In silico assessment of human health risks ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
In silico assessment of human health risks caused by cyanotoxins from cyanobacteria
Author(s) :
Hong, J. F. [Auteur]
Ouddane, Baghdad [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Hwang, J. S. [Auteur]
Dahms, H. U. [Auteur]
Ouddane, Baghdad [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Hwang, J. S. [Auteur]
Dahms, H. U. [Auteur]
Journal title :
Biocell
Abbreviated title :
Biocell
Volume number :
45
Pages :
-
Publication date :
2021-03-13
ISSN :
0327-9545
English keyword(s) :
Cyanotoxins
Predictive model
Molinspiration
Bioactivity score
hERG blocker
Carcinogenicity
Predictive model
Molinspiration
Bioactivity score
hERG blocker
Carcinogenicity
HAL domain(s) :
Chimie
Sciences de l'environnement
Sciences de l'ingénieur [physics]
Sciences du Vivant [q-bio]
Sciences de l'environnement
Sciences de l'ingénieur [physics]
Sciences du Vivant [q-bio]
English abstract : [en]
Harmful algal blooms (HABs) that are formed by cyanobacteria have become a serious issue worldwide in recent years. Cyanobacteria can release a type of secondary metabolites called cyanotoxins into aquatic systems which ...
Show more >Harmful algal blooms (HABs) that are formed by cyanobacteria have become a serious issue worldwide in recent years. Cyanobacteria can release a type of secondary metabolites called cyanotoxins into aquatic systems which may indirectly or directly provide health risks to the environment and humans. Cyanotoxins provide some of the most powerful natural poisons including potent neurotoxins, hepatotoxins, cytotoxins, and endotoxins that may result in environmental health risks, and long-term morbidity and mortality to animals and humans. In this research, we used the chemcomputational tool Molinspiration for molecular property predictions, Pred-hERG 4.2 web software for cardiac toxicity prediction, and Pred-Skin 2.0 web software for predicting skin sensitization. We are predicting some toxicological aspects of cyanobacteria here using chemcomputational tools with the hypothesis that cyanotoxins are providing a risk to human health. We are using the tool Pred-hERG 4.2 to predict hERG channel blocking potential and the Pred-skin tool to predict skin sensitization due to cyanotoxins. The potential of anatoxin, ambigol, the microcystin group, and lyngbyatoxin A, lyngbyatoxin B, nodularin-R, and saxitoxin were predicted to cause skin sensitization in the final results (consensus model). Anatoxin-a and lyngbyatoxin were predicted to allow GI absorption and blood–brain barrier penetration. Among the 20 predicted cyanotoxins only aeruginosin 103-A, ambigol A, and ambigol were predicted by Pred-hERG 4.2 according to the applicability domain results as potential cardiotoxins with weak or moderate potency. Lyngbyatoxin shows activity through the GPCR ligand and protease, kinase, and enzyme inhibitor.Show less >
Show more >Harmful algal blooms (HABs) that are formed by cyanobacteria have become a serious issue worldwide in recent years. Cyanobacteria can release a type of secondary metabolites called cyanotoxins into aquatic systems which may indirectly or directly provide health risks to the environment and humans. Cyanotoxins provide some of the most powerful natural poisons including potent neurotoxins, hepatotoxins, cytotoxins, and endotoxins that may result in environmental health risks, and long-term morbidity and mortality to animals and humans. In this research, we used the chemcomputational tool Molinspiration for molecular property predictions, Pred-hERG 4.2 web software for cardiac toxicity prediction, and Pred-Skin 2.0 web software for predicting skin sensitization. We are predicting some toxicological aspects of cyanobacteria here using chemcomputational tools with the hypothesis that cyanotoxins are providing a risk to human health. We are using the tool Pred-hERG 4.2 to predict hERG channel blocking potential and the Pred-skin tool to predict skin sensitization due to cyanotoxins. The potential of anatoxin, ambigol, the microcystin group, and lyngbyatoxin A, lyngbyatoxin B, nodularin-R, and saxitoxin were predicted to cause skin sensitization in the final results (consensus model). Anatoxin-a and lyngbyatoxin were predicted to allow GI absorption and blood–brain barrier penetration. Among the 20 predicted cyanotoxins only aeruginosin 103-A, ambigol A, and ambigol were predicted by Pred-hERG 4.2 according to the applicability domain results as potential cardiotoxins with weak or moderate potency. Lyngbyatoxin shows activity through the GPCR ligand and protease, kinase, and enzyme inhibitor.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Submission date :
2024-02-28T23:28:20Z
2024-03-18T13:29:46Z
2024-03-18T13:29:46Z
Files
- TSP_BIOCELL_14154.pdf
- Version éditeur
- Open access
- Access the document