Stability of some linear systems with delays
Document type :
Article dans une revue scientifique
DOI :
Title :
Stability of some linear systems with delays
Author(s) :
Kolmanovskii, V.B. [Auteur]
Richard, Jean-Pierre [Auteur]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Richard, Jean-Pierre [Auteur]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Journal title :
IEEE Transactions on Automatic Control
Pages :
984-989
Publisher :
Institute of Electrical and Electronics Engineers
Publication date :
1999
ISSN :
0018-9286
English keyword(s) :
Time Delay Systems
Stability analysis
Stability analysis
HAL domain(s) :
Informatique [cs]/Automatique
Mathématiques [math]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Automatique / Robotique
Mathématiques [math]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
Asymptotic stability of a class of linear equations with arbitrary discrete and distributed delays is investigated. Both delay-independent and delay-dependent stability conditions are formulated in terms of existence of ...
Show more >Asymptotic stability of a class of linear equations with arbitrary discrete and distributed delays is investigated. Both delay-independent and delay-dependent stability conditions are formulated in terms of existence of positive definite solutions to Riccati matrix equations. The approach of deriving various Riccati equations using the direct Lyapunov method is proposed.Show less >
Show more >Asymptotic stability of a class of linear equations with arbitrary discrete and distributed delays is investigated. Both delay-independent and delay-dependent stability conditions are formulated in terms of existence of positive definite solutions to Riccati matrix equations. The approach of deriving various Riccati equations using the direct Lyapunov method is proposed.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :