Establishment of an analytical model for ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
Establishment of an analytical model for remote sensing of typical stratocumulus cloud profiles under various precipitation and entrainment conditions
Author(s) :
Shang, Huazhe [Auteur]
Hioki, Souichiro [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Penide, Guillaume [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Cornet, Celine [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Letu, Husi [Auteur]
Riedi, Jerome [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Hioki, Souichiro [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Penide, Guillaume [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Cornet, Celine [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Letu, Husi [Auteur]
Riedi, Jerome [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Journal title :
Atmospheric Chemistry and Physics
Abbreviated title :
Atmos. Chem. Phys.
Volume number :
23
Pages :
2729-2746
Publisher :
Copernicus GmbH
Publication date :
2023-02-27
ISSN :
1680-7324
HAL domain(s) :
Planète et Univers [physics]/Océan, Atmosphère
English abstract : [en]
Abstract. Structural patterns of cloud effective radius (ER) and liquid water content (LWC) profiles are essential variables of cloud lifecycle and precipitation processes, while observing cloud profiles from passive ...
Show more >Abstract. Structural patterns of cloud effective radius (ER) and liquid water content (LWC) profiles are essential variables of cloud lifecycle and precipitation processes, while observing cloud profiles from passive remote-sensing sensors remains highly challenging. Understanding whether there are typical structural patterns of ER and LWC profiles in liquid clouds and how they are linked to cloud entrainment or precipitating status is critical in developing algorithms to derive cloud profiles from passive satellite sensors. This study aims to address these questions and provide a preliminary foundation for the development of liquid cloud profile retrievals for the Multi-viewing, Multi-channel and Multi-polarization Imaging (3MI) sensor aboard the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System-Second Generation (EPS-SG) satellite, which is scheduled to be launched in 2025. Firstly, we simulate a large ensemble of stratocumulus cloud profiles using the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS). The empirical orthogonal function (EOF) analysis is adopted to describe the shape of simulated profiles with a limited number of elemental profile variations. Our results indicate that the first three EOFs of LWC and ER profiles can explain >90 % of LWC and ER profiles. The profiles are divided into four prominent patterns and all of these patterns can be simplified as triangle-shaped polylines. The frequency of these four patterns is found to relate to intensities of the cloud-top entrainment and precipitation. Based on these analyses, we propose a simplified triangle-shaped cloud profile parameterization scheme allowing us to represent these main patterns of LWC and ER. This simple yet physically realistic analytical model of cloud profiles is expected to facilitate the representation of cloud properties in advanced retrieval algorithms such as those developed for the 3MI/EPS-SG.Show less >
Show more >Abstract. Structural patterns of cloud effective radius (ER) and liquid water content (LWC) profiles are essential variables of cloud lifecycle and precipitation processes, while observing cloud profiles from passive remote-sensing sensors remains highly challenging. Understanding whether there are typical structural patterns of ER and LWC profiles in liquid clouds and how they are linked to cloud entrainment or precipitating status is critical in developing algorithms to derive cloud profiles from passive satellite sensors. This study aims to address these questions and provide a preliminary foundation for the development of liquid cloud profile retrievals for the Multi-viewing, Multi-channel and Multi-polarization Imaging (3MI) sensor aboard the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System-Second Generation (EPS-SG) satellite, which is scheduled to be launched in 2025. Firstly, we simulate a large ensemble of stratocumulus cloud profiles using the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS). The empirical orthogonal function (EOF) analysis is adopted to describe the shape of simulated profiles with a limited number of elemental profile variations. Our results indicate that the first three EOFs of LWC and ER profiles can explain >90 % of LWC and ER profiles. The profiles are divided into four prominent patterns and all of these patterns can be simplified as triangle-shaped polylines. The frequency of these four patterns is found to relate to intensities of the cloud-top entrainment and precipitation. Based on these analyses, we propose a simplified triangle-shaped cloud profile parameterization scheme allowing us to represent these main patterns of LWC and ER. This simple yet physically realistic analytical model of cloud profiles is expected to facilitate the representation of cloud properties in advanced retrieval algorithms such as those developed for the 3MI/EPS-SG.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Research team(s) :
Interactions Rayonnement Nuages (IRN)
Submission date :
2024-01-10T15:56:59Z
2024-02-23T10:16:43Z
2024-02-23T10:16:43Z
Files
- Shang2023-EstablishmentOfAnAnalyticalModelForremotesensingOfStratocumulus.pdf
- Version éditeur
- Open access
- Access the document