Impact of Thermal Stress on Device Physics ...
Document type :
Article dans une revue scientifique
Permalink :
Title :
Impact of Thermal Stress on Device Physics and Morphology in Organic Photodetectors
Author(s) :
Luong, Hoang Mai [Auteur]
Chae, Sangmin [Auteur]
Yi, Ahra [Auteur]
Ding, Kan [Auteur]
Huang, Jianfei [Auteur]
Kim, Brian Minki [Auteur]
Welton, Claire [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Chen, Jingcong [Auteur]
Wakidi, Hiba [Auteur]
Du, Zhifang [Auteur]
Kim, Hyo Jung [Auteur]
Ade, Harald [Auteur]
Reddy, Manjunatha [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Nguyen, Thuc-Quyen [Auteur]
Chae, Sangmin [Auteur]
Yi, Ahra [Auteur]
Ding, Kan [Auteur]
Huang, Jianfei [Auteur]
Kim, Brian Minki [Auteur]
Welton, Claire [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Chen, Jingcong [Auteur]
Wakidi, Hiba [Auteur]
Du, Zhifang [Auteur]
Kim, Hyo Jung [Auteur]
Ade, Harald [Auteur]
Reddy, Manjunatha [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Nguyen, Thuc-Quyen [Auteur]
Journal title :
ACS Energy Letters
Abbreviated title :
ACS Energy Lett.
Volume number :
8
Pages :
2130-2140
Publisher :
American Chemical Society (ACS)
Publication date :
2023-04-11
HAL domain(s) :
Chimie/Chimie inorganique
English abstract : [en]
Organic photodetectors (OPDs) capable of detecting visible to near-infrared light provide a ubiquitous platform for emerging flexible and wearable electronics. In the process of implementing OPDs into a Si-based manufacturing ...
Show more >Organic photodetectors (OPDs) capable of detecting visible to near-infrared light provide a ubiquitous platform for emerging flexible and wearable electronics. In the process of implementing OPDs into a Si-based manufacturing process, organic semiconductors undergo ≥ 200 °C thermal stress, leading to the deterioration of photosensing capability. Here, we combine multiscale characterization and device physics to unravel the impact of thermal stress on the optoelectronics characteristics of PTB7-Th:non-fullerene acceptor blends (NFAs: SiOTIC-4F, COTIC-4F, CO1-4F, and CO1-4Cl). For as-cast devices, favorable intermixing and phase separation between PTB7-Th and the NFA facilitate charge generation and extraction. Reductions in the OPD performance after thermal annealing (200 °C for 5–120 min) are observed due to the morphological degradation, regardless of the NFA choice, but the reduction is more severe for the PTB7-Th:SiOTIC-4F blend. Thermally induced morphological changes are examined using atomic force microscopy, wide-angle X-ray scattering, and solid-state NMR spectroscopy. This study provides essential insights into morphology-driven deteriorations, which will help in developing structure–stability–performance relationships in high detectivity OPDs.Show less >
Show more >Organic photodetectors (OPDs) capable of detecting visible to near-infrared light provide a ubiquitous platform for emerging flexible and wearable electronics. In the process of implementing OPDs into a Si-based manufacturing process, organic semiconductors undergo ≥ 200 °C thermal stress, leading to the deterioration of photosensing capability. Here, we combine multiscale characterization and device physics to unravel the impact of thermal stress on the optoelectronics characteristics of PTB7-Th:non-fullerene acceptor blends (NFAs: SiOTIC-4F, COTIC-4F, CO1-4F, and CO1-4Cl). For as-cast devices, favorable intermixing and phase separation between PTB7-Th and the NFA facilitate charge generation and extraction. Reductions in the OPD performance after thermal annealing (200 °C for 5–120 min) are observed due to the morphological degradation, regardless of the NFA choice, but the reduction is more severe for the PTB7-Th:SiOTIC-4F blend. Thermally induced morphological changes are examined using atomic force microscopy, wide-angle X-ray scattering, and solid-state NMR spectroscopy. This study provides essential insights into morphology-driven deteriorations, which will help in developing structure–stability–performance relationships in high detectivity OPDs.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Research team(s) :
RMN et matériaux inorganiques (RM2I)
Submission date :
2024-04-03T13:48:23Z