Logarithmic Gross-Pitaevskii equation
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Logarithmic Gross-Pitaevskii equation
Author(s) :
Carles, Rémi [Auteur]
Institut de Recherche Mathématique de Rennes [IRMAR]
Ferriere, Guillaume [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Institut de Recherche Mathématique Avancée [IRMA]
Institut de Recherche Mathématique de Rennes [IRMAR]
Ferriere, Guillaume [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Institut de Recherche Mathématique Avancée [IRMA]
Journal title :
Communications in Partial Differential Equations
Pages :
88-120
Publisher :
Taylor & Francis
Publication date :
2024-02-06
ISSN :
0360-5302
English keyword(s) :
Gross-Pitaevskii
logarithmic nonlinearity
Cauchy problem
solitary wave
traveling wave
logarithmic nonlinearity
Cauchy problem
solitary wave
traveling wave
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
We consider the Schrödinger equation with a logarithmic nonlinearty and non-trivial boundary conditions at infinity. We prove that the Cauchy problem is globally well posed in the energy space, which turns out to correspond ...
Show more >We consider the Schrödinger equation with a logarithmic nonlinearty and non-trivial boundary conditions at infinity. We prove that the Cauchy problem is globally well posed in the energy space, which turns out to correspond to the energy space for the standard Gross-Pitaevskii equation with a cubic nonlinearity, in small dimensions. We then characterize the solitary and travelling waves in the one dimensional case.Show less >
Show more >We consider the Schrödinger equation with a logarithmic nonlinearty and non-trivial boundary conditions at infinity. We prove that the Cauchy problem is globally well posed in the energy space, which turns out to correspond to the energy space for the standard Gross-Pitaevskii equation with a cubic nonlinearity, in small dimensions. We then characterize the solitary and travelling waves in the one dimensional case.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Comment :
31 pages. Accepted in Communications in Partial Differential Equations and published online on 29 Dec 2023.
Collections :
Source :
Files
- document
- Open access
- Access the document
- main.pdf
- Open access
- Access the document
- 2209.14621
- Open access
- Access the document