Ce que peuvent et ne peuvent pas faire les ...
Document type :
Pré-publication ou Document de travail
Title :
Ce que peuvent et ne peuvent pas faire les astuces de doublement pour les bandits multi-bras
Author(s) :
Besson, Lilian [Auteur]
Sequential Learning [SEQUEL]
CentraleSupélec
Signal, Communication et Electronique Embarquée [SCEE]
SUPELEC-Campus Rennes
Institut d'Électronique et des Technologies du numéRique [IETR]
Kaufmann, Emilie [Auteur]
Centre de Recherche Réseau Image SysTème Architecture et MuLtimédia [CRISTAL]
Centre National de la Recherche Scientifique [CNRS]
Sequential Learning [SEQUEL]
Sequential Learning [SEQUEL]
CentraleSupélec
Signal, Communication et Electronique Embarquée [SCEE]
SUPELEC-Campus Rennes
Institut d'Électronique et des Technologies du numéRique [IETR]
Kaufmann, Emilie [Auteur]
Centre de Recherche Réseau Image SysTème Architecture et MuLtimédia [CRISTAL]
Centre National de la Recherche Scientifique [CNRS]
Sequential Learning [SEQUEL]
English keyword(s) :
Anytime Algorithms
Multi-Armed Bandits
Sequential Learning
Doubling Trick
Multi-Armed Bandits
Sequential Learning
Doubling Trick
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Apprentissage [cs.LG]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Apprentissage [cs.LG]
French abstract :
Un algorithme en ligne d'apprentissage par renforcement est dit "à tout moment" (anytime) s'il n'a pas besoin de connaître à l'avance l'horizon T de l'expérience. Une technique bien connue pour obtenir un algorithme à tout ...
Show more >Un algorithme en ligne d'apprentissage par renforcement est dit "à tout moment" (anytime) s'il n'a pas besoin de connaître à l'avance l'horizon T de l'expérience. Une technique bien connue pour obtenir un algorithme à tout moment à partir d'un algorithme qui ne l'est pas est "l'astuce de doublement" (Doubling Trick). Dans le contexte des bandits multi-bras adverses ou stochastiques, la performance d'un algorithme est mesurée par son regret, et nous étudions deux familles de séquences d'horizons croissants (géométrique et exponentielle), pour généraliser des résultats précédemment connus que certaines astuces de doublement peuvent être utilisées pour conserver certaines limites de regret. Dans un cadre très générique, nous prouvons qu'une astuce géométrique de doublement peut être utilisée pour conserver les bornes (minimax) en $R_T = O(\sqrt{T})$ mais ne peut pas conserver les bornes (dépendantes de la distribution) en $R_T = O(\log T)$. Nous donnons un aperçu des raisons pour lesquelles les astuces de doublage exponentiel peuvent être meilleures, car elles conservent les bornes en $R_T = O(\log T)$, et sont proches de conserver les bornes en $R_T = O(\sqrt{T}$).Show less >
Show more >Un algorithme en ligne d'apprentissage par renforcement est dit "à tout moment" (anytime) s'il n'a pas besoin de connaître à l'avance l'horizon T de l'expérience. Une technique bien connue pour obtenir un algorithme à tout moment à partir d'un algorithme qui ne l'est pas est "l'astuce de doublement" (Doubling Trick). Dans le contexte des bandits multi-bras adverses ou stochastiques, la performance d'un algorithme est mesurée par son regret, et nous étudions deux familles de séquences d'horizons croissants (géométrique et exponentielle), pour généraliser des résultats précédemment connus que certaines astuces de doublement peuvent être utilisées pour conserver certaines limites de regret. Dans un cadre très générique, nous prouvons qu'une astuce géométrique de doublement peut être utilisée pour conserver les bornes (minimax) en $R_T = O(\sqrt{T})$ mais ne peut pas conserver les bornes (dépendantes de la distribution) en $R_T = O(\log T)$. Nous donnons un aperçu des raisons pour lesquelles les astuces de doublage exponentiel peuvent être meilleures, car elles conservent les bornes en $R_T = O(\log T)$, et sont proches de conserver les bornes en $R_T = O(\sqrt{T}$).Show less >
English abstract : [en]
An online reinforcement learning algorithm is anytime if it does not need to know in advance the horizon T of the experiment. A well-known technique to obtain an anytime algorithm from any non-anytime algorithm is the ...
Show more >An online reinforcement learning algorithm is anytime if it does not need to know in advance the horizon T of the experiment. A well-known technique to obtain an anytime algorithm from any non-anytime algorithm is the "Doubling Trick". In the context of adversarial or stochastic multi-armed bandits, the performance of an algorithm is measured by its regret, and we study two families of sequences of growing horizons (geometric and exponential) to generalize previously known results that certain doubling tricks can be used to conserve certain regret bounds. In a broad setting, we prove that a geometric doubling trick can be used to conserve (minimax) bounds in $R_T = O(\sqrt{T})$ but cannot conserve (distribution-dependent) bounds in $R_T = O(\log T)$. We give insights as to why exponential doubling tricks may be better, as they conserve bounds in $R_T = O(\log T)$, and are close to conserving bounds in $R_T = O(\sqrt{T})$.Show less >
Show more >An online reinforcement learning algorithm is anytime if it does not need to know in advance the horizon T of the experiment. A well-known technique to obtain an anytime algorithm from any non-anytime algorithm is the "Doubling Trick". In the context of adversarial or stochastic multi-armed bandits, the performance of an algorithm is measured by its regret, and we study two families of sequences of growing horizons (geometric and exponential) to generalize previously known results that certain doubling tricks can be used to conserve certain regret bounds. In a broad setting, we prove that a geometric doubling trick can be used to conserve (minimax) bounds in $R_T = O(\sqrt{T})$ but cannot conserve (distribution-dependent) bounds in $R_T = O(\log T)$. We give insights as to why exponential doubling tricks may be better, as they conserve bounds in $R_T = O(\log T)$, and are close to conserving bounds in $R_T = O(\sqrt{T})$.Show less >
Language :
Anglais
Collections :
Source :
Files
- https://hal.inria.fr/hal-01736357/document
- Open access
- Access the document
- http://arxiv.org/pdf/1803.06971
- Open access
- Access the document
- https://hal.inria.fr/hal-01736357/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01736357/document
- Open access
- Access the document
- document
- Open access
- Access the document
- BK__COLT_2018.pdf
- Open access
- Access the document
- 1803.06971
- Open access
- Access the document
- document
- Open access
- Access the document
- BK__COLT_2018.pdf
- Open access
- Access the document