Optimal design and evaluation of adaptive ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Optimal design and evaluation of adaptive EWMA monitoring schemes for Inverse Maxwell distribution
Auteur(s) :
Saghir, A. [Auteur]
Hu, X. L. [Auteur]
Tran, Kim-Phuc [Auteur]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
Song, Z. [Auteur]
Hu, X. L. [Auteur]
Tran, Kim-Phuc [Auteur]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
Song, Z. [Auteur]
Titre de la revue :
Computers & Industrial Engineering
Nom court de la revue :
Comput. Ind. Eng.
Numéro :
181
Pagination :
-
Date de publication :
2024-06-29
ISSN :
0360-8352
Mot(s)-clé(s) en anglais :
Monitoring schemes
Inverse Maxwell distribution
AEWMA
Markov chain
ARL
Inverse Maxwell distribution
AEWMA
Markov chain
ARL
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Monitoring schemes have been successfully implemented when the underlying data follows a non-normal distribution like the Inverse Maxwell (IM) distribution. The article proposes a new adaptive exponentially weighted moving ...
Lire la suite >Monitoring schemes have been successfully implemented when the underlying data follows a non-normal distribution like the Inverse Maxwell (IM) distribution. The article proposes a new adaptive exponentially weighted moving average (AEWMA) scheme, namely the AIMEWMA, to monitor the IM distributed process. The design parameters of the AIMEWMA scheme are determined via a Markov chain model and its performance is analyzed by its run length (RL) characteristics. The overall model ability is examined using some popular performance tools. The results show that, for most of shifts, the AIMEWMA scheme is more efficient than other available competitors. Moreover, some guidelines regarding the selection of the most effective scheme in practice have been discussed. The applicability of the new scheme is also presented on a real data set.Lire moins >
Lire la suite >Monitoring schemes have been successfully implemented when the underlying data follows a non-normal distribution like the Inverse Maxwell (IM) distribution. The article proposes a new adaptive exponentially weighted moving average (AEWMA) scheme, namely the AIMEWMA, to monitor the IM distributed process. The design parameters of the AIMEWMA scheme are determined via a Markov chain model and its performance is analyzed by its run length (RL) characteristics. The overall model ability is examined using some popular performance tools. The results show that, for most of shifts, the AIMEWMA scheme is more efficient than other available competitors. Moreover, some guidelines regarding the selection of the most effective scheme in practice have been discussed. The applicability of the new scheme is also presented on a real data set.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ENSAIT
Junia HEI
ENSAIT
Junia HEI
Collections :
Date de dépôt :
2024-07-16T21:21:37Z
2024-09-24T14:03:42Z
2024-09-24T14:03:42Z