UNRAMIFIEDNESS OF GALOIS REPRESENTATIONS ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
UNRAMIFIEDNESS OF GALOIS REPRESENTATIONS ATTACHED TO HILBERT MODULAR FORMS MOD OF WEIGHT 1
Author(s) :
Dimitrov, Mladen [Auteur]
Université de Lille
Wiese, Gabor [Auteur]
Université du Luxembourg = University of Luxembourg = Universität Luxemburg [uni.lu]
Université de Lille
Wiese, Gabor [Auteur]
Université du Luxembourg = University of Luxembourg = Universität Luxemburg [uni.lu]
Journal title :
Journal of the Institute of Mathematics of Jussieu
Pages :
281-306
Publisher :
Cambridge University Press (CUP)
Publication date :
2020-03
ISSN :
1474-7480
HAL domain(s) :
Mathématiques [math]/Théorie des nombres [math.NT]
English abstract : [en]
The main result of this article states that the Galois representation attached to a Hilbert modular eigenform defined over $\overline{\mathbb{F}}_{p}$ of parallel weight 1 and level prime to $p$ is unramified above $p$ . ...
Show more >The main result of this article states that the Galois representation attached to a Hilbert modular eigenform defined over $\overline{\mathbb{F}}_{p}$ of parallel weight 1 and level prime to $p$ is unramified above $p$ . This includes the important case of eigenforms that do not lift to Hilbert modular forms in characteristic 0 of parallel weight 1. The proof is based on the observation that parallel weight 1 forms in characteristic $p$ embed into the ordinary part of parallel weight $p$ forms in two different ways per prime dividing $p$ , namely via ‘partial’ Frobenius operators.Show less >
Show more >The main result of this article states that the Galois representation attached to a Hilbert modular eigenform defined over $\overline{\mathbb{F}}_{p}$ of parallel weight 1 and level prime to $p$ is unramified above $p$ . This includes the important case of eigenforms that do not lift to Hilbert modular forms in characteristic 0 of parallel weight 1. The proof is based on the observation that parallel weight 1 forms in characteristic $p$ embed into the ordinary part of parallel weight $p$ forms in two different ways per prime dividing $p$ , namely via ‘partial’ Frobenius operators.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- 1508.07722
- Open access
- Access the document