• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convergence Rate of the Causal Jacobi ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Partie d'ouvrage: Chapitre
DOI :
10.1007/978-3-642-27413-8_28
Title :
Convergence Rate of the Causal Jacobi Derivative Estimator
Author(s) :
Liu, Da-Yan [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Non-Asymptotic estimation for online systems [NON-A]
Gibaru, Olivier [Auteur]
Laboratoire de Métrologie et de Mathématiques Appliquées [L2MA]
Non-Asymptotic estimation for online systems [NON-A]
Perruquetti, Wilfrid [Auteur] refId
Centrale Lille
Systèmes Non Linéaires et à Retards [SyNeR]
Non-Asymptotic estimation for online systems [NON-A]
Book title :
Curves and Surfaces 2011
Publication date :
2011
HAL domain(s) :
Mathématiques [math]/Analyse numérique [math.NA]
English abstract : [en]
Numerical causal derivative estimators from noisy data are essential for real time applications especially for control applications or fluid simulation so as to address the new paradigms in solid modeling and video ...
Show more >
Numerical causal derivative estimators from noisy data are essential for real time applications especially for control applications or fluid simulation so as to address the new paradigms in solid modeling and video compression. By using an analytical point of view due to Lanczos \cite{C. Lanczos} to this causal case, we revisit $n^{th}$\ order derivative estimators originally introduced within an algebraic framework by Mboup, Fliess and Join in \cite{num,num0}. Thanks to a given noise level $\delta$ and a well-suitable integration length window, we show that the derivative estimator error can be $\mathcal{O}(\delta ^{\frac{q+1}{n+1+q}})$ where $q$\ is the order of truncation of the Jacobi polynomial series expansion used. This so obtained bound helps us to choose the values of our parameter estimators. We show the efficiency of our method on some examples.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • liu.pdf
  • Open access
  • Access the document
Thumbnail
  • 1106.2208
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017