Large deviation principle for some beta ensembles
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Large deviation principle for some beta ensembles
Auteur(s) :
Dinh, Tien-Cuong [Auteur]
National University of Singapore [NUS]
Nguyên, Viêt-Anh [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
National University of Singapore [NUS]
Nguyên, Viêt-Anh [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Transactions of the American Mathematical Society
LPP-MATH
LPP-MATH
Pagination :
6565-6584
Éditeur :
American Mathematical Society
Date de publication :
2018-02-26
ISSN :
0002-9947
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
Let L be a positive line bundle over a projective complex manifoldX, Lp its tensor power of order p, H 0 (X, Lp ) the space of holomorphic sectionsof Lp , and Np the complex dimension of H 0 (X, Lp ). The determinant of a ...
Lire la suite >Let L be a positive line bundle over a projective complex manifoldX, Lp its tensor power of order p, H 0 (X, Lp ) the space of holomorphic sectionsof Lp , and Np the complex dimension of H 0 (X, Lp ). The determinant of a basisof H 0 (X, Lp ), together with some given probability measure on a weightedcompact set in X, induces naturally a β-ensemble, i.e., a random Np -pointprocess on the compact set. Physically, depending on X and the value of β,this general setting corresponds to a gas of free or interacting fermions on Xand may admit an interpretation in terms of some random matrix models.The empirical measures, associated with such β-ensembles, converge almostsurely to an equilibrium measure when p goes to infinity. We establish alarge deviation theorem (LDT) with an effective speed of convergence for theseempirical measures. Our study covers a large class of β-ensembles on a compactsubset of the unit sphere Sn ⊂ Rn+1 or of the Euclidean space Rn .Lire moins >
Lire la suite >Let L be a positive line bundle over a projective complex manifoldX, Lp its tensor power of order p, H 0 (X, Lp ) the space of holomorphic sectionsof Lp , and Np the complex dimension of H 0 (X, Lp ). The determinant of a basisof H 0 (X, Lp ), together with some given probability measure on a weightedcompact set in X, induces naturally a β-ensemble, i.e., a random Np -pointprocess on the compact set. Physically, depending on X and the value of β,this general setting corresponds to a gas of free or interacting fermions on Xand may admit an interpretation in terms of some random matrix models.The empirical measures, associated with such β-ensembles, converge almostsurely to an equilibrium measure when p goes to infinity. We establish alarge deviation theorem (LDT) with an effective speed of convergence for theseempirical measures. Our study covers a large class of β-ensembles on a compactsubset of the unit sphere Sn ⊂ Rn+1 or of the Euclidean space Rn .Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- 7171
- Accès libre
- Accéder au document