, empirical interaction potentials that
are constructed to match material properties measured
experimentally or computed with quantum calculations
have been employed to perform such large-scale simu-
lations. Yet, the use of empirical interaction potential
yields significantly lower accuracy, when compared to
quantum calculations. Machine-learning interaction po-
tentials (MLIP) have been recently proposed to bridge
the gap between quantum accurate calculations and fast
empirical modeling [1, 2]. The main principle consists
in using a large set of quantum-accurate calculations to
adjust the parameters of a universal mathematical for-
mulation that should represent the interaction potential.
Lots of different approaches have been proposed, includ-
ing Artificial Neural Networks[3], Gaussian approxima-
tion potentials[4], Linearized potentials[5–10], Spectral
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Neighbor Analysis Potential[11, 12], Symmetric Gradi-
ent Domain Machine learning[13, 14], Moment Tensor
Potentials[15, 16], Atomic Cluster Expansion,[17–19] and
E(3)-equivariant interatomic potentials[20]. Meanwhile,
lots of different materials have also been successfully
modeled with those machine-learning interaction poten-
tials (MLIP) including pure metals[5, 21–24], organic
molecules[25–28], water[29–33], amorphous materials[34–
39], and hybrid perovskites[40, 41].

In practice, a key aspect of the machine-learning ap-
proach is the intrinsic relationship between the learning
database and the scope of application for the obtained
potential. In particular, while it is clear that robust re-
sults can be expected when sampling structures that are
within the reach of the learning database, applying the
obtained potential in out of training distribution is much
more problematic. In this context, it appears crucial to
multiply studies of transferability issues which may ren-
der the practical usage of MLIP difficult [10, 42]. In par-
ticular, it is generally mentioned that an overly complex
formulation of the potential, in terms of the employed de-
scriptors and the embedding functions, may render the
obtained model less transferable.[10] As such, neural net-
work potentials and linear models are often confronted
as they are located at both sides of the complexity spec-
trum.

In this article, we worked on the example of zinc
oxide interactions and first constructed three types
of machine-learning interaction potentials using Neural
Network Potential (NNP), Linear Behler-Parrinello po-
tential (LBP) and the Physical LassoLars Interactions
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Potential (PLIP). Then, we compared the root-mean-
square error on both learning and testing databases.
Next, the three models are employed to measure several
physical properties of zinc oxide including lattice param-
eters, surface energies, and vibrational density of states
(vDOS). Finally, we designed two stringent transferabil-
ity tests for NNP, LBP, and PLIP: (1) Molecular Dy-
namics (MD) simulation of liquids, and (2) Structure op-
timization of nanoparticles. Altogether, our results sug-
gest that, although NNP generally performs better than
both PLIP and LBP in learned situations, its applicabil-
ity range can be lower for out-of-distribution structures.
The obtained result is finally analyzed using statistical
metrics including spread in force prediction, information
imbalance, convex hull inclusion and sampling density.
This work thus contributes to a better understanding of
the possibilities and limitations of machine-learning in-
teraction potentials, especially for the approaches includ-
ing linear and feed-forward neural networks models.

II. METHODS

A. Database

The training dataset was built in a previous work [43]
by means of first-principle calculations. Six ZnO
polymorphs, i.e. wurtzite (WRZ), zinc blend (ZBL),
body-centered tetragonal (BCT), sodalite (SOD), h-
BN (HBN), and cubane (CUB) crystallographic struc-
tures were considered in the database. We first em-
ployed MD simulations using classical Buckingham ZnO
potential[44] to melt of the 6 crystal structures up to
5000K. We extracted 20 snapshots per crystal polymorph
and computed forces using DFT calculations. With this
first database, we constructed a first PLIP model that
was used to perform MD simulations of the melting from
surface structures up to 2000K. In particular, we used
as a starting point, 7 different surfaces. Along the melt-
ing path, 50 snapshots were collected and used in the
database after having computed the forces with DFT
calculations. Finally, we constructed a second PLIP
model with this supplemented database. We performed
MD simulations to obtain amorphous structures by rapid
temperature quench of the liquid configurations that were
previously obtained. We extracted 58 additional struc-
tures that were used as input for force calculations in
DFT. Overall, machine-learning models were trained on
a database with a size of 87699 atomic environments. We
note that although it should not considerably affect the
obtained results, some structures of the database were
generated with the PLIP model.

First-principles calculations were insured using the
GGA-PW91 exchange-correlation functional [45], and
the projector augmented wave method [46] implemented
in VASP [47, 48]. More details are provided in Ref. [43].

B. Machine-learning models

Construction of machine-learning interaction poten-
tials (MLIP) was achieved using NNP, LBP and PLIP.
In all approaches, the total potential energy E is approx-
imated as the sum of independent atomic energies Ei:

E =
∑N

i=0 Ei, where N corresponds to the number of
atoms of the considered configuration.

Firstly, the PLIP model consists in approximating Ei

as a linear combination of descriptors Xi
n:

Ei =
∑
n

ωnX
i
n (1)

where ωn are the linear coefficients that must be deter-
mined. We considered three types of body-ordered de-
scriptors:

[2B]in =
∑
j

fn(rij)× fc(rij), (2)

[3B]in,l =
∑
j

∑
k

fn(rij)fc(rij)fn(rik)fc(rik)cos
l(θijk),

(3)

[NB]in,m =

∑
j

fn(rij)× fc(rij)× fs(rij)

m

, (4)

where rij is the distance between atoms i and j, θijk
is the angle centered around the atom i, and l (≤ 5)
and m (≤ 7) are two positive integers. The cutoff func-
tion is defined as: fc(rij) = 0.5 (1 + cos(π(rij/rcut))),

with rcut is set at 6 Å. The shift function takes the form:
fs(u) = 6u5−15u4+10u3, where u = (rij−r1)/(r2−r1),
and r1 (resp. r2) is defined as 95 % (resp. 105 %) of a
distance equal to 1.1 Å. Regarding the basis functions
fn(rij), we used Gaussian functions centered around val-
ues between [0.5, 1.0,..., 5.5, 6.0], and with widths ranged
within [0.5, 1.0, 1.5]. Altogether, our model is made of
1980 available descriptors. For the fitting of the DFT
database, the LassoLars approach is employed to per-
form a well-informed selection of the most preponderant
descriptors and a reduction in the complexity of the ob-
tained potential [10]. In particular, we used a penalizing
factor equal to 10−5 and the final number of descriptors
after sparsification are 94, 96, 95, 98 and 91 out of the
1980 available descriptors.

Secondly, we constructed NNP models following the
Behler and Parrinello approach [3] and using the neural
network potential package, n2p2 [49, 50]. The atomic
energy Ei(Gj) depends on the descriptors defined as the
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symmetry functions Gj :

G2
j =

N∑
j ̸=i

e−η(rij−rs)
2

fc(rij) (5)

G3
j = 21−ζ

N∑
j,k ̸=j

(1 + λ cos(θijk))
ζe−η(r2ij+r2ik+r2jk) (6)

fc(rij)fc(rik)fc(rjk)

G9
j = 21−ζ

N∑
j,k ̸=j

(1 + λ cos(θijk))
ζe−η(r2ij+r2ik) (7)

fc(rij)fc(rik))

The cutoff function was chosen as polynomial: fc(x) =
1+((15−6x)x−10)x3 with x = rij/rcut. The free param-
eters of the two-body symmetry functions, η and rs, are
set at 2 Å−2 and [1.5, 2.0,..., 5.0, 5.5] Å, respectively. For
the three-body symmetry functions, values of [-1;1] are
used for λ, [1;6] for ζ, and [0.2222; 0.004082; 0.01653] Å−2

for η. These descriptors are injected into the input layer
of the NNP which is composed of two hidden layers of
15 nodes connected by the soft-plus activation function
implemented in the n2p2 package. We used the same set
of parameters that were already considered when con-
structing NNP using n2p2 [50]. For the learning process,
we considered the extended Kalman filter, which shows
faster convergence than stochastic gradient descent and
the Adam method [50]. The fitting is stopped after 150
epochs and we choose the best epoch as the one minimiz-
ing the product of root-mean-square errors for training
and testing sets.

Thirdly, we constructed LBP models using the same
descriptors as in the NNP models. Yet, instead of hav-
ing a feed-forward neural network, the descriptors are
directly considered in a linear model as in Eqn. 1. For
practical reasons, the learning process was also carried
out by n2p2 with the same protocol as described previ-
ously.

To compute the error bar in our measurements, we
constructed 5 different MLIPs with each approach. In all
cases, it meant changing the randomly selected training
database (90%). In the case of NNP, we also modified the
initial weights of the neural network architectures. We
note that in the three cases, the fitting is performed solely
with forces thus avoiding the addition of a hyperparame-
ter that would scale force and energy contributions. The
three models were implemented in LAMMPS which is
used to perform all of the following calculations [51, 52].

After describing the models and the corresponding
training process, let us comment on the differences be-
tween each models. In particular, the PLIP descriptors
are the same as in our previous works on gold/iron[10]
and on the ZnO,[43] and are derived from the work of
Seko et al.[5, 6, 8]. Through Eqns. (2-4) we decom-
pose the atomic energy as contributions arising from two,
three and N body interactions. We note that the N-body
interactions as put forward in Eqn. 4 are a generalization

of the classical empirical model of EAM potentials [See
Ref. [7] for mathematical demonstration]. Moreover, be-
cause Gaussian functions are used for fn(x), the PLIP
descriptors are very similar to BP descriptors but three
differences can still be noted. Firstly, the set of BP de-
scriptors lack explicit n-body descriptors which is com-
pensated by the neural network non-linear architecture.
Secondly, the PLIP 3-body descriptors are not explicitly
taking into account the three distances in the Gaussian
functions and only use rij and rik as well as the cosine
of the formed angle. Thirdly, because the LassoLars re-
gression is used for descriptor selection, more values of
central position and width can be put forward as initial
descriptors. To finish, we note that a key component
when comparing the three models is their inherent com-
plexity. By using the number of fitting parameters, the
order of complexity is NN, PLIP and LBP with numbers
respectively equal to 3274, 1980 186.

III. RESULTS

A. Validation and benchmark on bulk training
configurations

1. Fitting errors

In Fig. 1, we show that NNP can reach values of root-
mean-square error (RMSE) that are almost two times
better than PLIP for both training and testing sets. This
is a major achievement for the NNP model which takes
advantage of the higher flexibility of the mathematical
formulation. To corroborate this hypothesis, the linear
model obtained with the Behler-Parrinello descriptors
leads to errors that are 4 and 3 times larger than the
one of NNP and PLIP models.

Before testing the accuracy of the obtained MLIP for
different physical properties, we also wish to verify the
influence of the database size. For that purpose, we con-
structed five MLIPs for different fractions of the database
and measured the corresponding RMSE using a sepa-
rated testing database. Fig. 1.b shows that albeit being
the less accurate model, LPB is the most stable when
decreasing the amount of data used for training and that
both NNP and PLIP begin suffering overfitting issues
when using only 10% and 5% of the database. At this
stage, it seems that the observed increase of PLIP error
seems to slightly favor the usage of NNP in the regime
of small datasets. Altogether, this justifies that we used
models including up to the 90% of the database.

After having evaluated the fitting performances of both
methods, we will now measure physical properties related
to the zinc oxide materials using both MLIP models.
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FIG. 1. (a) Root-mean-square errors on forces for five differ-
ent trials using 90% of the entire database. Plain and dotted
lines correspond respectively to the average training and test-
ing errors. (b) Influence of the database size averaged over
five trials.

2. Lattice spacing

The bulk lattice parameter a of each polymorph was
computed from energy and force minimization and com-
pared to DFT measurements. Fig. 2 displays the errors
of the lattice parameter for the three considered models.
Overall, they all lead to good results, within a relative
error respect to the ab initio truth value, below 1 %,
except for HBN which was poorly reproduced by LBP.
In general, this physical quantity is better predicted by
NNP in all of the crystal polymorphs. The NNP accu-
racy is especially significant for the energetically most
stable polymorphs, i.e., the wurtzite and the zinc blend
structures. At this stage, NNP should be favored by com-
parison with both PLIP and LBP whose results remain
sufficient for most practical usage.

FIG. 2. Evaluation of the errors ∆a made by the PLIP and
the NN models for the prediction of the lattice parameter of
each studied ZnO polymorph relative to the DFT reference
values.

3. Surface energy

We will now measure errors made on surface energies
denoted γ. For each crystal polymorph, the most stable
surface has been considered, as well as some additional
surfaces for the BCT and WRZ phases. From a quanti-
tative perspective, errors on γ are larger than what was
obtained for lattice spacing as they reach values of tens of
percent, as shown in Fig. 3. When comparing the three
methods, NNP again generally provides better results for
the studied surfaces with LBP being the worst model.

FIG. 3. DFT-relative errors on the surface energies of one
or several surfaces for each ZnO polymorph computed by the
PLIP and the NN models.

4. Phonon density of states

We further investigated the validity and accuracy of
the MLIPs by performing lattice dynamics calculations.
For this purpose, we considered WRZ, BCT, and ZBL
bulk ZnO polymorphs. The phonon calculations were
performed using a 5 × 5 × 5 supercell and the Phonopy
package[53]. Results comparing phonon density of states
(DOS) between DFT and MLIPs are shown in Fig. 4.
Both the NNP and PLIP models can reproduce the DFT
phonon density of states for all the ZnO polymorphs with
reasonable accuracy. We note that relatively larger dis-
crepancies are seen for DOS at higher frequencies (optical
modes) than for the lower frequencies. In general, it re-
mains that NNP leads to results that are again slightly
better than PLIP. In this case, results of LBP are really
unsatisfying when compared to both NNP and PLIP.

Altogether, measurements of physical properties that
are directly related to structures within the training
database allow us to conclude that LBP is really the
worst model and that NNP performs slightly better than
PLIP. It remains that both NNP and PLIP still exhibit
very good results.
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FIG. 4. Comparison of vibrational density of states (DOS)
between DFT and the MLIP models for wurtzite (WRZ),
body-centered tetragonal (BCT), and zincblende(ZBL) ZnO
polymorphs.

B. Transferability towards other phases

1. Liquid radial distribution

To investigate the transferability of MLIPs, beyond the
training data set configurations, we performed MD simu-
lation of liquid ZnO. The system was initialized with 250
atoms structures obtained by DFT minimization of an
amorphous structure. Then, the system temperature was
increased from 300K to 1500K during 1 ps before equili-
bration at the same temperature during 1 ps as well. In
all cases, we worked in the NVT ensemble with a Nose-
Hoover thermostat. The MD simulations were performed
using the five different PLIP, LBP and NNP models.
The corresponding partial radial distribution functions
(RDF) are shown in Fig. 5. The RDFs obtained us-
ing PLIP (solid red line) are in good agreement with the
DFT reference (solid black line) and all five of them lead
to very similar results. The LBP model behaves simi-
larly to the PLIP model with slightly worst results for the
ZnO distribution at the end the first peak. In the mean-
time, the NNP RDFs (blue lines) display spurious peaks,
especially, at non-physical shorter distances. Moreover,
it appears that only 3 of the 5 constructed NNPs were
able to initialize simulations at 300K although it was
started with an amorphous structure obtained in DFT.
The others would directly lead to enormous forces, which
would remove atoms from the simulation box. Further-
more, among the remaining three, only one did not lead
to spurious peaks at short ranges. As such, the stud-
ied case shows that although NNPs are powerful in the
interpolation of complex data, they can also lead to non-

physical behaviour in the extrapolation regime. In this
case, the issue with NNPs is its inability to reproduce
short range repulsion that could prevent from having
those non-physical peaks at short distances.

FIG. 5. The comparison for partial radial distribution func-
tions g(r) for structures obtained at 1500K. The DFT refer-
ence is shown in solid black lines, PLIP, NNP and LBP models
are respectively shown in red, blue and green lines. Each indi-
vidual model is plotted with a dashed line while the solid line
is the average over all the models. There are 5 dashed lines
for both PLIP and LBP but only 3 dashed lines for NNP.

2. Transferability towards nanoparticles

To further test the extent of transferability of MLIPs,
we used the obtained models to optimize ZnO nanostruc-
tures. Since the MLIPs were trained on periodic systems,
nanostructures represent a significant transferability test.
The MLIPs were therefore tested on nanoparticles made
from BCT, SOD, and WRZ crystal phases, as well as
single-caged (SC) and multi-caged (MC) structures. In
particular, the calculations were initialized using DFT
optimized structures as obtained by Vines et al.[54] with
a slightly different DFT framework. Then, further DFT
calculations were performed to reach the optimal con-
figurations within our own DFT framework. Next, we
randomly disturbed the atomic positions of the obtained
structures by at most 0.3 Å. This step is made with three
different random seeds. Finally, disturbed structures are
optimized using the 5 MLIPs of each models. In total, for
the three models, we can therefore average over 15 dif-
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ferent structures for each nanoparticle. To quantify the
error, the mean square deviation of atoms between MLIP
optimized nanostructures and DFT optimized nanostruc-
tures was measured and averaged over 5 five different ver-
sions of the MLIP and 3 different random displacements.
From Fig. 6, we can see that errors obtained are remark-
ably lower with PLIP and with LBP than with NNP for
all of the considered nanoparticles. We also note that
again the error bars are higher with NNP models.

In order to better understand the results in terms of
the physics behind the observations, we isolated 5 typical
nanoparticles, measured the coordination number using
a cutoff equal to 2.5 Åand computed the MSD error for
each type of coordination number [See Fig. 7(a1, b1, c1,
d1, e1]. First, we note that similar to what we previ-
ously observed when averaging over all of the coordina-
tion numbers, PLIP leads again to better results than
both NNP and LBP. Then, it appears that the lowest
coordination number are giving the highest MSD. In the
meantime, the corresponding images show that atoms on
the edges of the nanoparticles are less well reproduced.
We speculate that the difficulty of NNP and LBP to re-
produce the atoms located on the edges stem from the
fact that those types of configurations were not inside the
database as they are specific to nanoparticles.

IV. DISCUSSION

Until now, we showed that NNP provide slightly better
results during the validation stage. However, supplemen-
tary tests regarding liquid radial distributions as well as
nanoparticle structure minimization demonstrated that
the two linear models (PLIP and LBP) provide more
consistent results in domains which are characterized by
physics and material chemistry different from the train-
ing one.

As a first step in understanding this result, we stud-
ied, for each approach, the spread in the force predic-
tions between each of the obtained five potentials. As
illustrated in Fig.8.a, the standard deviation in model
predictions in train, test and nanoparticle points shows
a different behavior than the RMSE in forces. In partic-
ular, while NNP provide the overall most accurate pre-
dictions in training, the spread in prediction is large. For
PLIP instead we note a better agreement between each of
five potentials. This result parallels the bigger error bars
that were obtained when measuring physical properties
in the bulk phases. Furthermore, this trend is heightened
when performing inference in nanoscale structures. This
result is thus a first evidence that nanoscale configura-
tions appear in a domain of lesser robust extrapolation
for the NNP.

As an additional route to rationalize the observed
transferability behavior, we analyze the information en-
coded in the descriptor space employed in the build up of
the MLIP. For that purpose, we considered respectively
the entire set of PLIP descriptors, the latent space af-

ter neural network convolution and the entire set of BP
descriptors.
To compare the information encoded in each of the

models, we evaluate the information imbalance using the
methodology introduced by Glielmo et al. [55]. In partic-
ular, given any two metrics A and B, this analysis probes
whether: (1) the two are equivalent ( ∆A → B ∼ 1,
∆B → A ∼ 1 ), (2) orthogonal ( ∆A → B ∼ 0,
∆B → A ∼ 0), (3) if the information of one is con-
tained also in the other ( ∆A → B ∼ 0, ∆B → A ∼ 1),
or (4) if the two offer equivalent but independent infor-
mation ( 0 << ∆A → B = ∆B → A << 1). We report
the information imbalance between the three considered
representations in Fig. 8.b. The BP features are rather
independent, if not orthogonal, to the two other repre-
sentations. This finding hold both for the training and
nanoscale configurations. This measure agrees well with
the strong difference in accuracy between the LBP model
and the other two. The PLIP and NNP representations
carry information which is largely equivalent and inde-
pendent. Consequently, we would expect similar, yet not
identical trends for models which leverage either the for-
mer or the latter. The PLIP information is often larger
than the one of the BP descriptors, and this is rational-
ized in terms of the larger number of features (sim 90 vs
15).
To extend our assessment of the transferability (or lack

thereof) of the proposed ML models, we constructed the
convex hull associated to all the points in the training set.
Then, we tested if each data points belong to the convex
hull [See Fig. 8.c]. We note that when doing so for the
training data points, the convex hull is reconstructed by
removing the considered training data point. In the case
of the LBP, we observe that all the atomic environments
appear outside the convex hull. The fraction of points
within the convex hull is also small when considering the
NNP representation with training, testing and nanopar-
ticle data points being less and less present in the con-
vex hull. The PLIP representation also shows a decrease
when going from training to testing and nanoparticles.
However, the numbers remain always much larger than
both in LBP and NNP.
Finally, we recently demonstrated that the fraction of

points inside the convex hull is not sufficient to address
the accuracy of a machine-learning model[42]. As such,
to complement the observations related to the convex
hull, we measure the sampling density induced by the
training point on the test points that is defined as:

ρ(x∗) =
k∗ − 1

M V ∗ , (8)

where M labels the training set site and V ∗ corresponds
to the volume enclosing the first k∗ training point neigh-
bors [42, 56]. In addition, k∗ is chosen adaptively, accord-
ing to the framework described by Rodriguez et al.[57],
and V ∗ corresponds to a d-dimensional hypersphere vol-
ume, where d corresponds to the intrinsic dimension of
the training data manifold, estimated via the TwoNN
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FIG. 6. Errors made by the two ML models on clusters energies relatively to those obtained by DFT. The BCT, SOD, and
WRZ polymorphs are considered as well as multi-caged (MC) and single-caged (SC) clusters, provided from the work of Ref
[54].

approach by Facco et al.Facco et al. [58]. In a previous
report, we demonstrated that the defined sampling den-
sity provides a metric which correlates with the error of
a linear MLIP, i.e., points with larger sampling densities
are, on average, predicted more accurately [42]. We note
that that the relationship between model error and sam-
pling density induced by the training is also dependent
on the quality/information content of the representation
itself. For example, a representation that projects all
training configurations into a single point would induce
not only a large sampling density but also a uninformed
model. As such, the value of the sampling density can
not be compared directly from one MLIP to the other
but only for each single one of them. In the following, we
will therefore only consider the differences and similari-
ties between the sampling density in the training and in
the nanoparticle datasets.

Fig. 8.d shows the sampling density induced by the
training set on each point in the training set and in
the nanoparticle data set, for each of the three tested
MLIPs. The sampling density distribution on training
and nanoparticle points are essentially equivalent in the
case of the PLIP and LBP models which is consistent
with the similar error obtained by these linear models for
training and nanoparticle configurations. A fairly strong
mismatch between sampling densities induced on training
or nanoparticle points is instead observed when consid-
ering the last layer of the NNP model. In this case, the

sampling density induced on training points is, on aver-
age, larger than the one induced on nanoparticle points.
We conclude that the shift in sampling density distribu-
tion parallels the lesser accuracy of the NNP model, when
transferred to nanoscale configurations.

V. CONCLUSION

This work provided a quantitative account of transfer-
ability which is an important problem associated with the
use of MLIP. In this regard, we have analyzed the trans-
ferability of three MLIP approaches, namely the LBP,
NNP and PLIP models. The MLIPs were trained over
relatively small but diverse configurations of ZnO sys-
tems. To estimate robust statistics, five different models
per MLIP scheme were trained and the deviations among
each of these models were computed.
Firstly, the showed that NNP is a better learner than

PLIP and LBP when considering the RMSE on both
training and test sets configurations. Next, we measured
the physical properties including lattice constants, sur-
face energies, and phonon density of states. We showed
that both the NNP and PLIP are largely superior than
LBP and provide a good description with NNP being
slightly superior at this stage than PLIP. Then, by study-
ing molecular dynamics simulation of the liquids, we
showed that NNP can lead to unphysical behavior at
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Coordination
number

0.2

FIG. 7. Influence of the coordination number on the MSD error for five typical nanoparticles and for each considered models.
Coordination numbers are computed with a cutoff equal to 2.5 Å.

short distances. In practice, such issues might be fixed
by augmenting the database with configuration display-
ing short interatomic distances or by introducing a prior
baseline which is aware of interatomic repulsion at short
distances.[59, 60] Finally, we designed a strong transfer-
ability test with the structural optimization of nanopar-
ticles. Both linear models outperformed the NNP model.
In these example, despite NNP being better learners
on the given training-set, they were limited in appli-
cability to systems beyond the training-set. In addi-

tion, having LBP being more transferable than NNP
despite using the same set of descriptors suggests that
the non-linearity brought by the neural network architec-
ture can cause the decrease in transferability. Interest-
ingly, we note that more advanced equivariant message-
passing neural network architectures appear to escape
from this complexity-transferability trade-offs.[61] Alto-
gether, PLIP by using both a larger set of descriptors
and a linear model provides the most accurate and reli-
able potential in this particular case of ZnO.
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FIG. 8. (a) Spread in the force predictions obtained using 5 different models. (b) Information imbalance analysis for training
and nanoparticle datasets (c) Fraction of points within the training convex hull. (d) Distribution of the sampling density for
training and nanoparticle datasets.

In the discussion, we provide further explanations for
this observation. Main results of this statistical anal-
ysis are that (1) The spread in force prediction shows
that NNP provides less consistent results than PLIP es-
pecially when transfered into nanoscale configurations,
(2) At the level of the information balance, PLIP and
NNP are equivalent while being superior than LBP, (3)
PLIP’s convex hull is the only one providing sufficient
overlapping between train, test and nanoparticle points
and (4) The nanoparticle data set is much less dense than
the the training data set in the NNP models thus sug-
gesting a lack of transferability.

We hope the current work would serve as a template

to better understand the possibilities and limitations of
different classes of MLIPs, enabling the development of
efficient, reliable, and transferable potentials for techno-
logically relevant materials.
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[4] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi,
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[30] A. P. Bartók, M. J. Gillan, F. R. Manby, and G. Csányi,
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