• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bifurcation values of mixed polynomials
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
Link :
https://lilloa.univ-lille.fr/handle/20.500.12210/120984
Title :
Bifurcation values of mixed polynomials
Author(s) :
Chen, Ying [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Tibar, Mihai [Auteur correspondant] refId
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Math. Research Letters
Pages :
59-79
Publication date :
2012-01-20
HAL domain(s) :
Mathématiques [math]/Variables complexes [math.CV]
Mathématiques [math]/Géométrie algébrique [math.AG]
Mathématiques [math]/Topologie algébrique [math.AT]
English abstract : [en]
We study the bifurcation locus $B(f)$ of real polynomials $f: \bR^{2n} \to \bR^2$. We find a semialgebraic approximation of $B(f)$ by using the $\rho$-regularity condition and we compare it to the Sard type theorem by ...
Show more >
We study the bifurcation locus $B(f)$ of real polynomials $f: \bR^{2n} \to \bR^2$. We find a semialgebraic approximation of $B(f)$ by using the $\rho$-regularity condition and we compare it to the Sard type theorem by Kurdyka, Orro and Simon. We introduce the Newton boundary at infinity for mixed polynomials and we extend structure results by Kushnirenko and by Némethi and Zaharia, under the Newton non-degeneracy assumption.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Singularités réelles
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Submission date :
2025-01-24T10:49:46Z
Files
Thumbnail
  • 1011.4884
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017