Electronic Properties of Electroactive ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Electronic Properties of Electroactive Ferrocenyl-Functionalized MoS2
Author(s) :
Lê, Trung Nghia Nguyên [Auteur]
Institut des Sciences Chimiques de Rennes [ISCR]
Kondratenko, Kirill [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Arbouch, Imane [Auteur]
Université de Mons / University of Mons [UMONS]
Moréac, Alain [Auteur]
Institut de Physique de Rennes [IPR]
Le Breton, Jean-Christophe [Auteur]
Institut de Physique de Rennes [IPR]
van Dyck, Colin [Auteur]
Université de Mons / University of Mons [UMONS]
Cornil, Jérôme [Auteur]
Université de Mons / University of Mons [UMONS]
Vuillaume, Dominique [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Fabre, Bruno [Auteur]
Institut des Sciences Chimiques de Rennes [ISCR]
Institut des Sciences Chimiques de Rennes [ISCR]
Kondratenko, Kirill [Auteur]

Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Arbouch, Imane [Auteur]
Université de Mons / University of Mons [UMONS]
Moréac, Alain [Auteur]
Institut de Physique de Rennes [IPR]
Le Breton, Jean-Christophe [Auteur]
Institut de Physique de Rennes [IPR]
van Dyck, Colin [Auteur]
Université de Mons / University of Mons [UMONS]
Cornil, Jérôme [Auteur]
Université de Mons / University of Mons [UMONS]
Vuillaume, Dominique [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Fabre, Bruno [Auteur]
Institut des Sciences Chimiques de Rennes [ISCR]
Journal title :
Journal of Physical Chemistry C
Pages :
7706-7722
Publisher :
American Chemical Society
Publication date :
2024-04-16
ISSN :
1932-7447
English keyword(s) :
Transition metal dichalcogenides (TMDs)
MoS2
redox functionalization
ferrocene
charge transport
MoS2
redox functionalization
ferrocene
charge transport
HAL domain(s) :
Physique [physics]
Chimie
Chimie
English abstract : [en]
The attachment of redox active molecules to transition metal dichalcogenides (TMDs), such as MoS2, constitutes a promising approach for designing electrochemically switchable devices through the control of the material ...
Show more >The attachment of redox active molecules to transition metal dichalcogenides (TMDs), such as MoS2, constitutes a promising approach for designing electrochemically switchable devices through the control of the material charge/spin transport properties by the redox state of the grafted molecule and thus the applied electrical potential. In this work, defective plasma treated MoS2 is functionalized by a ferrocene derivative and thoroughly investigated by various characterization techniques, such as Raman, photoluminescence, X-ray photoelectron spectroscopies, atomic force microscopy (AFM) and electrochemistry. Furthermore, in-plane and out-of-plane conductive-AFM measurements (I-V and first derivative dI/dV-V curves) are measured to investigate the effect of the chemical functionalization of MoS2 on the electron transport properties. While the conduction and valence bands are determined at +0.7 and -1.2 eV with respect of the electrode Fermi energy for pristineMoS2, additional states in an energy range of ca. 0.45 eV below the MoS2 conduction band are measured after plasma treatment, attributed to S-vacancies. For ferrocene functionalized MoS2, the S-vacancy states are no longer observed resulting from the defect healing. However, two bumps at lower voltages in the dI/dV-V indicate a contribution to the electron transport through ferrocene HOMO, which is located in the MoS2 band gap at ca. 0.4-0.6 eV below the Fermi energy. These results are in good agreement with theoretical density functional theory (DFT) calculations and UV photoelectron spectroscopy (UPS) measurements.Show less >
Show more >The attachment of redox active molecules to transition metal dichalcogenides (TMDs), such as MoS2, constitutes a promising approach for designing electrochemically switchable devices through the control of the material charge/spin transport properties by the redox state of the grafted molecule and thus the applied electrical potential. In this work, defective plasma treated MoS2 is functionalized by a ferrocene derivative and thoroughly investigated by various characterization techniques, such as Raman, photoluminescence, X-ray photoelectron spectroscopies, atomic force microscopy (AFM) and electrochemistry. Furthermore, in-plane and out-of-plane conductive-AFM measurements (I-V and first derivative dI/dV-V curves) are measured to investigate the effect of the chemical functionalization of MoS2 on the electron transport properties. While the conduction and valence bands are determined at +0.7 and -1.2 eV with respect of the electrode Fermi energy for pristineMoS2, additional states in an energy range of ca. 0.45 eV below the MoS2 conduction band are measured after plasma treatment, attributed to S-vacancies. For ferrocene functionalized MoS2, the S-vacancy states are no longer observed resulting from the defect healing. However, two bumps at lower voltages in the dI/dV-V indicate a contribution to the electron transport through ferrocene HOMO, which is located in the MoS2 band gap at ca. 0.4-0.6 eV below the Fermi energy. These results are in good agreement with theoretical density functional theory (DFT) calculations and UV photoelectron spectroscopy (UPS) measurements.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Comment :
Full manuscript with figures and supporting information
Source :
Files
- document
- Open access
- Access the document
- MoS2-Fc-arXiv.pdf
- Open access
- Access the document
- 2404.10565
- Open access
- Access the document
- document
- Open access
- Access the document
- MoS2-Fc-arXiv.pdf
- Open access
- Access the document