Relaxing the conditions of ISS for multistable ...
Type de document :
Communication dans un congrès avec actes
Titre :
Relaxing the conditions of ISS for multistable periodic systems
Auteur(s) :
Efimov, Denis [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Schiffer, Johannes [Auteur]
University of Leeds
Barabanov, Nikita [Auteur]
University of North Dakota [Grand Forks] [UND]
Ortega, Romeo [Auteur]
Laboratoire des signaux et systèmes [L2S]

Non-Asymptotic estimation for online systems [NON-A]
Schiffer, Johannes [Auteur]
University of Leeds
Barabanov, Nikita [Auteur]
University of North Dakota [Grand Forks] [UND]
Ortega, Romeo [Auteur]
Laboratoire des signaux et systèmes [L2S]
Titre de la manifestation scientifique :
IFAC 2017 - 20th World Congress of the International Federation of Automatic Control
Ville :
Toulouse
Pays :
France
Date de début de la manifestation scientifique :
2017-07-10
Mot(s)-clé(s) en anglais :
Input-to-state stability
Periodic system
Multistable system
Periodic system
Multistable system
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
The input-to-state stability property of nonlinear dynamical systems with multiple invariant solutions is analyzed under the assumption that the system equations are periodic with respect to certain state variables. It is ...
Lire la suite >The input-to-state stability property of nonlinear dynamical systems with multiple invariant solutions is analyzed under the assumption that the system equations are periodic with respect to certain state variables. It is shown that stability can be concluded via a sign-indefinite function, which explicitly takes the systems' periodicity into account. The presented approach leverages some of the difficulties encountered in the analysis of periodic systems via positive definite Lyapunov functions proposed in Angeli and Efimov (2013, 2015). The new result is established based on the framework of cell structure introduced in Leonov (1974) and illustrated via the global analysis of a nonlinear pendulum with a constant persistent input.Lire moins >
Lire la suite >The input-to-state stability property of nonlinear dynamical systems with multiple invariant solutions is analyzed under the assumption that the system equations are periodic with respect to certain state variables. It is shown that stability can be concluded via a sign-indefinite function, which explicitly takes the systems' periodicity into account. The presented approach leverages some of the difficulties encountered in the analysis of periodic systems via positive definite Lyapunov functions proposed in Angeli and Efimov (2013, 2015). The new result is established based on the framework of cell structure introduced in Leonov (1974) and illustrated via the global analysis of a nonlinear pendulum with a constant persistent input.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01508766/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01508766/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01508766/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01508766/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- IFAC17_0375_FIp.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- IFAC17_0375_FIp.pdf
- Accès libre
- Accéder au document