• English
    • français
  • Aide
  •  | 
  • Contact
  •  | 
  • À Propos
  •  | 
  • Ouvrir une session
  • Portail HAL
  •  | 
  • Pages Pro Chercheurs
  • EN
  •  / 
  • FR
Voir le document 
  •   Accueil de LillOA
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • Voir le document
  •   Accueil de LillOA
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

(Co)inductive Proof Systems for Compositional ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Type de document :
Communication dans un congrès avec actes
DOI :
10.4204/EPTCS.303.3
Titre :
(Co)inductive Proof Systems for Compositional Proofs in Reachability Logic
Auteur(s) :
Rusu, Vlad [Auteur]
Centre Inria de l'Université de Lille
Nowak, David [Auteur] refId
Extra Small Extra Safe [2XS]
Titre de la manifestation scientifique :
Working Formal Methods Symposium
Ville :
Timisoara
Pays :
Roumanie
Date de début de la manifestation scientifique :
2019-09-03
Titre de la revue :
Electronic Proceedings in Theoretical Computer Science (EPTCS)
Discipline(s) HAL :
Informatique [cs]/Logique en informatique [cs.LO]
Résumé en anglais : [en]
Reachability Logic is a formalism that can be used, among others, for expressing partial-correctness properties of transition systems. In this paper we present three proof systems for this formalism, all of which are sound ...
Lire la suite >
Reachability Logic is a formalism that can be used, among others, for expressing partial-correctness properties of transition systems. In this paper we present three proof systems for this formalism, all of which are sound and complete and inherit the coinductive nature of the logic. The proof systems differ, however, in several aspects. First, they use induction and coinduction in different proportions. The second aspect regards compositionality, broadly meaning their ability to prove simpler formulas on smaller systems, and to reuse those formulas as lemmas for more complex formulas on larger systems. The third aspect is the difficulty of their soundness proofs. We show that the more induction a proof system uses, and the more specialised is its use of coinduction (with respect to our problem domain), the more compositional the proof system is, but the more difficult its soundness proof becomes. We also briefly present mechanisations of these results in the Isabelle/HOL and Coq proof assistants.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Fichiers
Thumbnail
  • https://hal.inria.fr/hal-02176456v2/document
  • Accès libre
  • Accéder au document
Thumbnail
  • https://arxiv.org/pdf/1909.01744
  • Accès libre
  • Accéder au document
Thumbnail
  • https://hal.inria.fr/hal-02176456v2/document
  • Accès libre
  • Accéder au document
Thumbnail
  • https://hal.inria.fr/hal-02176456v2/document
  • Accès libre
  • Accéder au document
Thumbnail
  • document
  • Accès libre
  • Accéder au document
Thumbnail
  • from2019_full.pdf
  • Accès libre
  • Accéder au document
Thumbnail
  • 1909.01744
  • Accès libre
  • Accéder au document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017