Atypical points at infinity and algorithmic ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Atypical points at infinity and algorithmic detection of the bifurcation locus of real polynomials
Author(s) :
Dias, Luis Renato G. [Auteur]
Federal University of Uberlândia [Uberlândia] [UFU]
Joiţa, Cezar [Auteur]
Institute of Mathematics of the Romanian Academy [Bucharest] [IMAR]
Tibăr, Mihai [Auteur]
Université de Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Federal University of Uberlândia [Uberlândia] [UFU]
Joiţa, Cezar [Auteur]
Institute of Mathematics of the Romanian Academy [Bucharest] [IMAR]
Tibăr, Mihai [Auteur]
Université de Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Mathematische Zeitschrift
Pages :
1545-1558
Publisher :
Springer
Publication date :
2021-01-04
ISSN :
0025-5874
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
We show that the variation of the topology at infinity of a two-variable polynomial function islocalisable at a finite number of “atypical points” at infinity. We construct an effective algorithmwith low complexity in order ...
Show more >We show that the variation of the topology at infinity of a two-variable polynomial function islocalisable at a finite number of “atypical points” at infinity. We construct an effective algorithmwith low complexity in order to detect sharply the bifurcation values of the polynomialfunction.Show less >
Show more >We show that the variation of the topology at infinity of a two-variable polynomial function islocalisable at a finite number of “atypical points” at infinity. We construct an effective algorithmwith low complexity in order to detect sharply the bifurcation values of the polynomialfunction.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- 2004.08099
- Open access
- Access the document