Bayesian estimation of a competing risk ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Bayesian estimation of a competing risk model based on Weibull and exponential distributions under right censored data
Auteur(s) :
Talhi, Hamida [Auteur]
Aiachi, Hiba [Auteur]
Rahmania, Nadji [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Aiachi, Hiba [Auteur]
Rahmania, Nadji [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Monte Carlo Methods and Applications
Pagination :
163-174
Éditeur :
De Gruyter
Date de publication :
2022-06-01
ISSN :
0929-9629
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
Abstract In this paper, we investigate the estimation of the unknown parameters of a competing risk model based on a Weibull distributed decreasing failure rate and an exponentially distributed constant failure rate, under ...
Lire la suite >Abstract In this paper, we investigate the estimation of the unknown parameters of a competing risk model based on a Weibull distributed decreasing failure rate and an exponentially distributed constant failure rate, under right censored data. The Bayes estimators and the corresponding risks are derived using various loss functions. Since the posterior analysis involves analytically intractable integrals, we propose a Monte Carlo method to compute these estimators. Given initial values of the model parameters, the maximum likelihood estimators are computed using the expectation-maximization algorithm. Finally, we use Pitman’s closeness criterion and integrated mean-square error to compare the performance of the Bayesian and the maximum likelihood estimators.Lire moins >
Lire la suite >Abstract In this paper, we investigate the estimation of the unknown parameters of a competing risk model based on a Weibull distributed decreasing failure rate and an exponentially distributed constant failure rate, under right censored data. The Bayes estimators and the corresponding risks are derived using various loss functions. Since the posterior analysis involves analytically intractable integrals, we propose a Monte Carlo method to compute these estimators. Given initial values of the model parameters, the maximum likelihood estimators are computed using the expectation-maximization algorithm. Finally, we use Pitman’s closeness criterion and integrated mean-square error to compare the performance of the Bayesian and the maximum likelihood estimators.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-01-24T14:44:07Z
Fichiers
- 2101.03550
- Accès libre
- Accéder au document