On the exactness of ordinary parts over a ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
On the exactness of ordinary parts over a local field of characteristic $p$
Auteur(s) :
Titre de la revue :
Pacific Journal of Mathematics
Pagination :
17-30
Éditeur :
Mathematical Sciences Publishers
Date de publication :
2018
ISSN :
0030-8730
Discipline(s) HAL :
Mathématiques [math]/Théorie des représentations [math.RT]
Mathématiques [math]/Théorie des nombres [math.NT]
Mathématiques [math]/Théorie des nombres [math.NT]
Résumé en anglais : [en]
Let $G$ be a connected reductive group over a non-archimedean local field $F$ of residue characteristic $p$, $P$ be a parabolic subgroup of $G$, and $R$ be a commutative ring.When $R$ is artinian, $p$ is nilpotent in $R$, ...
Lire la suite >Let $G$ be a connected reductive group over a non-archimedean local field $F$ of residue characteristic $p$, $P$ be a parabolic subgroup of $G$, and $R$ be a commutative ring.When $R$ is artinian, $p$ is nilpotent in $R$, and $\mathrm{char}(F)=p$, we prove that the ordinary part functor $\mathrm{Ord}_P$ is exact on the category of admissible smooth $R$-representations of $G$.We derive some results on Yoneda extensions between admissible smooth $R$-representations of $G$.Lire moins >
Lire la suite >Let $G$ be a connected reductive group over a non-archimedean local field $F$ of residue characteristic $p$, $P$ be a parabolic subgroup of $G$, and $R$ be a commutative ring.When $R$ is artinian, $p$ is nilpotent in $R$, and $\mathrm{char}(F)=p$, we prove that the ordinary part functor $\mathrm{Ord}_P$ is exact on the category of admissible smooth $R$-representations of $G$.We derive some results on Yoneda extensions between admissible smooth $R$-representations of $G$.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-01-24T16:14:07Z
Fichiers
- 1705.02638
- Accès libre
- Accéder au document