A meshless method for the numerical ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
A meshless method for the numerical computation of the solution of steady Burgers-type equations
Author(s) :
Bouhamidi, Abderrahman [Auteur]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Hached, Mustapha [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Jbilou, Khalide [Auteur]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Hached, Mustapha [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Jbilou, Khalide [Auteur]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Journal title :
Applied Numerical Mathematics: an IMACS journal
Pages :
95-110
Publisher :
Elsevier
Publication date :
2013-12
ISSN :
0168-9274
English keyword(s) :
Viscous Burgers equation
Meshless method
Global GMRES
Newtonʼs method
Krylov projection methods
Radial basis functions
Numerical analysis
Meshless method
Global GMRES
Newtonʼs method
Krylov projection methods
Radial basis functions
Numerical analysis
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
In this paper, we discuss a meshless method for solving steady Burgers-type equations with Dirichlet boundary conditions. The numerical approximation of the solution in the given domain is obtained by using thin plate ...
Show more >In this paper, we discuss a meshless method for solving steady Burgers-type equations with Dirichlet boundary conditions. The numerical approximation of the solution in the given domain is obtained by using thin plate spline approximation, leading to a large-scale nonlinear matrix equation. The main difficulty of the proposed method is the numerical computation of a solution of the derived nonlinear matrix equation. We will show how to combine Newtonʼs method with some matrix Krylov subspace techniques such as the global GMRES to solve these nonlinear problems. Numerical examples are given to illustrate the proposed method.Show less >
Show more >In this paper, we discuss a meshless method for solving steady Burgers-type equations with Dirichlet boundary conditions. The numerical approximation of the solution in the given domain is obtained by using thin plate spline approximation, leading to a large-scale nonlinear matrix equation. The main difficulty of the proposed method is the numerical computation of a solution of the derived nonlinear matrix equation. We will show how to combine Newtonʼs method with some matrix Krylov subspace techniques such as the global GMRES to solve these nonlinear problems. Numerical examples are given to illustrate the proposed method.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- fulltext.pdf
- Open access
- Access the document