Compactification and decompactification ...
Document type :
Pré-publication ou Document de travail
Title :
Compactification and decompactification by weights on Bergman spaces
Author(s) :
Lefèvre, Pascal [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Li, Daniel [Auteur correspondant]
Université d'Artois [UA]
Queffélec, Hervé [Auteur]
Université de Lille
Rodriguez-Piazza, Luis [Auteur]
Universidad de Sevilla = University of Seville
Laboratoire de Mathématiques de Lens [LML]
Li, Daniel [Auteur correspondant]
Université d'Artois [UA]
Queffélec, Hervé [Auteur]
Université de Lille
Rodriguez-Piazza, Luis [Auteur]
Universidad de Sevilla = University of Seville
HAL domain(s) :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
English abstract : [en]
We characterize the symbols ϕ for which there exists a weight w such that the weighted composition operator M w C ϕ is compact on the weighted Bergman space B 2 α. We also characterize the symbols for which there exists a ...
Show more >We characterize the symbols ϕ for which there exists a weight w such that the weighted composition operator M w C ϕ is compact on the weighted Bergman space B 2 α. We also characterize the symbols for which there exists a weight w such that M w C ϕ is bounded but not compact. We also investigate when there exists w such that M w C ϕ is Hilbert-Schmidt on B 2 α.Show less >
Show more >We characterize the symbols ϕ for which there exists a weight w such that the weighted composition operator M w C ϕ is compact on the weighted Bergman space B 2 α. We also characterize the symbols for which there exists a weight w such that M w C ϕ is bounded but not compact. We also investigate when there exists w such that M w C ϕ is Hilbert-Schmidt on B 2 α.Show less >
Language :
Anglais
ANR Project :
Collections :
Source :
Files
- document
- Open access
- Access the document
- Compactification-Bergman-long.pdf
- Open access
- Access the document
- 2107.03208
- Open access
- Access the document