• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

How many T-tessellations on k lines? ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1002/rsa.20557
Link :
https://lilloa.univ-lille.fr/handle/20.500.12210/131638
Title :
How many T-tessellations on k lines? Existence of associated Gibbs measures on bounded convex domains
Author(s) :
Kahn, Jonas [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Random Structures and Algorithms
Pages :
561-587
Publisher :
Wiley
Publication date :
2015-10
ISSN :
1042-9832
English keyword(s) :
T-tessellations
Enumerative combinatorics
Polygo- nal Markov fields
Stochastic geometry
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Statistiques [math.ST]
English abstract : [en]
The paper bounds the number of tessellations with T-shaped vertices on a fixed set of k lines: tessellations are efficiently encoded, and algorithms retrieve them, proving injectivity. This yields existence of a completely ...
Show more >
The paper bounds the number of tessellations with T-shaped vertices on a fixed set of k lines: tessellations are efficiently encoded, and algorithms retrieve them, proving injectivity. This yields existence of a completely random T-tessellation, as defined by Kiêu et al. [2013], and of its Gibbsian modifications. The combinatorial bound is sharp, but likely pessimistic in typical cases.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Submission date :
2025-11-05T05:02:25Z
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • 1012.2182v3.pdf
  • Open access
  • Access the document
Thumbnail
  • 1012.2182
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017