On rational functions without Froissart doublets
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
On rational functions without Froissart doublets
Author(s) :
Beckermann, Bernhard [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Labahn, George [Auteur]
Matos, Ana C. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Labahn, George [Auteur]
Matos, Ana C. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Numerische Mathematik
Pages :
615-633
Publisher :
Springer Verlag
Publication date :
2018
ISSN :
0029-599X
English keyword(s) :
spurious poles
numerical coprimeness
numerical analysis
rational functions
Padé approximation
Froissart doublets
numerical coprimeness
numerical analysis
rational functions
Padé approximation
Froissart doublets
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
In this paper we consider the problem of working with rational functions in a numeric environment. A particular problem when modeling with such functions is the existence of Froissart doublets, where a zero is close to a ...
Show more >In this paper we consider the problem of working with rational functions in a numeric environment. A particular problem when modeling with such functions is the existence of Froissart doublets, where a zero is close to a pole. We discuss three different parameters which allow one to monitor the absence of Froissart doublets for a given general rational function. These include the euclidean condition number of an underlying Sylvester-type matrix, a parameter for determing coprimeness of two numerical polynomials and bounds on the spherical derivative. We show that our parameters sharpen those found in a previous paper by two of the authors.Show less >
Show more >In this paper we consider the problem of working with rational functions in a numeric environment. A particular problem when modeling with such functions is the existence of Froissart doublets, where a zero is close to a pole. We discuss three different parameters which allow one to monitor the absence of Froissart doublets for a given general rational function. These include the euclidean condition number of an underlying Sylvester-type matrix, a parameter for determing coprimeness of two numerical polynomials and bounds on the spherical derivative. We show that our parameters sharpen those found in a previous paper by two of the authors.Show less >
Language :
Anglais
Popular science :
Non
Comment :
18 pages, 1 figure
Collections :
Source :
Files
- document
- Open access
- Access the document
- 1605.00506%5B1%5D.pdf
- Open access
- Access the document
- 1605.00506
- Open access
- Access the document