Deformation rings and parabolic induction
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Deformation rings and parabolic induction
Author(s) :
Hauseux, Julien [Auteur correspondant]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Schmidt, Tobias [Auteur]
Institut de Recherche Mathématique de Rennes [IRMAR]
Sorensen, Claus [Auteur]
Department of Mathematics [Univ California San Diego] [MATH - UC San Diego]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Schmidt, Tobias [Auteur]
Institut de Recherche Mathématique de Rennes [IRMAR]
Sorensen, Claus [Auteur]
Department of Mathematics [Univ California San Diego] [MATH - UC San Diego]
Journal title :
Journal de Théorie des Nombres de Bordeaux
Pages :
695-727
Publisher :
Société Arithmétique de Bordeaux
Publication date :
2018-12-06
ISSN :
2118-8572
English keyword(s) :
p-adic reductive groups
smooth representations
m-adically continuous representations
parabolic induction
deformations
smooth representations
m-adically continuous representations
parabolic induction
deformations
HAL domain(s) :
Mathématiques [math]/Théorie des représentations [math.RT]
Mathématiques [math]/Théorie des nombres [math.NT]
Mathématiques [math]/Théorie des nombres [math.NT]
English abstract : [en]
We study deformations of smooth mod $p$ representations (and their duals) of a $p$-adic reductive group $G$. Under some mild genericity condition, we prove that parabolic induction with respect to a parabolic subgroup ...
Show more >We study deformations of smooth mod $p$ representations (and their duals) of a $p$-adic reductive group $G$. Under some mild genericity condition, we prove that parabolic induction with respect to a parabolic subgroup $P=LN$ defines an isomorphism between the universal deformation rings of a supersingular representation $\bar{\sigma}$ of $L$ and of its parabolic induction $\bar{\pi}$. As a consequence, we show that every Banach lift of $\bar{\pi}$ is induced from a unique Banach lift of $\bar{\sigma}$.Show less >
Show more >We study deformations of smooth mod $p$ representations (and their duals) of a $p$-adic reductive group $G$. Under some mild genericity condition, we prove that parabolic induction with respect to a parabolic subgroup $P=LN$ defines an isomorphism between the universal deformation rings of a supersingular representation $\bar{\sigma}$ of $L$ and of its parabolic induction $\bar{\pi}$. As a consequence, we show that every Banach lift of $\bar{\pi}$ is induced from a unique Banach lift of $\bar{\sigma}$.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- 1607.02602
- Open access
- Access the document